

EMBEDDED SYSTEMS

B.TECH
(IV YEAR – I SEM)

Department of Electronics and Communication Engineering

SVR ENGINEERING COLLEGE
NANDYAL.

AYYALURU METTA, NANDYAL– 518 503 (A.P)

(Affiliated to JNTUA Anantapur, Approved by AICTE, New Delhi)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR B. Tech

IV-I Sem. (ECE)

LTPC

3103

15A04702

EMBEDDED SYSTEMS

Course Objectives:

• To understand the fundamental concepts of Embedded systems.

• To learn the kernel of RTOS, architecture of ARM processor.

Course Outcomes: After completion the students will be able to

• Design of embedded systems leading to 32-bit application development.

• Understand hardware-interfacing concepts to connect digital as well as analog sensors while ensuring

low power considerations.

• Review and implement the protocols used by microcontroller to communicate with external sensors

and actuators in real world.

• Understand Embedded Networking and IoT concepts based upon connected MCUs

UNIT-I

Introduction to Embedded Systems Embedded system introduction, host and target concept, embedded

applications, features and architecture considerations for embedded systems- ROM, RAM, timers; data

and address bus concept, Embedded Processor and their types, Memory types, overview of design

process of embedded systems, programming languages and tools for embedded design

UNIT-II

Embedded processor architecture CISC Vs RISC design philosophy, Von-Neumann Vs Harvard

architecture. Introduction to ARM architecture and Cortex – M series, Introduction to the TM4C family

viz. TM4C123x & TM4C129x and its targeted applications. TM4C block diagram, address space, on-

chip peripherals (analog and digital) Register sets, Addressing modes and instruction set basics.

UNIT- III

Overview of Microcontroller and Embedded Systems

Embedded hardware and various building blocks, Processor Selection for an Embedded System ,

Interfacing Processor, Memories and I/O Devices, I/O Devices and

I/O interfacing concepts, Timer and Counting Devices, Serial Communication and Advanced I/O,

Buses between the Networked Multiple Devices.Embedded System Design and Co-design Issues in

System Development Process, Design Cycle in the Development Phase for an Embedded System, Uses

of Target System or its Emulator and In-Circuit Emulator (ICE), Use of Software Tools for

Development of an Embedded System Design metrics of embedded systems - low power, high

performance, engineering cost, time-to-market.

UNIT-IV

Microcontroller fundamentals for basic programming I/O pin multiplexing, pull up/down registers,

GPIO control, Memory Mapped Peripherals, programming System registers, Watchdog Timer, need of

low power for embedded systems, System Clocks and control, Hibernation Module on TM4C, Active

vs Standby current consumption. Introduction to Interrupts, Interrupt vector table, interrupt

programming. Basic Timer, Real Time Clock (RTC), Motion Control Peripherals: PWM Module &

Quadrature Encoder Interface (QEI).

Unit-V

Embedded communications protocols and Internet of things Synchronous/Asynchronous interfaces

(like UART, SPI, I2C, USB), serial communication basics, baud rate concepts, Interfacing digital and

analog external device, Implementing and programming UART, SPI and I2C, SPI interface using

TM4C.Case Study: Tiva based embedded system application using the interface protocols for

communication with external devices “Sensor Hub BoosterPack” Embedded Networking fundamentals,

IoT overview and architecture, Overview of wireless sensor networks and design examples. Adding

Wi-Fi capability to the Microcontroller, Embedded Wi-Fi, User APIs for Wireless and Networking

applications Building IoT applications using CC3100 user API. Case Study: Tiva based Embedded

Networking Application: “Smart Plug with Remote Disconnect and Wi-Fi Connectivity” Text Books:

1. Embedded Systems: Real-Time Interfacing to ARM Cortex-M Microcontrollers, 2014, Create space

publications ISBN: 978-1463590154.

2. Embedded Systems: Introduction to ARM Cortex - M Microcontrollers, 5th edition

Jonathan W Valvano, Createspace publications ISBN-13: 978-1477508992

3. Embedded Systems 2E Raj Kamal, Tata McGraw-Hill Education, 2011 ISBN-

4. 0070667640, 9780070667648

References:

1. http://processors.wiki.ti.com/index.php/HandsOn_Training_for_TI_Embedded_Processors

2. http://processors.wiki.ti.com/index.php/MCU_Day_Internet_of_Things_2013_Workshop

3. http://www.ti.com/ww/en/simplelink_embedded_wi-fi/home.html

4. CC3100/CC3200 SimpleLink™ Wi-Fi® Internet-on-a-Chip User Guide Texas Instruments

Literature Number: SWRU368A April 2014–Revised August 2015.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

UNIT-III

Overview of Microcontroller and Embedded

Systems

Embedded Hardware and Various Building Blocks:

The basic hardware components of an embedded system shown in a block diagram in

below figure.

These include the processing unit, sensors and actuators, ADC, DAC, I/O unit and the

memory block. The processing unit could be a microprocessor, a microcontroller, FPGA i.e.

field programmable gate array or ASIC (Application Specific IC) depending on the

application requirements.

Sensors such as sound sensor, ambient temperature sensor, motion sensor etc. are

generally analog in nature since they sense the data from outside world. This data is

converted from analog to digital and sent to a processing unit, post which required action is

performed by actuators.

Figure: Basic block diagram of an embedded system

Processor Selection for an Embedded System:

The processing unit could be a microprocessor, a microcontroller, embedded

processor, DSP, ASIC or FPGA selected for an embedded system based on the application

requirements.

This processing unit executes the application program that is saved in the program

memory ROM (read only memory). The RAM (random access memory) is used as the data

memory to hold the system stack and the variables used in the program.

Stack is a portion in the RAM reserved to hold back the status of the program when

the control is transferred by a branch instruction. To make a system interactive, input-output

(I/O) unit is required. The memory block and the I/O units communicate with the processing

unit through the system bus.

The system bus consists of three different bus systems: address bus, data bus and

control bus. Processor sends the address of the destination through the address bus. So

address bus is unidirectional from processor to the external end. Data can be sent or received

from any unit to any other unit in the diagram.

So data bus is bidirectional. Control bus is basically a group of control signals from

the processing unit to the external units.

Interfacing Processor:

Figure: Processing Unit and System Bus

Microprocessor

 Microprocessor is a programmable digital device which has high computational

capability to run a number of applications in general purpose systems. It does not have

memory or I/O ports built within its architecture. So, these devices need to be added

externally to make a system functional. In embedded systems, the design is constrained with

limited memory and I/O features. So microprocessors are used where system capability needs

to be expanded by adding external memory and I/O.

Microcontroller

A microcontroller has a specific amount of program and data memory, as well as I/O

ports built within the architecture along with the CPU core, making it a complete system. As

a result, most embedded systems are microcontroller based, where are used to run one or

limited number of applications.

Embedded Processor

Embedded processors are specifically designed for embedded systems to meet design

constraints. They have the potential to handle multitasking applications. The performance and

power efficiency requirements of embedded systems are satisfied by the use of embedded

processors.

DSP

 Digital signal processors (DSP) are used for signal processing applications such as

voice or video compression, data acquisition, image processing or noise and echo

cancellation.

ASIC

 Application specific integrated circuit (ASIC) is basically a proprietary device

designed and used by a company for a specific line of products (for example Samsung cell

phones or Cisco routers etc.). It is specifically an algorithm called intellectual property core

implemented on a chip.

FPGA

 Field programmable gate arrays (FPGA) have programmable macro cells and their

interconnects are configured based on the design. They are used in embedded systems when

it is required to enhance the computational capability of the existing system or to make a

system reprogrammable and reconfigurable when the need arises.

Memories and I/O Devices:

Memory Block:

The memory block consists of program and data memory. ROM is used as the

program memory and RAM is used as the data memory. There are two memory architectures:

Harvard and Von-Neumann.

In Harvard architecture, the program and data memories are segregated with separate

address and data bus drawn to each. So there can be parallel access to both and performance

of the system can be improved at the cost of hardware complexity. On the other-hand, the

Von-Neumann architecture has one unified memory used for both program and data. The

system is comparatively slower, but the design implementation is simple and cost effective

for an embedded system. Various ROM and RAM devices are used in embedded systems

based on the applications.

ROM

Read only memory (ROM) is non-volatile i.e. it retains the contents even after power

goes off. It is used as the program memory. In embedded systems, the application program

after being compiled is saved in the ROM. The processing unit accesses the ROM to fetch

instructions sequentially and executes them within the CPU. There are different categories of

ROM such as: programmable read only memory (PROM), erasable programmable read only

memory (EPROM), electrically erasable programmable read only memory (EEPROM) etc.

There is also flash memory which is the updated version of EEPROM and extensively used in

embedded systems.

RAM

Random access memory (RAM) is volatile i.e. it does not retain the contents after the

power goes off. It is used as the data memory in an embedded system. It holds the variables

declared in the program, the stack and intermediate data or results during program run time.

The Processing unit accesses the RAM for instruction execution to save or retrieve data.

There are different variations of RAM such as: static RAM (SRAM), dynamic RAM

(DRAM), pseudo static RAM (PSRAM), non-volatile RAM (NVRAM), synchronous

DRAM, (SDRAM) etc.

Figure: Interconnection of RAM with Microprocessor

I/O Devices:

Embedded systems have to interact with the external environment through the

input/output devices.

Input Device

Embedded systems receive user commands from input devices such as keypad, switch

or a touch screen device at the input port. The processing unit executes software instructions

to process these inputs to make decisions that further guide the operation of the system. A

port is a termination point that gives connectivity between the processing unit and the

peripherals.

Output Device

Output devices are used to display results from the system or to sending data to

another connected system at the output port. Some examples of output devices are: light

emitting diodes (LEDs), liquid crystal diodes (LCDs), printers etc.

I/O Interfacing Concepts:

Figure: Interconnection of external devices with Microprocessor

I/O Communication Bus

I/O communication buses and protocols are used to communicate with the slower I/O

devices. There are two communication methods used in any system: serial communication

and parallel communication. Some of the communication protocols are: universal serial bus

(USB), inter-integrated circuit (I2C), serial peripheral interface (SPI), peripheral component

interconnect (PCI), IBM standard architecture (ISA) etc. Each protocol defines a standard

way of communication between the devices. The features and usage of these protocols have

been explained in subsequent chapters.

Sensors & Actuators

Sensors and electromechanical actuators are input and output devices used in real time

embedded systems to exchange real time data between the system and the external

environment. Sensors measure physical parameters such as temperature, pressure

acceleration, proximity etc. being connected at the system input ports through analog to

digital converters (ADCs). Some of the actuators used in embedded systems are: motor speed

controllers, stepper motor controllers, relays and power drivers etc. Actuators are connected

at the system output ports through the digital to analog converters (DACs).

Timer and Counting Devices:

Timers are basic constituents of most microcontrollers. Today, just about every

microcontroller comes with one or more built-in timers. These are extremely useful to the

embedded programmer – perhaps second in usefulness only to GPIO. The timer can be

described as the counter hardware and can usually be constructed to count either regular or

irregular clock pulses. Depending on the above usage, it can be a timer or a counter

respectively.

Sometimes, timers may also be termed as “hardware timers” to distinguish them from

software timers. Software timers can be described as a stream of bits of software that achieve

some timing function.

The TM4C123GH6PM General-Purpose Timer Module (GPTM) contains six 16/32-

bit GPTM blocks and six 32/64-bit Wide GPTM blocks. These programmable timers can be

used to count or time external events that drive the Timer input pins. Timers can also be used

to trigger μDMA transfers, to trigger analog-to-digital conversions (ADC) when a time-out

occurs in periodic and one-shot modes.

The GPT Module is one timing resource available on the Tiva™ C Series

microcontrollers. Other timer resources include the System Timer (SysTick) and the PWM

timer in PWM modules.

The General-Purpose Timer Module (GPTM) blocks with the following functional

options:

 16/32-bit operating modes:

 16- or 32-bit programmable one-shot timer

 16- or 32-bit programmable periodic timer

 16-bit general-purpose timer with an 8-bit prescaler

 32-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input

 16-bit input-edge count- or time-capture modes with an 8-bit prescaler

 16-bit PWM mode with an 8-bit prescaler and software-programmable output

inversion of the PWM signal

 32/64-bit operating modes:

 32- or 64-bit programmable one-shot timer

 32- or 64-bit programmable periodic timer

 32-bit general-purpose timer with a 16-bit prescaler

 64-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input

 32-bit input-edge count- or time-capture modes with a16-bit prescaler

 32-bit PWM mode with a 16-bit prescaler and software-programmable output

inversion of the PWM signal

 Count up or down

 Twelve 16/32-bit Capture Compare PWM pins (CCP)

 Twelve 32/64-bit Capture Compare PWM pins (CCP)

 Daisy chaining of timer modules to allow a single timer to initiate multiple timing

events

 Timer synchronization allows selected timers to start counting on the same clock cycle

 ADC event trigger

 User-enabled stalling when the microcontroller asserts CPU Halt flag during debug

(excluding RTC mode)

 Ability to determine the elapsed time between the assertion of the timer interrupt and

entry into the interrupt service routine

 Efficient transfers using Micro Direct Memory Access Controller (μDMA)

 Dedicated channel for each timer

 Burst request generated on timer interrupt

Design Cycle in the Development Phase for an Embedded

System:

Unlike the design of a software application on a standard platform, the design of an

embedded system implies that both software and hardware are being designed in parallel.

Although this isn’t always the case, it is a reality for many designs today. The profound

implications of this simultaneous design process heavily influence how systems are designed.

The following figure provides a schematic representation of the Design Cycle in the

Development Phase for an Embedded System.

Figure: Embedded Design Life Cycle Diagram

A Phase representation of the Embedded Design Life Cycle

Time flows from the left and proceeds through seven phases:

Product specification:

 Partitioning of the design into its software and hardware components

 Iteration and refinement of the partitioning

 Independent hardware and software design tasks

 Integration of the hardware and software components

 Product testing and release

 On-going maintenance and upgrading

The embedded design process is not as simple as above figure depicts. A considerable

amount of iteration and optimization occurs within phases and between phases. Defects found

in later stages often cause you to go back to square 1. For example, when product testing

reveals performance deficiencies that render the design non-competitive, you might have to

rewrite algorithms, redesign custom hardware such as Application-Specific Integrated

Circuits (ASICs) for better performance speed up the processor, choose a new processor, and

so on.

Uses of Target System or its Emulator and In-Circuit

Emulator (ICE):

An in-circuit emulator (ICE) is a hardware interface that allows a programmer to

change or debug the software in an embedded system. The ICE is temporarily installed

between the embedded system and an external terminal or personal computer so that the

programmer can observe and alter what takes place in the embedded system, which has no

display or keyboard of its own.

An in-circuit emulator (ICE) provides a window into the embedded system. The

programmer uses the emulator to load programs into the embedded system, run them, step

through them slowly, and view and change data used by the system's software.

An emulator gets its name because it emulates (imitates) the central processing unit

(CPU) of the embedded system's computer. Traditionally it had a plug that inserts into the

socket where the CPU integrated circuit chip would normally be placed. Most modern

systems use the target system's CPU directly, with special JTAG-based debug access.

Emulating the processor, or direct JTAG access to it, lets the ICE do anything that the

processor can do, but under the control of a software developer.

ICEs attach a computer terminal or personal computer (PC) to the embedded system.

The terminal or PC provides an interactive user interface for the programmer to investigate

and control the embedded system. For example, it is routine to have a source code level

debugger with a graphical windowing interface that communicates through a JTAG adapter

(emulator) to an embedded target system which has no graphical user interface.

Notably, when their program fails, most embedded systems simply become inert

lumps of nonfunctioning electronics. Embedded systems often lack basic functions to detect

signs of software failure, such as a memory management unit (MMU) to catch memory

access errors. Without an ICE, the development of embedded systems can be extremely

difficult, because there is usually no way to tell what went wrong. With an ICE, the

programmer can usually test pieces of code, then isolate the fault to a particular section of

code, and then inspect the failing code and rewrite it to solve the problem.

In usage, an ICE provides the programmer with execution breakpoints, memory

display and monitoring, and input/output control. Beyond this, the ICE can be programmed to

look for any range of matching criteria to pause at, in an attempt to identify the origin of a

failure.

Most modern microcontrollers use resources provided on the manufactured version of

the microcontroller for device programming, emulating, and debugging features, instead of

needing another special emulation-version (that is, bond-out) of the target microcontroller.[1]

Even though it is a cost-effective method, since the ICE unit only manages the emulation

instead of actually emulating the target microcontroller, trade-offs must be made to keep

prices low at manufacture time, yet provide enough emulation features for the (relatively few)

emulation applications.

Note: Debugging is the process of finding and resolving defects or problems within a

computer program that prevent correct operation of computer software or a system.

UNIT-4
MICROCONTROLLER FUNDAMENTALS FOR BASIC PROGRAMMING

4.1. Introduction:
The I/O pin configurations for the TM4C123 microcontrollers. The regular function of a pin is to perform
parallel I/O. Most of the pins have an alternative function. Joint Test Action Group (JTAG) is a standard
test access port used to program and debug the microcontroller board. Each microcontroller uses five port
pins for the JTAG interface.
I/O pins on Tiva microcontrollers have a wide range of alternative functions:

• UART Universal asynchronous receiver/transmitter
• SSI Synchronous serial interface
• I2C Inter-integrated circuit
• Timer Periodic interrupts, input capture, and output compare
• PWM Pulse width modulation
• ADC Analog to digital converter, measure analog signals
• Analog Comparator Compare two analog signals
• QEI Quadrature encoder interface
• USB Universal serial bus
• Ethernet High-speed network
• CAN Controller area network
The UART can be used for serial communication between computers. It is asynchronous and allows

for simultaneous communication in both directions.
The SSI is alternately called serial peripheral interface (SPI). It is used to interface medium-speed

I/O devices.
I2C is a simple I/O bus that we will use to interface low speed peripheral devices. Input capture and

output compare will be used to create periodic interrupts and measure period, pulse width, phase, and
frequency.

PWM outputs will be used to apply variable power to motor interfaces. In a typical motor controller,
input capture measures rotational speed, and PWM controls power. A PWM output can also be used to
create a DAC.

The ADC will be used to measure the amplitude of analog signals and will be important in data
acquisition systems. The analog comparator takes two analog inputs and produces a digital output depending
on which analog input is greater.

The QEI can be used to interface a brushless DC motor. USB is a high-speed serial communication
channel.

The Ethernet port can be used to bridge the microcontroller to the Internet or a local area network.
The CAN creates a high-speed communication channel between microcontrollers and is commonly

found in automotive and other distributed control applications.
4.2. Tiva TM4C123 LaunchPad I/O pins:

Pins on the TM4C family can be assigned to as many as eight different I/O functions. Pins can be
configured for digital I/O, analog input, timer I/O, or serial I/O. For example PA0 can be digital I/O or serial
input. There are two buses used for I/O. The digital I/O ports are connected to both the advanced peripheral
bus and the advanced high-performance bus. Because of the multiple buses, the microcontroller can perform
I/O bus cycles simultaneous with instruction fetches from flash ROM. The TM4C123GH6PM adds up to 16
PWM outputs. There are 43 I/O lines. There are twelve ADC inputs; each ADC can convert up to 1M
samples per second.

Each pin has one configuration bit in the GPIOAMSEL register. We set this bit to connect the port
pin to the ADC or analog comparator. For digital functions, each pin also has four bits in the GPIOPCTL
register, which we set to specify the alternative function for that pin (0 means regular I/O port). Not every
pin can be connected to every alternative function.

Pins PC3 – PC0 were left off because these four pins are reserved for the JTAG debugger and
should not be used for regular I/O. Notice, most alternate function modules (e.g., U0Rx) only exist on one
pin (PA0). While other functions could be mapped to two or three pins (e.g., CAN0Rx could be mapped to
one of the following: PB4, PE4, or PF0.)

1

UNIT-IV

The microcontroller board provides an integrated In-Circuit Debug Interface (ICDI), which allows
programming and debugging of the onboard TM4C123 microcontroller. One USB cable is used by the
debugger (ICDI), and the other USB allows the user to develop USB applications (device). The user can
select board power to come from either the debugger (ICDI) or the USB device (device) by setting the
Power selection switch.

Pins PA1 – PA0 create a serial port, which is linked through the debugger cable to the PC. The serial
link is a physical UART as seen by the TM4C and mapped to a virtual COM port on the PC. The USB
device interface uses PD4 and PD5. The JTAG debugger requires pins PC3 – PC0. The LaunchPad connects
PB6 to PD0, and PB7 to PD1. If you wish to use both PB6 and PD0 you will need to remove the R9 resistor.
Similarly, to use both PB7 and PD1 remove the R10 resistor.

The Tiva LaunchPad evaluation board has two switches and one 3-color LED. See Figure The
switches are negative logic and will require activation of the internal pull-up resistors. In particular, you will
set bits 0 and 4 in GPIO_PORTF_PUR_R register. The LED interfaces on PF3 – PF1 are positive logic. To
use the LED, make the PF3 – PF1 pins an output. To activate the red color, output a one to PF1. The blue
color is on PF2, and the green color is controlled by PF3. The 0-Ω resistors (R1, R2, R11, R12, R13, R25,
and R29) can be removed to disconnect the corresponding pin from the external hardware.

2

UNIT-IV

4.3. GPIOs :
General Purpose Input/output (GPIO) refers to pins on a board which are connected to the

microcontroller in a special configuration. Users can control the activities of these pins in real-time.
 GPIOs are used in devices like SoC, PLDs, and FPGAs, which inherit problems of pin scarcity.
 They are used in multifunction chips like audio codecs and video cards for connectivity
 They are extensively used in embedded systems designs to interface the microcontroller to external

sensors and driver circuits.
GPIO pins can be configured as both input and output. There are generally two states in a GPIO pin,

High=1 and Low=0. These pins can be easily enabled and disabled by the user. A GPIO pin can be
configured as input and used as an interrupt pin typically for wakeup events. We will see this later in this
chapter when we use a switch to force the system wake from hibernation. GPIO peripherals vary quite
widely. In some cases, they can exist as a group of pins that can be switched as a group to either input or
output. In others, each pin can be set up adaptable to either accept or act as a source for different logic
voltages, with configurable drive strengths and pull ups. Pin states of the GPIOs can be accessed using
software instructions. These instructions can be represented by one or more types of interfaces. Memory
mapped peripheral or a dedicated I/O port instruction can be used in this regard.

Voltage levels of GPIOs are critical and it is necessary that users take note of these voltages before
interfacing. Tolerant voltages at GPIO pins are not same as the board supply voltage. Some GPIOs have 5 V
tolerant inputs: even if the device has a low supply voltage (say 2 V), it can accept 5 V without damage.
However, a higher voltage may cause damage to the circuitry or may even fry the board.
4.3.1. GPIO Pins in Tiva Launchpad:

In the Tiva Launchpad, the GPIO module is composed of six physical GPIO blocks. Each of these
blocks corresponds to an individual GPIO port. There are six ports in Tiva C series microcontrollers namely,
Port A through F. This GPIO module supports up to 43 programmable input/output pins. (Although it
depends on the peripherals being used)
The GPIO module has the following features:

 The GPIO pins are flexibly multiplexed. This allows it to be also used as peripheral functions.
 The GPIO pins are 5-V-tolerant in input configuration
 Ports A-F are accessed through the Advanced Peripheral Bus (APB)
 Fast toggle capable of a change every clock cycle for ports on AHB, every two clock cycles for ports

on APB.
Most of the GPIO functions can operate on more than one GPIO pin (within a single module) at a

time. Can be configured to be a GPIO or a peripheral pin. On reset, the default is GPIO. Note that not all
pins on all parts have peripheral functions, in which case, e the pin is only useful as a GPIO.
4.3.2. Advanced features of GPIO in Tiva Launchpad:

The GPIO module in Tiva Launch Pad can be used in advanced configurations also. They can be
used for programmable control through interrupts. These interrupts can be triggered on rising, falling or both
edges of the clock. They can also be levelled sensitive for both high and low states. The state of these pins is
retained during hibernate mode. The programmable control for GPIO pad configuration includes

 Weak pull-up or pull-down resistors
 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can sink

18-mA for high-current applications
 Slew rate control for 8-mA pad drive
 Open drain enables
 Digital input enables

4.3.3. TM4C123 GPIO Programming:
The TI LaunchPad uses the TM4C123GH6PM microcontroller, which has 256K bytes (256KB) of

onchip Flash memory for code, 32KB of on-chip SRAM for data, and a large number of on-chip peripherals.
The ARM Cortex-M4 has 4GB (Giga bytes) of memory space. It uses memory mapped I/O, which

means that the I/O peripheral ports are mapped into the 4GB memory space.
Allocated size Allocated address

 Flash 256 KB 0x0000.0000 To 0x0003.FFFF
 SRAM 32 KB 0x2000.0000 To 0x2000.7FFF
 I/O All the peripherals 0x4000.0000 to 0x400F.FFFF

3

UNIT-IV

The General Purpose I/O ports (GPIO) on TM4C123GXL LaunchPad are designated to port A to port F.
The address range assigned to each GPIO port is shown as follows:

 Port A: 0x4000.4000 to 0x4000.4FFF
 Port B: 0x4000.5000 to 0x4000.5FFF
 Port C: 0x4000.6000 to 0x4000.6FFF
 Port D: 0x4000.7000 to 0x4000.7FFF
 Port E: 0x4002.4000 to 0x4002.4FFF
 Port F: 0x4002.5000 to 0x4002.5FFF
The 4K bytes of memory space is assigned to each of the GPIO. The reason is that each GPIO has a

large number of special function registers associated with it, and furthermore GPIO Data Register supports
bit-specific addressing, which allows collective access to 1 to 8 bits in a data port.
To initialize an I/O port for general use seven steps need to be performed.

1. Activate the clock for the port in the Run Mode Clock Gating Control Register 2 (RCGC2).
2. Unlock the port (LOCK = 0x4C4F434B). This step is only needed for pins PC0-3, PD7 and PF0 on

TM4C123GXL LaunchPad.
3. Disable the analog function of the pin in the Analog Mode Select register (AMSEL), because we

want to use the pin for digital I/O. If this pin is connected to the ADC or analog comparator, its
corresponding bit in AMSELmust be set as 1. In our case, this pin is used as digital I/O, so its
corresponding bit must be set as 0.

4. Clear bits in the port control register (PCTL) to select regular digital function. Each GPIO pin needs
four bits in its corresponding PCTL register. Not every pin can be configured to every alternative
function. Figure 2.2 shows which pin can be used as what kind of alternate functions.

5. Set its direction register (DIR). A DIR bit of 0 means input, and 1 means output.
6. Clear bits in the alternate Function Select register (AFSEL).
7. Enable digital port in the Digital Enable register (DEN).

4.4. Peripheral and Memory Address:
A 32-bit processor can have 4 GB (=232) of address spaces. It depends on the architecture of the CPU
how these address spaces are segregated, among the memory and peripherals.
4.4.1. Peripheral Addressing:

There are two complementary methods of addressing I/O devices for input and output between CPU
and peripheral. These are known as memory mapped I/O (MMIO) and port mapped I/O (PMIO).

In MMIO, same address bus is used to address both memory and peripheral devices. The address bus
of the CPU is shared between the peripheral devices and memory devices attached to the CPU. Thus, any
address accessed by the CPU may denote an address in the memory or a register of attached peripheral. In
these architectures, same CPU instructions used for memory access can also be used for I/O access.

In PMIO, peripheral devices possess a separate address bus from general memory devices. This is
accomplished in most architectures by providing a separate address bus dedicated to the peripheral
devices attached to the CPU. In these CPUs, the instruction set includes separate instructions
to perform I/O access.

A TM4C123GH6PM chip employs MMIO which implies that the peripherals are mapped into the
32-bit address bus.
4.4.2. Memory Mapped Peripherals:
A TM4C123GH6PM chip consists of a 256 KB of Flash memory and 32 KB of SRAM. Table 5 shows the
memory map of a TM4C123GH6PM chip with addresses.
Flash Memory:
Flash memory is structured into multiple blocks of single KB size which can be individually written to and
erased. Flash memory is used for store program code. Constant data used in a program can also be stored in
this memory. Lookup tables are used in many designs for performance improvement. These lookup tables
are stored in this memory.

 Table : Memory Mapping in TM4C123GH6PM chip

 Allocated Size Allocated address
Flash 265 KB 0x0000.0000 to 0x0003.FFFF

SRAM 32 KB 0x2000.0000 to 0x2000.7FFF
I/O All the peripherals 0x4000.0000 to 0x400F.FFFF

4

UNIT-IV

SRAM:
The on-chip SRAM starts at address 0x2000.0000 of the device memory map. ARM provides a

technology to reduce occurrences of read-modify-write (RMW) operations called bit-banding. This
technology allows address aliasing of SRAM and peripheral to allow access of individual bits of the same
memory in single atomic operation. For SRAM, the bit-band base is located at address 0x2200.0000. Bit
band alias are computed according to following formula.

bitband alias= bitband base + byte offset *32 + bit number *4 (2.1)
Note: Bit banding is the technique to access and modifying content of bits in a register. It is helpful to finish
the read-modify operation in single machine cycle.

The region of the memory which device consider for modification is known as bit band region and
the region of memory to which device maps the selected memory is known as bit band alias.

The SRAM is implemented using two 32-bit wide SRAM banks (separate SRAM arrays). The banks
are partitioned in a way that one bank contains all, even words (the even bank) and the other contains all odd
words (the odd bank). A write access that is followed immediately by a read access to the same bank. This
incurs a stall of a single clock cycle.
Internal ROM:
The internal ROM of the TM4C123GH6PM device is located at address 0x0100.0000 of the device
memory map. The ROM contains:

 Tivaware TM Boot Loader and vector table.
 TivaWare TM Peripheral Driver Library (DriverLib) release of product-specific peripheral and

interface.
 Advanced Encryption Standard (AES) cryptography tables.
 Cyclic Redandancy Check (CRC) error detection functionality.

The boot loader is used as an initial program loader (when the Flash memory is empty) as well as an
application-initiated firmware upgrade mechanism (by calling back to the boot loader). The Peripheral
Driver Library, APIs in ROM can be called by applications, reducing flash memory requirements and
freeing the Flash memory to be used for other purposes (such as additional features in the application).
Advance Encryption Standard (AES) is a publicly defined encryption standard used by the U.S. Government
and Cyclic Redundancy Check (CRC) is a technique to validate if a block of data has the same contents as
when previously checked.
Peripheral:
All Peripheral devices, timers, and ADCs are mapped as MMIO in address space 0x40000000 to
0x400FFFFF. Since the number of supported peripherals is different among ICs of ARM families, the upper
limit of 0x400FFFFF is variant.
4.5. Programming System Registers:
Direction and Data Registers:

Generally, every microcontroller has a minimum of two registers associated with each of I/O ports,
namely Data Register and Direction Register. As the name suggests, Direction Register decides which way
the data will flow; Input or Output. Data register stores the data coming from the microcontroller or from the
pin.

The value assigned to Direction register is configuring the pin as either input or output. When the
direction register is properly configured, the Data register can be used to write to the pin or read data from
the pin. When the Direction register is configured as output, the information on the Data register is driven to
the microcontroller pin. Similarly, when Direction register is configured as input, the information on the
microcontroller pin is written to the Data register.
Data Direction Operation: In Tiva C series Launchpad, the GPIO Direction (GPIODIR) register is
used to configure each individual pin as an input or output. When the data direction bit is cleared, the GPIO
is configured as an input, and the corresponding data register bit captures and stores the value on the GPIO
port. When the data direction bit is set, the GPIO is configured as an output, and the corresponding data
register bit is driven out on the GPIO port.
Data Register Operation: In Tiva C Series Launchpad, GPIODATA register is the data register in
which the values written in this register are transferred onto the GPIO port pins if the respective pins have
been configured as outputs through the GPIO Direction (GPIODIR) register. The GPIO ports allow for the
modification of individual bits in the GPIO Data (GPIODATA) register by using bits of the address bus as a

5

UNIT-IV

mask. In this manner, we can modify individual GPIO pins in a single instruction without affecting the state
of the other pins.
4.5. Watchdog Timer:

Every CPU has a system clock which drives the program counter. In every cycle, the program
counter executes instructions stored in the flash memory of a microcontroller. These instructions are
executed sequentially. There exist possibilities where a remotely installed system may freeze or run into an
unplanned situation which may trigger an infinite loop. On encountering such situations, system reset or
execution of the interrupt subroutine remains the only option. Watchdog timer provides a solution to this.

A watchdog timer counter enters a counter lapse or timeout after it reaches certain count. Under
normal operation, the program running the system continuously resets the watchdog timer. When the system
enters an infinite loop or stops responding, it fails to reset the watchdog timer. In due time, the watchdog
timer enters counter lapse. This timeout will trigger a reset signal to the system or call for an interrupt
service routine (ISR).
 TM4C123GH6PM microcontroller has two Watchdog Timer modules, one module is clocked by the
system clock (Watchdog Timer 0) and the other (Watchdog Timer 1) is clocked by the PIOSC therefore it
requires synchronizers.
Features of Watchdog Timer in TM4C123GH6PM controller:

 32-bit down counter with a programmable load register
 Separate watchdog clock with an enable
 Programmable interrupt generation logic with interrupt masking & optional NMI function
 Lock register protection from runaway software
 Reset generation logic with an enable/disable
 User-enabled stalling when the microcontroller asserts the CPU halt flag during debug

The watchdog timer can be configured to generate an interrupt to the controller on its first time out, and

to generate a reset signal on its second time-out. Once the watchdog timer has been configured, the lock
register can be written to prevent the timer configuration from being inadvertently altered.
4.6. Low Power Microcontroller:
4.6.1. Need for Low Power Microcontroller:

It is imperative for an embedded design to be low on its power consumption. Most embedded
systems and devices run on battery. Power demands are increasing rapidly, but battery capacity cannot keep
up with its pace. Therefore, a microcontroller which inherently consumes very less power is always
encouraging. However, embedded systems engineers usually need to optimize between power and
performance. Power and performance are inversely proportional to each other. Let us consider an example
where we are to design a system to monitor water level in a tank. When the water level reduces below a
particular level, water should be pumped in. There are many ways to go about this design.
4.6.2. Hibernation Module on TivaTM Microcontrollers:

This module manages to remove and restore power to the microcontroller and its associated
peripherals. This provides a means for reducing system power consumption. When the processor and
peripherals are idle, power can be completely removed if the Hibernation module is only the one powered.
 To achieve this, the Hibernation (HiB) Module is added with following features:

 A Real-Time Clock (RTC) to be used for wake events

6

UNIT-IV

 A battery backed SRAM for storing and restoring processor state. The SRAM consists of 16
32-bit word memory.

The RTC is a 32- bit seconds counter and 15- bit sub second counter. It also has an add-in trim
capability for precision control over time. The Microprocessor has a dedicated pin for waking using external
signal. The RTC and the SRAM are operational only if there is a valid battery voltage. There is a VDD30N
mode, which provides GPIO pin state during hibernation of the device.

Thus we are actually shutting the power off for the device or part at the lowest power mode. Under
such circumstances, it is safe to assume that in the wake up we are actually coming out of reset. But this will
allow the device to the keep the GPIO pins in their state without resetting them. A mechanism for power
control is used to shut down the part. In TM4C123GH6PM we have an on-chip power controller which
controls power for the CPU only. There is also a pin output from the microcontroller which is used for
system power control.

It should be duly noted that in TIVA Launchpad, the battery voltage is directly connected to the
processor voltage and it is always valid. But in a custom design with TM4C123GH6PM microcontroller
running on a battery, if the battery voltage is not valid, it will not go into hibernation mode.

The Hibernation module of TM4C123GH6PM provides two mechanisms for power control:
 The first mechanism uses internal switches to control power to the Cortex-M4F.
 The second mechanism controls the power to the microcontroller with a control signal (HIB) that

signals an external voltage regulator to turn on or off.

The Hibernation module power source is determined dynamically. The supply voltage of the
Hibernation module is the larger of the main voltage source (VDD) or the battery voltage source (VBAT).

Hibernate mode can be entered through one of two ways:
 The user initiates hibernation by setting the HIBREQ bit in the Hibernation Control (HIBCTL)

register.
 Power is arbitrarily removed from VDD while a valid VBAT is applied

4.6.3. Active Vs Standby Current Consumption:
Power Modes:
 There are six power modes in which TM4C123GH6PM operates as shown in the below table. They
are Run, Sleep, Deep Sleep, Hibernate with VDD3ON, Hibernate with RTC, and Hibernate without RTC.
To understand all these modes and compare them, it is necessary to analyze them under a condition.
Let us consider that the device is operating at 40 MHz system clock with PLL.

Mode
Run mode

Sleep Mode

Deep Sleep
Mode

Hibernation
(VDD3ON)

Hibernation
(RTC)

Hibernation
(no RTC) Parameter

IDD 32 mA 10 mA 1.05 mA 5 µA 1.7 µA 1. 6 µA
VDD 3.3 V 3.3 V 3.3 V 3.3 V 0 V 0 V
VBAT N.A N.A N.A 3 V 3 V 3 V

7

UNIT-IV

System
clock

40 MHz
with PLL

40 MHz
with PLL

30 KHz Off Off Off

Core

Powered On Powered On Powered On Off Off Off
Clocked Not Clocked Not Clocked Not Clocked Not Clocked Not Clocked

Peripheral All ON All Off All Off All Off All Off All Off
Code While{1} N.A N.A N.A N.A N.A

 Table : Power Modes of Tiva
4.6.4. Programming Hibernation Module:

This code can be compiled and executed on a TIVA Launchpad. When this code executes, the
GREEN LED glows continuously. We can observe that after 4s, the system automatically goes into sleep
and the LED stops glowing. When SW2 (switch on the right hand bottom corner of the Launchpad) is
pressed, it triggers a wake event and the GREEN LED starts glowing again. Now, after 4s, the system goes
to sleep again. This shows that, the wakeup process is the same as powering up. When the code starts, we
can determine that the processor woke from hibernation and restore the processor state from the memory.

4.7. Introduction to Interrupts:
The reader is aware that a microprocessor is connected to several input and output devices. It is important at
this point for us to know how a microprocessor manages these devices efficiently.
4.7.1. Introduction to Interrupts and Polling:
A microprocessor executes instructions sequentially. Alongside, it is also connected to several devices.
Dataflow between these devices and the microprocessor has to be managed effectively. There are two ways
it is done in a microprocessor: either by using interrupts or by using polling.
Polling:
Polling is a simple method of I/O access. In this method, the microcontroller continuously probes whether
the device requires attention, i.e. if there is data to be exchanged. A polling function or subroutine is called
repeatedly while a program is being executed. When the status of the device being polled responds to the
interrogation, a data exchange is initiated. The polling subroutine consumes processing time from the
presently executing task. This is a very inefficient way because I/O devices do not always crave for attention
from the microprocessor. But the microprocessor wastes valuable processing time in unnecessarily polling
of the devices.
Interrupts:

However, in interrupt method, whenever a device requires the attention from the microprocessors, it
pings the microprocessor. This ping is called interrupt signal or sometimes interrupt request (IRQ). Every
IRQ is associated with a subroutine that needs to be executed within the microprocessor. This subroutine is
called interrupt service routine (ISR) or sometimes interrupt handler. The microprocessor halts current
program execution and attends to the IRQ by executing the ISR. Once execution of ISR completes, the
microprocessor resumes the halted task.

8

UNIT-IV

The current state of the microprocessor must be saved before it attends the IRQ in order to be able to
continue from where it was before the interrupt. To achieve this, the contents of all of its internal registers,
both general purpose and special registers, are required to be saved to a memory section called the stack. On
completion of the interrupt call, these register contents will be reinstated from the stack. This allows the
microprocessor to resume its originally halted task.

There are two types of interrupts namely software driven interrupts (SWI) and hardware driven
interrupts (HWI). SWIs are generated from within a currently executing program. They are triggered by the
interrupt opcode. A SWI will call a subroutine that allows a program to access certain lower level service.
HWIs are signals from a device to the microprocessor. The device sets an interrupt line in the control bus
high. Microprocessors have two types of hardware interrupts namely, non-maskable interrupt (NMI) and
interrupt request (INTR). An NMI has a very high priority and they demand immediate execution. There is
no option to ignore an NMI. NMI is exclusively used for events that are regarded as having a higher priority
or tragic consequences for the system operation. For example, NMI can be initiated due to an interruption of
power supply, a memory fault or pressing of the reset button. An INTR may be generated by a number of
different devices all of which are connected to the single INTR control line. An INTR may or may not be
attended by the microprocessor. If the microprocessor is attending an interrupt, then no further interrupts,
other than an NMI, will be entertained until the current interrupt has been completed. A control signal is
used by the microprocessor to acknowledge an INTR. This control signal is called ACK or sometimes
INTA.
4.7.2. Interrupt Vector Table:

It is discussed in the previous section that when an interrupt occurs, the microprocessor runs an
associated ISR. IRQ is an input signal to the microprocessor. When a microprocessor receives an IRQ, it
pushes the PC register onto the stack and load address of the ISR onto the PC register. This makes the
microprocessor execute the ISR. These associated ISRs, corresponding to every interrupt, become a part of
the executable program. This executable is loaded in the memory of the device. Under such circumstances, it
becomes easier to manage the ISRs if there is a lookup table where address locations of all ISRs are listed.
This lookup table is called Interrupt vector table. The below table shows an interrupt vector table for ARM
cortex-M microcontroller. In ARM microcontroller, there exist 256 interrupts. Out of these, some are
hardware or peripheral generated IRQs and some are software generated IRQs. However, first 15 interrupts,
INT0 to INT15 are called the predefined interrupts. In ARM Cortex-M microcontrollers, Interrupt vector
table is an onchip module, called as Nested Vector Interrupt Controller (NVIC).

NVIC is an on-chip interrupt controller for ARM Cortex-M series microcontrollers. No other ARM
series has this on-chip NVIC. This means that the interrupt handling is primarily different in ARM Cortex-
M microcontrollers compared to other ARM microcontrollers.

 On system reset, the vector table is fixed at address 0x0000.0000.
 Table:Interrupt Vector Table for ARM Cortex M4

VECTOR NO. PRIORITY EXCEPTION TYPE VECTOR ADDRESS
0 - SP initial Value 0x0000.0000
1 -3 RESET 0x0000.0004
2 -2 NMI 0x0000.0008
3 -1 Hard Fault 0x0000.000C
4 Programmable Memory Management Fault 0x0000.0010
5 Programmable BUS Fault 0x0000.0014

6

Programmable
Usage Fault (undefined

instructions, divide by zero,
unaligned mamory access,etc.)

0x0000.0018

7-10 - Reserved 0x0000.001C to
0x0000.0028

11 Programmable SVCall 0x0000.002C
12 Programmable Debug Monitor 0x0000.0030
13 - Reserved 0x0000.0034
14 Programmable PendSV 0x0000.0038
15 Programmable SysTick 0x0000.003C

16-255

Programmable

User Interrupt (interrupts
generated fron peripherals and

software)

0x0000.0040 to
0x0000.03FC

9

UNIT-IV

Predefined Interrupts (INT0-INT15):
RESET:

All ARM devices have a RESET pin which is invoked on device power-up or in case of warm reset.
This exception is a special exception and has the highest priority. On the assertion of Reset signal, the
execution stops immediately. When the Reset signal stops, execution starts from the address provided by the
Reset entry in the vector table i.e. 0x0000.0004. Hereby, to run a program on Reset, it is necessary to place
the program in 0x0000.0004 memory address.
NMI:

In the ARM microcontroller, some pins are associated with hardware interrupts. They are often
called IRQs (interrupt request) and NMI (non-maskable interrupt). IRQ can be controlled by software
masking and unmasking. Unlike IRQ, NMI cannot be masked by software. This is why I is named as
nonmaskable interrupt. As shown in above Table, "INT 02" in ARM Cortex-M is used only for NMI. On
activation of NMI, the microcontroller load memory location 0x0000008 to program counter.
Hard Fault:

All the classes of fault corresponding to a fault handler cannot be activated. This may be a result of
the fault handler being disabled or masked.
Memory Management Fault:

It is caused by a memory protection unit violation. The violation can be caused by attempting to
write into a read only memory. An instruction fetch is invalid when it is fetched from non-executable region
of memory. In an ARM microcontroller with an on-chip MMU, the page fault can also be mapped into the
memory management fault.
Bus Fault:
A bus fault is an exception that arises due to a memory-related fault for an instruction or data memory
transaction, such as a pre-fetch fault or a memory access fault. This fault can be enabled or disabled.
Usage Fault:

Exception that occurs due to a fault associated with instruction execution. This includes undefined
instruction, illegal unaligned access, invalid state on instruction execution, or an error on exception return
may termed as usage fault. An unaligned address of a word or half-word memory access or division by zero
can cause a usage fault.
SVCall:

A supervisor call (SVC) is an exception that is activated by the SVC instruction. In an operating
system, applications can use SVC instructions to contact OS kernel functions and device drivers. This is a
software interrupt since it was raised from software, and not from a Hardware or peripheral exception.
PendSV:

PendSV is pendable service call and interrupt-driven request for system-level service. PendSV is
used for framework switching when no other exception is active. The Interrupt Control and State
(INTCTRL) register is used to trigger PendSV. The PendSV is an interrupt and can wait until NVIC has
time to service it when other urgent higher priority interrupts are being taken care.
SysTick:

A SysTick exception is generated by the system timer when it reaches zero and is enabled to
generate an interrupt. The software can also produce a SysTick exception using the Interrupt Control and
State (INTCTRL) register.
User Interrupts:

This interrupt is an exception signaled either by a peripheral or by software request and fed through
the NVIC based on their priority. All interrupts are asynchronous to instruction execution. In the system,
peripherals use interrupts to communicate with the processor. An ISR can be also propelled as a result of an
event at the peripheral devices. This may include timer timeout or completion of analog-to-digital converter
(ADC) conversion. Each peripheral device has a group of special function registers that must be used to
access the device for configuration. For a given peripheral interrupt to take effect, the interrupt for that
peripheral must be enabled.

10

UNIT-IV

4.7.3.Interrupt Programming:
Aim: To understand how exceptions/interrupts work
#include <stdbool.h>
#include "inc/tm4c123gh6pm.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"
int main(void)
uint32_t ui32Period;
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_M
AIN);
// SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE,
GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0); TimerConfigure(TIMER0_BASE,
TIMER_CFG_PERIODIC); ui32Period = (SysCtlClockGet() / 10) / 2;
TimerLoadSet(TIMER0_BASE, TIMER_A, ui32Period -1);
IntEnable(INT_TIMER0A);
TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
IntMasterEnable();
TimerEnable(TIMER0_BASE, TIMER_A);
while(1)
{
}
}
void Timer0IntHandler(void)
{
// Clear the timer interrupt
// Read the current state of the GPIO pin and
// write back the opposite state
if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_2)) {
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);
}
Else {
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 4);}}

11

UNIT-IV

4.8. Timers:
Timers are basic constituents of most microcontrollers. Today, just about every microcontroller

comes with one or more built-in timers. These are extremely useful to the embedded programmer - perhaps
second in usefulness only to GPIO. The timer can be described as the counter hardware and can usually be
constructed to count either regular or irregular clock pulses. Depending on the above usage, it can be a timer
or a counter respectively. Sometimes, timers may also be termed as “hardware timers” to distinguish them
from software timers. Software timers can be described as a stream of bits of software that achieve some
timing function.

The TM4C123GH6PM General-Purpose Timer Module (GPTM) contains six 16/32-bit GPTM
blocks and six 32/64-bit Wide GPTM blocks. These programmable timers can be used to count or time
external events that drive the Timer input pins. Timers can also be used to trigger μDMA transfers, to trigger
analog-to-digital conversions (ADC) when a time-out occurs in periodic and one-shot modes.

The GPT Module is one timing resource available on the Tiva™ C Series microcontrollers. Other
timer resources include the System Timer (SysTick) and the PWM timer in PWM modules

The General-Purpose Timer Module (GPTM) blocks with the following functional options:
16/32-bit operating modes:
1. 16- or 32-bit programmable one-shot timer
2. 16- or 32-bit programmable periodic timer
3. 16-bit general-purpose timer with an 8-bit prescaler
4. 32-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input
5. 16-bit input-edge count- or time-capture modes with an 8-bit prescaler
6. 16-bit PWM mode with an 8-bit prescaler and software-programmable output inversion of
7. the PWM signal
32/64-bit operating modes:
1. 32- or 64-bit programmable one-shot timer
2. 32- or 64-bit programmable periodic timer
3. 32-bit general-purpose timer with a 16-bit prescaler
4. 64-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input
5. 32-bit input-edge count- or time-capture modes with a16-bit prescaler
6. 32-bit PWM mode with a 16-bit prescaler and software-programmable output inversion of
7. the PWM signal

12

UNIT-IV

 Count up or down
 Twelve 16/32-bit Capture Compare PWM pins (CCP)
 Twelve 32/64-bit Capture Compare PWM pins (CCP)
 Daisy chaining of timer modules to allow a single timer to initiate multiple timing events
 Timer synchronization allows selected timers to start counting on the same clock cycle
 ADC event trigger
 User-enabled stalling when the microcontroller asserts CPU Halt flag during debug (excluding RTC

mode)
 Ability to determine the elapsed time between the assertion of the timer interrupt and entry into the

interrupt service routine
 Efficient transfers using Micro Direct Memory Access Controller (μDMA)

1. Dedicated channel for each timer
2. Burst request generated on timer interrupt

4.8.1. Basic Timer:
A standard timer will comprise a pre-scaler, an N-bit timer/counter register, one or more N-bit

capture and compare registers. Usually N is 8, 16 or 32 bits. Along with these, there will also be registers for
control and status units responsible to configure and monitor the timer.

To count the incoming pulses, an up-counter is deployed as fundamental hardware. A counter can be
converted to a timer by fixing incoming pulses and setting a known frequency. Also note that the size in bits
of a timer should not be related directly to the size in bits of the CPU architecture. An 8-bit microcontroller
can have 16-bit timers (in fact mostly do), and a 32-bit microcontroller can have 16-bit timers (and some
do).
Pre-scaler:

The pre-scaler takes the basic timer clock frequency as an input and divides it by some value
depending upon the circuit requirements before feeding it to the timer, to configure the pre-scaler register(s).
This configuration might be limited to a few fixed values (powers of 2), or integers from 1 to 2^m, where m
is the number of pre-scaler bits.

Pre-scaler is used to set the clock rate of the timer as per your desire. This provides a flexibility in
resolution (high clock rate implies better resolution) and range (high clock rate causes quicker overflow of
timer). For instance, we cannot get 1us resolution and a 1sec maximum period using a 16-bit timer. If we
want 1us resolution we are restricted to about 65ms maximum period. If we want 1sec maximum period, we
are bounded to about 16us resolution. The pre-scaler allows us to manage resolution and maximum period to
fit your needs.
Timer Register:

The timer register can be defined as hardware with an N-bit up-counter, which has accessibility of
read and write command rights for the current count value, and to stop or reset the counter. As discussed, the
timer is driven by the pre-scaler output. The regular pulses which drive the timer, irrespective of understand
now that it is not necessary for a timer to time in seconds or milliseconds, they do time in ticks. This enables
us the elasticity to control the rate of these ticks, depending upon the hardware and software configuration.
We may construct our design to some humanfriendly value such as e.g. 1 millisecond or 1 microsecond, or
any other design specified units.
Capture Registers:

A capture registers are those hardware which can be routinely loaded with the current counter value
upon the occurrence of some event, usually a change on an input pin. Therefore the capture register is vent
occurs. A capture event can also be constructed to produce an interrupt, and the Interrupt Service Routines
(ISR) can save or else use the just-captured timer snapshot.

There is no latency problem in snapshot value as the capture occurs in hardware, which would be if
the capture was done in software. Capture registers can be used to time intervals between pulses or input
signals, to determine the high and low times of input signals.
Compare/Match Registers:

Compare or match registers hold a value against which the current timer value is routinely compared
and shoots to trigger an event when the value in two registers matches.

 If the timer/counter is configured as a timer, we can generate events at known and precise times.
Events can be like output pin changes and/or interrupts and/or timer resets.

13

UNIT-IV

 If the timer/counter is configured as a counter, the compare registers can generate event based on
preset counts being achieved.

For instance, the compare registers can be timer interrupt used for system software timing. For example,
if a 2ms tick is desired, and the timer is configured with a 0.5us clock, setting a compare register to 4000
will cause a compare event after 2ms. If we set the compare event to generate an interrupt as well as to reset
the timer to 0, the result will be an endless stream of 2ms interrupts.

Another notable use of a compare register can be to generate a pulse with variable width. Set an
output high/low when the timer is at 0, configure the compare register with value of pulse width, and on the
compare event set the output low/high. We may use a second compare register with a larger value, to set the
pulse interval by retuning the timer on compare.
4.8.2.Real Time Clock (RTC):

The RTC module is designed to keep wall time. RTC is a mainframe clock that keeps track of the
current time. RTCs are present in approximately every electronic device which needs to maintain accurate
time. The term RTC came into picture to avoid confusion with regular hardware clocks which are merely
signals that administer digital electronics, and do not count time in human units.

Benefits of using RTC:
 Low power consumption
 Liberates the main system for time-critical tasks
 Increases accuracy if compared to other methods

A GPS receiver can cut down its startup time by comparing the current time as per its RTC, with the
moment of last valid signal. If it has been less than a few hours, then the previous ephemeris is still usable.

With the option of alternative power source with RTCs, they can continue to keep time while the
primary power source being unavailable. This alternate source may be a lithium battery or a super capacitor.
4.9.Motion Control Peripherals PWM Module & Quadrature Encoder Interface (QEI):
4.9.1. Pulse Width Modulation Module (PWM):

Pulse width modulation (PWM) is a simple but powerful technique of using a rectangular digital
waveform to control an analog variable or simply controlling analog circuits with a microprocessor's digital
outputs. PWM is employed in a wide variety of applications, from measurement & communications to
power control and conversion.
PWM using TIVA TM4C123HG6PM:

TM4C123GH6PM PWM module provides a great deal of flexibility and can generate simple PWM
signals, such as those required by a simple charge pump as well as paired PWM signals with deadband
delays, such as those required by a half-H bridge driver. Three generator blocks can also generate the full six
channels of gate controls required by a 3-phase inverter bridge.
 Each PWM generator block has the following features:
 One fault-condition handling inputs to quickly provide low-latency shutdown and prevent damage to

the motor being controlled, for a total of two inputs
 One 16-bit counter

 Runs in Down or Up/Down mode
 Output frequency controlled by a 16-bit load value
 Load value updates can be synchronized

14

UNIT-IV

 Produces output signals at zero and load value
 Two PWM comparators

 Comparator value updates can be synchronized
 Produces output signals on match

 PWM signal generator
 Output PWM signal is constructed based on actions taken as a result of the counter and PWM

comparator output signals
 Produces two independent PWM signals

 Dead-band generator
 Produces two PWM signals with programmable dead-band delays suitable for driving a half-H

bridge.
 Can be bypassed, leaving input PWM signals unmodified.

 Can initiate an ADC sample sequence
The control block determines the polarity of the PWM signals and which signals are passed through

to the pins. The output of the PWM generation blocks are managed by the output control block before being
passed to the device pins.

Block Diagram:

TM4C123GH6PM controller contains two PWM modules, each with four generator blocks that
generate eight independent PWM signals or four paired PWM signals with deadband delays inserted.

TM4C123GH6PM controller contains two PWM modules, each with four generator blocks that
generate eight independent PWM signals or four paired PWM signals with deadband delays inserted.

15

UNIT-IV

Functional Description:
Clock Configuration:

The PWM has two clock source options:
 The System Clock
 A pre divided System Clock

The clock source is selected by programming the USPWMDIV bit in the Run-Mode Clock
Configuration (RCC) register. The PWMDIV bit field specifies the divisor of the system clock that is used
to create the PWM Clock.
PWM Timer:

The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down
mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load value, and
continues counting down. In Count-Up/Down mode, the timer counts from zero up to the load value, back
down to zero, back up to the load value, and so on. Generally, Count-Down mode is used for generating left-
or right-aligned PWM signals, while the Count-Up/Down mode is used for generating center-aligned PWM
signals. The timers output three signals that are used in the PWM generation process: the direction signal
(this is always Low in Count-Down mode, but alternates between low and high in Count-Up/Down mode), a
single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width High pulse
when the counter is equal to the load value. Note that in Count-Down mode, the zero pulse is immediately
followed by the load pulse. In the figures in this chapter, these signals are labelled "dir," "zero," and "load."
PWM Comparators:

Each PWM generator has two comparators that monitor the value of the counter, when either
comparator matches the counter, they output a single-clock-cycle-width High pulse, labeled "cmpA" and
"cmpB" in the figures in this chapter. When in Count-Up/Down mode, these comparators match both when
counting up and when counting down, and thus are qualified by the counter direction signal. These qualified
pulses are used in the PWM generation process. If either comparator match value is greater than the counter
load value, then that comparator never outputs a High pulse.

PWM Signal Generator:

Each PWM generator takes the load, zero, cmpA, and cmpB pulses (qualified by the dir signal) and
generates two internal PWM signals, pwmA and pwmB. In Count-Down mode, there are four events that
can affect these signals: zero, load, match A down, and match B down. In Count-Up/Down mode, there are
six events that can affect these signals: zero, load, match A down, match A up, match B down, and match B
up. The match A or match B events are ignored when they coincide with the zero or load events. If the
match A and match B events coincide, the first signal, pwmA, is generated based only on the match A event,
and the second signal, pwmB, is generated based only on the match B event.

16

UNIT-IV

Dead-Band Generator:
The pwmA and pwmB signals produced by each PWM generator are passed to the dead-band

generator. If the dead-band generator is disabled, the PWM signals simply pass through to the pwmA' and
pwmB' signals unmodified. If the dead-band generator is enabled, the pwmB signal is lost and two PWM
signals are generated based on the pwmA signal. The first output PWM signal, pwmA' is the pwmA signal
with the rising edge delayed by a programmable amount. The second output PWM signal, pwmB', is the
inversion of the pwmA signal with a programmable delay added between the falling edge of the pwmA
signal and the rising edge of the pwmB' signal. The resulting signals are a pair of active high signals where
one is always high, except for a programmable amount of time at transitions where both are low. These
signals are therefore suitable for driving a half-H bridge, with the deadband delays preventing shoot-through
current from damaging the power electronics.
4.9.2. Quadrature Encoder Interface (QEI):

A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement
into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, you
can track the position, direction of rotation, and speed. In addition, a third channel, or index signal, can be
used to reset the position counter.

A classic quadrature encoder has a slotted wheel like structure, to which a shaft of the motor is
attached and a detector module that captures the movement of slots in the wheel.
Interfacing QEI using Tiva TM4C123GH6PM:

The TM4C123GH6PM microcontroller includes two quadrature encoder interface (QEI) modules.
Each QEI module interprets the code produced by a quadrature encoder wheel to integrate position over time
and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the
encoder wheel.

The TM4C123GH6PM microcontroller includes two QEI modules providing control of two motors

at the same time with the following features:
 Position integrator that tracks the encoder position
 Programmable noise filter on the inputs
 Velocity capture using built-in timer
 The input frequency of the QEI inputs may be as high as 1/4 of the processor frequency (for

example, 12.5 MHz for a 50-MHz system)
 Interrupt generation on:

 Index pulse
 Velocity-timer expiration
 Direction change
 Quadrature error detection

Functional Description:
The QEI module interprets the two-bit gray code produced by a quadrature encoder wheel to

integrate position over time and determine direction of rotation. In addition, it can capture a running estimate
of the velocity of the encoder wheel. The position integrator and velocity capture can be independently
enabled, though the position integrator must be enabled before the velocity capture can be enabled. The two
phase signals, PhAn and PhBn, can be swapped before being interpreted by the QEI module to change the
meaning of forward and backward and to correct for misfiring of the system. Alternatively, the phase signals
can be interpreted as a clock and direction signal as output by some encoders.

The QEI module input signals have a digital noise filter on them that can be enabled to prevent
spurious operation. The noise filter requires that the inputs be stable for a specified number of consecutive

17

UNIT-IV

clock cycles before updating the edge detector. The filter is enabled by the FILTEN bit in the QEI Control
(QEICTL) register. The frequency of the input update is programmable using the
FILTCNT bit field in the QEICTL register.

The QEI module supports two modes of signal operation:
 Quadrature phase mode, the encoder produces two clocks that are 90 degrees out of phase, the

edge relationship is used to determine the direction of rotation.
 Clock/direction mode, the encoder produces a clock signal to indicate steps and a direction signal to

indicate the direction of rotation. This mode is determined by the SIGMODE bit of the QEICTL
register.
When the QEI module is set to use the quadrature phase mode (SIGMODE bit is clear), the capture

mode for the position integrator can be set to update the position counter on every edge of the PhA signal or
to update on every edge of both PhA and PhB. Updating the position counter on every PhA and PhB edge
provides more positional resolution at the cost of less range in the positional counter. When edges on PhA
lead edges on PhB, the position counter is incremented. When edges on PhB lead edges on PhA, the position
counter is decremented. When a rising and falling edge pair is seen on one of the phases without any edges
on the other, the direction of rotation has changed.

The positional counter is automatically reset on one of two conditions:
 Sensing the index pulse or
 Reaching the maximum position value.
The reset mode is determined by the RESMODE bit of the QEICTL register.
 When RESMODE is set, the positional counter is reset when the index pulse is sensed. This mode

limits the positional counter to the values [0: N-1], where N is the number of phase edges in a full
revolution of the encoder wheel. The QEI Maximum Position (QEIMAXPOS) register must be
programmed with N-1 so that the reverse direction from position 0 can move the position counter to
N-1. In this mode, the position register contains the absolute position of the encoder relative to the
index (or home) position once an index pulse has been seen.

 When RESMODE is clear, the positional counter is constrained to the range [0: M], where M is the
programmable maximum value. The index pulse is ignored by the positional counter in this mode.
Velocity capture uses a configurable timer and a count register. The timer counts the number of
phase edges (using the same configuration as for the position integrator) in a given time period.

The edge count from the previous time period is available to the controller via the QEI Velocity
(QEISPEED) register, while the edge count for the current time period is being accumulated in the QEI
Velocity Counter (QEICOUNT) register. As soon as the current time period is complete, the total number of
edges counted in that time period is made available in the QEISPEED register (overwriting the previous
value), the QEICOUNT register is cleared, and counting commences on a new time period. The number of
edges counted in a given time period is directly proportional to the velocity of the encoder.

18

UNIT-IV

UNIT-V

Embedded Communications Protocols and
Internet of Things

COMMUNICATION:

Communication between electronic devices is like communication between humans. Both

sides need to speak the same language. In electronics, these languages are called communication

protocols. Luckily for us, there are only a few communication protocols we need to know when

building most electronics projects. In this series of articles, we will discuss the basics of the three

most common protocols: SPI, I2C and UART.

SPI, I2C, and UART are quite a bit slower than protocols like USB, Ethernet, Bluetooth,

and Wi-Fi, but they’re a lot simpler and use less hardware and system resources. SPI, I2C, and

UART are ideal for communication between microcontrollers and between microcontrollers and

sensors where large amounts of high speed data don’t need to be transferred.

DATA COMMUNICATION TYPES: (1) PARALLEL

 (2) SERIAL: (I) ASYNCHRONOUS (II) SYNCHRONOUS

Parallel Communication:

 In parallel communication, all the bits of data are transmitted simultaneously on

separate communication lines.

 Used for shorter distance.

 In order to transmit n bit, n wires or lines are used.

 More costly.

 Faster than serial transmission.

 Data can be transmitted in less time.

Example: printers and hard disk

Serial Communication Basics:

 In serial communication the data bits are transmitted serially one by one i.e. bit by bit

on single communication line

 It requires only one communication line rather than n lines to transmit data from

sender to receiver.

 Thus all the bits of data are transmitted on single lines in serial fashion.

 Less costly.

 Long distance transmission.

Example: Telephone.

Serial communication uses two methods:

 Asynchronous.

 Synchronous.

Asynchronous:

 Transfers single byte at a time.

 No need of clock signal

 Example: UART (universal asynchronous receiver transmitter)

Synchronous:

 Transfers a block of data (characters) at a time.

 Requires clock signal

 Example: SPI (serial peripheral interface),

 I2C (inter integrated circuit).

Data Transmission: In data transmission if the data can be transmitted and received,

it is a duplex transmission.

Simplex: Data is transmitted in only one direction i.e. from TX to RX only one TX

and one RX only

Half duplex: Data is transmitted in two directions but only one way at a time i.e. two

TX's, two RX’s and one line

Full duplex: Data is transmitted both ways at the same time i.e. two TX's, two RX’s

and two lines

A Protocol is a set of rules agreed by both the sender and receiver on

 How the data is packed

 How many bits constitute a character

 When the data begins and ends

Table: Various Serial Communication Protocols

Serial

Protocol

Synchronous

/Asynchronous
Type Duplex

Data transfer

rate (kbps)

UART Asynchronous peer-to-peer Full-duplex 20

I2C Synchronous multi-master Half-duplex 3400

SPI Synchronous multi-master Full-duplex >1,000

MICROWIRE Synchronous master/slave Full-duplex > 625

1-WIRE Asynchronous master/slave Half-duplex 16

Baud Rate Concepts:

Data transfer rate in serial communication is measured in terms of bits per second

(bps). This is also called as Baud Rate. Baud Rate and bps can be used inter changeably with

respect to UART.

Ex: The total number of bits gets transferred during 10 pages of text, each with 100 ×

25 characters with 8 bits per character and 1 start & stop bit is:

For each character a total number of bits are 10. The total number of bits is:

100 × 25 × 10 = 25,000 bits per page. For 10 pages of data it is required to transmit 2, 50,000

bits. Generally baud rates of SCI are 1200, 2400, 4800, 9600, 19,200 etc. To transfer 2,

50,000 bits at a baud rate of 9600, we need: 250000/9600 = 26.04 seconds (27 seconds).

Synchronous/Asynchronous Interfaces (like UART, SPI,

I2C, and USB):

Serial communication protocols can be categorized as Synchronous and

Asynchronous protocols. In synchronous communication, data is transmission and receiving

is a continuous stream at a constant rate. Synchronous communication requires the clock of

transmitting device and receiving device synchronized. In most of the systems, like ADC,

audio codes, potentiometers, transmission and reception of data occurs with same frequency.

Examples of synchronous communication are: I2C, SPI etc. In the case of asynchronous

communication, the transmission of data requires no clock signal and data transfer occurs

intermittently rather than steady stream. Handshake signals between the transmitter and

receiver are important in asynchronous communications. Examples of asynchronous

communication are Universal Asynchronous Receiver Transmitter (UART), CAN etc.

Synchronous and asynchronous communication protocols are well-defined standards

and can be implemented in either hardware or software. In the early days of embedded

systems, Software implementation of I
2
C and SPI was common as well as a tedious work and

used to take long programs. Gradually, most the microcontrollers started incorporating the

standard communication protocols as hardware cores. This development in early 90‟s made

job of the embedded software development easy for communication protocols.

Microcontroller of our interest TM4C123 supports UART, CAN, SPI, I
2
C and USB

protocols. The five (UART, CAN, SPI, I
2
C and USB) above mentioned communication

protocols are available in most of the modern day microcontrollers. Before studying the

implementation and programming details of these protocols in TM4C123, it is required to

understand basic standards, features and applications. In the following sections, we discuss

fundamentals of the above mentioned communication protocols.

UART COMMUNICATION
In UART communication, two UARTs communicate directly with each other. The

transmitting UART converts parallel data from a controlling device like a CPU into serial form,

transmits it in serial to the receiving UART, which then converts the serial data back into parallel

data for the receiving device. Only two wires are needed to transmit data between two UARTs.

Data flows from the Tx pin of the transmitting UART to the Rx pin of the receiving UART:

UARTs transmit data asynchronously, which means there is no clock signal to synchronize

the output of bits from the transmitting UART to the sampling of bits by the receiving UART.

Instead of a clock signal, the transmitting UART adds start and stop bits to the data packet being

transferred. These bits define the beginning and end of the data packet so the receiving UART

knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a

specific frequency known as the baud rate. Baud rate is a measure of the speed of data

transfer, expressed in bits per second (bps). Both UARTs must operate at about the same baud

rate. The baud rate between the transmitting and receiving UARTs can only differ by about 10%

before the timing of bits gets too far off.

Both UARTs must be configured to transmit and receive the same data packet structure.

HOW UART WORKS

The UART that is going to transmit data receives the data from a data bus. The data bus

is used to send data to the UART by another device like a CPU, memory, or microcontroller.

Data is transferred from the data bus to the transmitting UART in parallel form. After the

transmitting UART gets the parallel data from the data bus, it adds a start bit, a parity bit, and a

stop bit, creating the data packet. Next, the data packet is output serially, bit by bit at the Tx pin.

The receiving UART reads the data packet bit by bit at its Rx pin. The receiving UART then

converts the data back into parallel form and removes the start bit, parity bit, and stop bits.

Finally, the receiving UART transfers the data packet in parallel to the data bus on the receiving

end:

UART transmitted data is organized into packets. Each packet contains 1 start bit, 5 to 9

data bits (depending on the UART), an optional parity bit, and 1 or 2 stop bits:

START BIT
The UART data transmission line is normally held at a high voltage level when it’s

not transmitting data. To start the transfer of data, the transmitting UART pulls the transmission

line from high to low for one clock cycle. When the receiving UART detects the high to low

voltage transition, it begins reading the bits in the data frame at the frequency of the baud rate.

DATA FRAME
The data frame contains the actual data being transferred. It can be 5 bits to 9 bits long if

a parity bit is used. If no parity bit is used, the data frame can be 8 bits long. In most cases, the

data is sent with the least significant bit first.

PARITY
Parity describes the evenness or oddness of a number. The parity bit is a way for the

receiving UART to tell if any data has changed during transmission. Bits can be changed

by electromagnetic radiation, mismatched baud rates, or long distance data transfers. After the

receiving UART reads the data frame, it counts the number of bits with a value of 1 and checks if

the total is an even or odd number. If the parity bit is a 0 (even parity), the 1 bits in the data frame

should total to an even number. If the parity bit is a 1 (odd parity), the 1 bits in the data frame

should total to an odd number. When the parity bit matches the data, the UART knows that the

transmission was free of errors. But if the parity bit is a 0, and the total is odd; or the parity bit is a

1, and the total is even, the UART knows that bits in the data frame have changed.

STOP BITS
The Stop Bit, as the name suggests, marks the end of the data packet. It is usually two

bits long but often only on bit is used. In order to end the transmission, the UART maintains the

data line at high voltage (1).

STEPS OF UART TRANSMISSION

1. The transmitting UART receives data in parallel from the data bus:

2. The transmitting UART adds the start bit, parity bit, and the stop bit(s) to the data frame:

3. The entire packet is sent serially from the transmitting UART to the receiving UART. The

receiving UART samples the data line at the pre-configured baud rate:

4. The receiving UART discards the start bit, parity bit, and stop bit from the data frame:

5. The receiving UART converts the serial data back into parallel and transfers it to the data bus

on the receiving end:

ADVANTAGES AND DISADVANTAGES OF UARTS

No communication protocol is perfect, but UARTs are pretty good at what they do. Here are

some pros and cons to help you decide whether or not they fit the needs of your project:

ADVANTAGES
 Only uses two wires

 No clock signal is necessary

 Has a parity bit to allow for error checking

 The structure of the data packet can be changed as long as both sides are set up for it

 Well documented and widely used method

DISADVANTAGES
 The size of the data frame is limited to a maximum of 9 bits

 Doesn’t support multiple slave or multiple master systems

 The baud rates of each UART must be within 10% of each other

UART or Universal Asynchronous Receiver Transmitter is a dedicated hardware

associated with serial communication. The hardware for UART can be a circuit integrated on the

microcontroller or a dedicated IC. This is contrast to SPI or I2C, which are just communication

protocols.

UART is one of the most simple and most commonly used Serial Communication

techniques. Today, UART is being used in many applications like GPS Receivers, Bluetooth

Modules, GSM and GPRS Modems, Wireless Communication Systems, RFID based applications

etc.

SPI COMMUNICATION PROTOCOL
SPI is a common communication protocol used by many different devices. For example,

SD card modules, RFID card reader modules, and 2.4 GHz wireless transmitter/receivers all use

SPI to communicate with microcontrollers.

One unique benefit of SPI is the fact that data can be transferred without interruption.

Any number of bits can be sent or received in a continuous stream. With I2C and UART, data is

sent in packets, limited to a specific number of bits. Start and stop conditions define the

beginning and end of each packet, so the data is interrupted during transmission.

Devices communicating via SPI are in a master-slave relationship. The master is the

controlling device (usually a microcontroller), while the slave (usually a sensor, display, or

memory chip) takes instruction from the master. The simplest configuration of SPI is a single

master, single slave system, but one master can control more than one slave (more on this

below).

MOSI (Master Output/Slave Input) – Line for the master to send data to the slave.

MISO (Master Input/Slave Output) – Line for the slave to send data to the master

SCLK (Clock) – Line for the clock signal.

SS/CS (Slave Select/Chip Select) – Line for the master to select which slave to send data to.

*In practice, the number of slaves is limited by the load capacitance of the system, which reduces the

ability of the master to accurately switch between voltage levels.

HOW SPI WORKS

THE CLOCK
The clock signal synchronizes the output of data bits from the master to the sampling of

bits by the slave. One bit of data is transferred in each clock cycle, so the speed of data transfer

is determined by the frequency of the clock signal. SPI communication is always initiated by the

master since the master configures and generates the clock signal.

Any communication protocol where devices share a clock signal is known

as synchronous. SPI is a synchronous communication protocol. There are

also asynchronous methods that don’t use a clock signal. For example, in UART communication,

both sides are set to a pre-configured baud rate that dictates the speed and timing of data

transmission.

The clock signal in SPI can be modified using the properties of clock polarity and clock

phase. These two properties work together to define when the bits are output and when they are

sampled. Clock polarity can be set by the master to allow for bits to be output and sampled on

either the rising or falling edge of the clock cycle. Clock phase can be set for output and sampling

to occur on either the first edge or second edge of the clock cycle, regardless of whether it is

rising or falling.

SLAVE SELECT
The master can choose which slave it wants to talk to by setting the slave’s CS/SS line to

a low voltage level. In the idle, non-transmitting state, the slave select line is kept at a high

voltage level. Multiple CS/SS pins may be available on the master, which allows for multiple

slaves to be wired in parallel. If only one CS/SS pin is present, multiple slaves can be wired to

the master by daisy-chaining.

MULTIPLE SLAVES
SPI can be set up to operate with a single master and a single slave, and it can be set up

with multiple slaves controlled by a single master. There are two ways to connect multiple slaves

to the master. If the master has multiple slave select pins, the slaves can be wired in parallel like

this:

If only one slave select pin is available, the slaves can be daisy-chained like this:

MOSI AND MISO

The master sends data to the slave bit by bit, in serial through the MOSI line. The slave

receives the data sent from the master at the MOSI pin. Data sent from the master to the slave is

usually sent with the most significant bit first.

The slave can also send data back to the master through the MISO line in serial. The

data sent from the slave back to the master is usually sent with the least significant bit first.

STEPS OF SPI DATA TRANSMISSION

1. The master outputs the clock signal:

2. The master switches the SS/CS pin to a low voltage state, which activates the slave:

3. The master sends the data one bit at a time to the slave along the MOSI line. The slave reads

the bits as they are received:

4. If a response is needed, the slave returns data one bit at a time to the master along the MISO

line. The master reads the bits as they are received:

ADVANTAGES AND DISADVANTAGES OF SPI

There are some advantages and disadvantages to using SPI, and if given the choice

between different communication protocols, you should know when to use SPI according to the

requirements of your project:

ADVANTAGES

 No start and stop bits, so the data can be streamed continuously without interruption

 No complicated slave addressing system like I2C

 Higher data transfer rate than I2C (almost twice as fast)

 Separate MISO and MOSI lines, so data can be sent and received at the same time

DISADVANTAGES

 Uses four wires (I2C and UARTs use two)

 No acknowledgement that the data has been successfully received (I2C has this)

 No form of error checking like the parity bit in UART

 Only allows for a single master

Fig: SPI Master connected to a single slave

Fig: SPI master connected to multiple slaves

I2C COMMUNICATION PROTOCOL
Inter IC (i2c) (IIC) is important serial communication protocol in modern electronic

systems. Philips invented this protocol in 1986. The objective of reducing the cost of production

of television remote control motivated Philips to invent this protocol. IIC is a serial bus interface,

can be implemented in software, but most of the microcontrollers support IIC by incorporating it

as hard IP (Intellectual Property). IIC can be used to interface microcontroller with RTC,

EEPROM and different variety of sensors. IIC is used to interface chips on motherboard,

generally between a processor chip and any peripheral which supports IIC. IIC is very reliable

wireline communication protocol for an on board or short distances. I2C is a serial protocol for

two-wire interface to connect low-speed devices like microcontrollers, EEPROMs, A/D and D/A

converters, I/O interfaces and other similar peripherals in embedded systems

I2C combines the best features of SPI and UARTs. With I2C, you can connect multiple

slaves to a single master (like SPI) and you can have multiple masters controlling single, or

multiple slaves. This is really useful when you want to have more than one microcontroller

logging data to a single memory card or displaying text to a single LCD.

IIC protocol uses two wires for data transfer between devices: Serial Data Line (SDA)

and Serial Clock Line (SCL). The reduction in number of pins in comparison with parallel data

transfer is evident. This reduces the cost of production, package size and power consumption.

IIC is also best suited protocol for battery operated devices. IIC is also referred as two wire serial

interface (TWI).

SDA (Serial Data) – The line for the master and slave to send and receive data.

SCL (Serial Clock) – The line that carries the clock signal.

I2C is a serial communication protocol, so data is transferred bit by bit along a single wire

(the SDA line).

Like SPI, I2C is synchronous, so the output of bits is synchronized to the sampling of bits

by a clock signal shared between the master and the slave. The clock signal is always controlled

by the master.

GENERAL ELECTRICAL CHARACTERISTICS OF I2C

To implement I2C (For TIVA series microcontrollers or for most of the

microcontrollers) a 4.7kilo ohm pull-up resistor for each line is needed. This is required to

implement wired-AND logic in IIC.

More than 100 devices can be connected to I2C bus theoretically. It is better to restrict

to 15 devices for better performance of the network. Each device is called as node. Nodes

which generates clock are called Master nodes and devices which work based on the clock

generated by master node are called Slave nodes. Generally, master nodes initiate and

terminate the transmission. The four possible modes of operation are: master transmitter,

master receiver, slave transmitter and slave receiver.

HOW I2C WORKS

With I2C, data is transferred in messages. Messages are broken up into frames of data.

Each message has an address frame that contains the binary address of the slave, and one or

more data frames that contain the data being transmitted. The message also includes start and

stop conditions, read/write bits, and ACK/NACK bits between each data frame:

Start Condition: The SDA line switches from a high voltage level to a low voltage level before the

SCL line switches from high to low.

Stop Condition: The SDA line switches from a low voltage level to a high voltage level after the

SCL line switches from low to high.

Address Frame: A 7 or 10 bit sequence unique to each slave that identifies the slave when the

master wants to talk to it.

Read/Write Bit: A single bit specifying whether the master is sending data to the slave (low

voltage level) or requesting data from it (high voltage level).

ACK/NACK Bit: Each frame in a message is followed by an acknowledge/no-acknowledge bit. If

an address frame or data frame was successfully received, an ACK bit is returned to the sender

from the receiving device.

ADDRESSING
I2C doesn’t have slave select lines like SPI, so it needs another way to let the slave know

that data is being sent to it, and not another slave. It does this by addressing. The address frame

is always the first frame after the start bit in a new message.

The master sends the address of the slave it wants to communicate with to every slave

connected to it. Each slave then compares the address sent from the master to its own address.

If the address matches, it sends a low voltage ACK bit back to the master. If the address doesn’t

match, the slave does nothing and the SDA line remains high.

READ/WRITE BIT
The address frame includes a single bit at the end that informs the slave whether the

master wants to write data to it or receive data from it. If the master wants to send data to the

slave, the read/write bit is a low voltage level. If the master is requesting data from the slave, the

bit is a high voltage level.

THE DATA FRAME
After the master detects the ACK bit from the slave, the first data frame is ready to be

sent.

The data frame is always 8 bits long, and sent with the most significant bit first. Each data

frame is immediately followed by an ACK/NACK bit to verify that the frame has been received

successfully. The ACK bit must be received by either the master or the slave (depending on who

is sending the data) before the next data frame can be sent.

After all of the data frames have been sent, the master can send a stop condition to the

slave to halt the transmission. The stop condition is a voltage transition from low to high on the

SDA line after a low to high transition on the SCL line, with the SCL line remaining high.

STEPS OF I2C DATA TRANSMISSION

1. The master sends the start condition to every connected slave by switching the SDA line from

a high voltage level to a low voltage level before switching the SCL line from high to low:

2. The master sends each slave the 7 or 10 bit address of the slave it wants to communicate

with, along with the read/write bit:

3. Each slave compares the address sent from the master to its own address. If the address

matches, the slave returns an ACK bit by pulling the SDA line low for one bit. If the address from

the master does not match the slave’s own address, the slave leaves the SDA line high.

4. The master sends or receives the data frame:

5. After each data frame has been transferred, the receiving device returns another ACK bit to

the sender to acknowledge successful receipt of the frame:

6. To stop the data transmission, the master sends a stop condition to the slave by

switching SCL high before switching SDA high:

SINGLE MASTER WITH MULTIPLE SLAVES
Because I2C uses addressing, multiple slaves can be controlled from a single master.

With a 7 bit address, 128 (2
7
) unique address are available. Using 10 bit addresses is

uncommon, but provides 1,024 (2
10

) unique addresses. To connect multiple slaves to a single

master, wire them like this, with 4.7K/10K Ohm pull-up resistors connecting the SDA and SCL

lines to Vcc:

MULTIPLE MASTERS WITH MULTIPLE SLAVES

Multiple masters can be connected to a single slave or multiple slaves. The problem with

multiple masters in the same system comes when two masters try to send or receive data at the

same time over the SDA line. To solve this problem, each master needs to detect if the SDA line

is low or high before transmitting a message. If the SDA line is low, this means that another

master has control of the bus, and the master should wait to send the message. If the SDA line is

high, then it’s safe to transmit the message. To connect multiple masters to multiple slaves, use

the following diagram, with 4.7K Ohm pull-up resistors connecting the SDA and SCL lines to Vcc:

ADVANTAGES AND DISADVANTAGES OF I2C
There is a lot to I2C that might make it sound complicated compared to other protocols,

but there are some good reasons why you may or may not want to use I2C to connect to a

particular device:

ADVANTAGES
 Only uses two wires

 Supports multiple masters and multiple slaves

 ACK/NACK bit gives confirmation that each frame is transferred successfully

 Hardware is less complicated than with UARTs

 Well known and widely used protocol

DISADVANTAGES

 Slower data transfer rate than SPI

 The size of the data frame is limited to 8 bits

 More complicated hardware needed to implement than SPI

UNIVERSAL SERIAL BUS (USB)

Universal Serial Bus (USB) is a set of interface specifications for high speed wired

communication between electronics systems peripherals and devices with or without

PC/computer. The USB was originally developed in 1995 by many of the industry leading

companies like Intel, Compaq, Microsoft, Digital, IBM, and Northern Telecom.

The major goal of USB was to define an external expansion bus to add peripherals to a

PC in easy and simple manner.

USB offers users simple connectivity. It eliminates the mix of different connectors for

different devices like printers, keyboards, mice, and other peripherals. That means USB-bus

allows many peripherals to be connected using a single standardized interface socket. It supports

all kinds of data, from slow mouse inputs to digitized audio and compressed video.

USB also allows hot swapping. The "hot-swapping" means that the devices can be

plugged and unplugged without rebooting the computer or turning off the device. That means,

when plugged in, everything configures automatically. Once the user is finished, they can simply

unplug the cable out; the host will detect its absence and automatically unload the driver. This

makes the USB a plug-and-play interface between a computer and add-on devices.

USB is now the most used interface to connect devices like mouse, keyboards, PDAs,

game-pads and joysticks, scanners, digital cameras, printers, personal media players, and flash

drives to personal computers.

USB sends data in serial mode i.e. the parallel data is serialized before sends and de-

serialized after receiving.

The benefits of USB are low cost, expandability, auto-configuration, hot-plugging and

outstanding performance. It also provides power to the bus, enabling many peripherals to

operate without the added need for an AC power adapter.

Various versions USB:

USB1.0: USB 1.0 is the original release of USB having the capability of transferring

12Mbps, supporting up to 127 devices. This USB 1.0 specification model was introduced in

January 1996.

USB1.1: USB 1.1 came out in September 1998. USB 1.1 is also known as full-speed

USB. This version is similar to the original release of USB; however, there are minor

modifications for the hardware and the specifications. USB version 1.1 supported two speeds, a

full speed mode of 12Mbits/s and a low speed mode of 1.5Mbits/s.

USB2.0: Hewlett-Packard, Intel, LSI Corporation, Microsoft, NEC, and Philips jointly led

the initiative to develop a higher data transfer rate than the 1.1 specifications. The USB 2.0

specification was released in April 2000 and was standardized at the end of 2001.

Supporting three speed modes (1.5, 12 and 480 Mbps), USB 2.0 supports low-bandwidth

devices such as keyboards and mice, as well as high-bandwidth ones like high-resolution Web-

cams, scanners, printers and high-capacity storage systems.

USB 2.0, also known as hi-speed USB. This hi-speed USB is capable of supporting a

transfer rate of up to 480 Mbps, compared to 12 Mbps of USB 1.1. That's about 40 times as fast!

Wow!

USB3.0: USB 3.0 is the latest version of USB release. It is also called as Super-Speed

USB having a data transfer rate of 4.8Gbps (600 MB/s). That means it can deliver over 10x the

speed of today's Hi-Speed USB connections.

The USB 3.0 specification was released by Intel and its partners in August 2008.

Products using the 3.0 specifications are come out in 2010.

The USB "tiered star" topology:

The USB system is made up of a host, multiple numbers of USB ports, and multiple

peripheral devices connected in a tiered-star topology.

The host is the USB system's master, and as such, controls and schedules all

communications activities. Peripherals, the devices controlled by USB, are slaves responding to

commands from the host. USB devices are linked in series through hubs. There always exists

one hub known as the root hub, which is built in to the host controller.

Fig: The USB "tiered star" topology

USB connectors:

 Connecting a USB device to a computer is very simple -- you find the USB connector on

the back of your machine and plug the USB connector into it. If it is a new device, the operating

system auto-detects it and asks for the driver disk. If the device has already been installed, the

computer activates it and starts talking to it.

The USB standard specifies two kinds of cables and connectors.

Fig: USB Type A & B Connectors

The USB standard uses "A" and "B" connectors mainly to avoid confusion:

1. "A" connectors head "upstream" toward the computer.

2. "B" connectors head "downstream" and connect to individual devices.

By using different connectors on the upstream and downstream end, it is impossible to
install a cable incorrectly, because the two types are physically different.

Pin No Signal Color of the cable

1 +5V power Red

2 - Data White / Yellow

3 +Data Green / Blue

4 Ground Black/Brown

Table: USB pin connections

USB can support 4 data transfer types or transfer modes.

1. Control

2. Isochronous

3. Bulk

4. Interrupt

Control transfers exchange configuration, setup and command information between the

device and host. The host can also send commands or query parameters with control packets.

Isochronous transfer is used by time critical, streaming device such as speakers and

video cameras. It is time sensitive information so, within limitations, it has guaranteed access to

the USB bus.

 Bulk transfer is used by devices like printers & scanners, which receives data in one big

packet.

 Interrupt transfer is used by peripherals exchanging small amounts of data that need

immediate attention.

 All USB data is sent serially. USB data transfer is essentially in the form of packets of

data, sent back and forth between the host and peripheral devices. Initially all packets are sent

from the host, via the root hub and possibly more hubs, to devices.

Each USB data transfer consists of a…

1. Token packet (Header defining what it expects to follow)

2. Optional Data Packet (Containing the payload)

3. Status Packet (Used to acknowledge transactions and to provide a means of error

correction).

Implementing and Programming UART:

TM4C123GH6PM microcontroller has got eight UART ports. They are named as

UART0-UART7. In the TI Launchpad, the UART0 port is connected to the ICDI (In-Circuit

Debug Interface). ICDI is further connected to USB port. Users can use UART0 for flash

programming, debugging using JTAG. The UART features of TI Tiva TM4C123GH6PM

microcontroller is: -

 UART‟s have programmable baud-rate generator allowing speeds up to 5 Mbps for

regular speed and 10 Mbps for high speed.

 Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service

loading with programmable FIFO length

 Standard asynchronous communication bits for start, stop, and parity, Line-break

generation and detection

 Fully programmable serial interface characteristics

o 5, 6, 7, or 8 data bits

o Even, odd, stick, or no-parity bit generation/detection

o 1 or 2 stop bit generation

 IrDA serial-IR (SIR) encoder/decoder providing

o Programmable use of IrDA Serial Infrared (SIR) or UART input/output

o Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps

half duplex

o Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations

o Programmable internal clock generator enabling division of reference clock by 1

to 256 for low-power mode bit duration

 Support for communication with ISO 7816 smart cards

 Modem flow control (on UART1)

 EIA-485 9-bit support

 Standard FIFO-level and End-of-Transmission interrupts

 Efficient transfers using Micro Direct Memory Access Controller (μDMA)

o Separate channels for transmit and receive

o Receive single request asserted when data is in the FIFO; burst request asserted at

programmed FIFO level Transmit single request asserted when there is space in

the FIFO; burst request asserted at programmed FIFO level.

UART Register Map

TI Tiva TM4C123GH6PM UART has got several Special Function Registers (SFR‟s)

which needs to program with appropriate values to achieve required UART functionality. In

this section, UART0 is taken as example in which virtual connection is possible on TI Tiva

launch pad.

Figure: Simplified block diagram of UART

Baud Rate Generators: The SFR‟s used in setting the baud rate are UART Integer

Baud-Rate Divisor (UARTIBRD) and UART Fractional Baud-Rate Divisor (UARTFBRD).

The block diagram of the registers is given below:

Figure: Baud Rate Registers

The physical addresses for these UART baud rate registers are: 0x4000:C000+0x024

(UARTIBRD) and 0x4000:C000+0x028 (UARTFBRD). Only lower 16 bit are used in

UARTIBRD and lower 6-bits are used in UARTFBRD. So it comes to total of 22 bits (16-bit

integer + 6 bit of fraction). To reduce the error rate and use the standard baud rate supported

by the terminal programs it is required to use both the registers when we program for the

baud rate. The standard baud rates are: 2400, 4800, 9600, 19200, 57600 and 115200.

Baud rate can be calculated using the below formula:

 Desired Baud Rate = SysClk / (16 × ClkDiv)

Where the SysClk is the working system clock connected to the UART and ClkDiv is

the value programmed into baud rate registers.

The baud-rate divisor (BRD) has the following relationship to the system clock,

where BRDI is the integer part of the BRD and BRDF is the fractional part, separated by a

decimal place.

UARTSysClk is the system clock connected to the UART, and ClkDiv is 16 (if HSE

in UARTCTL is clear) or 8 (if HSE is set).

Alternatively, the UART may be clocked from the internal precision oscillator

(PIOSC), independent of the system clock selection. This will allow the UART clock to be

programmed independently of the system clock PLL settings.

TI Tiva Launchpad system clock is 16 MHz so desired Baud Rate can be calculated as:

The ClkDiv value includes both integer and fractional values loaded into UARTIBRD

and UARTFBRD registers. The integer part is easy to calculate and fraction part requires

manipulations based on trial and error.

Example:

System clock of TI Tiva Launchpad is16 MHz 16MHz is divided by 16 and it is fed

into UART. So UART operates at 1MHz frequency. So ClkDiv = 1MHz.

To generate a baud rate of 4800: 1MHz/4800 = 208.33

(a) 1MHz/4800 = 208.33, UARTIBRD=208 & UARTFBRD = (0.33×64) + 0.5 = 21.83 =21

(b) 1MHz/9600 = 104.166666, UARTIBRD = 104 & UARTFBRD = (0.16666×64) +0.5=11

(c) 1MHz/57600 = 17.361, UARTIBRD = 17 and UARTFBRD = (0.361 × 64) + 0.5 =23

(d) 1MHz/115200 = 8.680, UARTIBRD = 8 and UARTFBRD = (0.680 × 64) +0.5=44

Serial IR (SIR):

UART includes an IrDA (Infrared) serial IR encoder-decoder block. SIR block

converts the data between UART and half-duplex serial SIR interface. The SIR block

provides a digitally encoded output and decoded input to UART. SIR block uses UnTx and

UnRx pins for SIR interface. These pins are connected to IrDA SIR physical layer link. SIR

block supports half-duplex communication. The IrDA SIR physical layer specifies a

minimum 10-ms delay between transmission and reception. The SIR block has two modes of

operation normal mode and low power mode.

ISO 7816 Support: UART support ISO 7816 smartcard communication. The UnTx signal is

used as a bit clock and the UnRx signal is used as the half-duplex communication line

connected to the smartcard. Any GPIO signal can be used to generate the reset signal to the

smartcard.

BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate)

Baud Rate = 16MHz / (16 × ClkDiv) = 1MHz / ClkDiv

UART Control Register (UARTCTL):

This is a 32-bit register. The most important bits are RXE, TXE, HSE, and UARTEN.

Figure: UART Control Register (UARTCTL)

 RXE (Receive enable): This bit should be enabled to receive data.

 TXE (Transmit Enable): This bit should be enabled to transmit data.

 HSE (High Speed enable): This bit is used to set the baud rate. By default the system

clock is divided by 16 before it is fed to the UART. The user can program HSE =1, to

make system clock divide by 8.

 UARTEN (UART enable): This bit allows user to enable or disable the UART. During

the initialization of the UART registers, this is disabled. To disable UART under any

circumstances, this bit is used.

 SIREN (SIR Enable): IrDA SIR Block is enabled. UART will transmit and receive data

using SIR protocol.

 SIRLP (SIR Low Power Mode): This bit selects the IrDA encoding mode: Normal

mode or low power mode.

 SMART (ISO 7816 Smart Card support): The UART operates in Smart Card mode

when SMART = 1. UART does not support automatic retransmission on parity errors.

If a parity error is detected on transmission, all further transmit operations are aborted

and software must handle retransmission of the affected byte or message.

 LBE (Loop Back Enable): The UnTx path is fed through the UnRx path when LBE =1.

 RTSEN (Enable Request to send): RTS hardware flow control is enabled. Data is only

requested when receive FIFO has available entries.

 RTS (Request to send): When RTSEN is clear, the status of this bit is reflected on the

U1RTS signal. If RTSEN is set, this bit is ignored on a write and should be ignored on

read.

UART Line Control Register (UARTLCTH)

This register is used to set the length of data. The bits per character in a frame and

number of stop bits are also decided.

 STP2 (Stop bit2): The stop bits can be 1 or 2. The default is 1 stop bit at the end of

each frame. If the receiving device is slow, we can use 2 stop bits by making the

STP2=1.

 FEN (FIFO Enable): UART has an internal 16-byte FIFO (first in first out) buffer to

store data for transmission to keep the CPU getting interrupted for the reception and

transmission of every byte. Enabling FEN bit, we can write up to16 bytes of data

block into its transmission FIFO buffer and let transfer happen one byte at a time.

There is also a separate 16 byte FIFO for the receiver to buffer the incoming data.

Upon Reset, the default for FIFO buffer size is 1 byte.

 WLEN (Word Length): The number of bits per character data in each frame can be 5,

6, 7, or 8. we use 8 bits for each character data frame. Default world length mode is 5.

 BRK (Send Break): A Low level is continually output on the UnTx signal, after

completing transmission of the current character. For the proper execution of the

break command, software must set this bit for at least two frames (character periods).

 PEN (Parity Enable): Parity is enabled and parity bit is added to the data frame by

making PEN = 1. Parity checking is also enabled.

 EPS (Even Parity Select): Odd parity is performed, which checks for an odd number

of 1s when EPS = 0. Even parity generation and checking is performed during

transmission and reception, which checks for an even number of 1s in data and parity

bits when EPS = 1.

UART Data Register (UARTDR):

Figure: UART Date Register (UARTDR)

Data should be placed in data register before transmission. Only lower 8 bits are used.

In a similar way, the received byte should be read and saved in memory before it gets

overwrite by next byte. During reception, we use other four bits (8, 9, 10 and 11) to detect

error, parity etc. Another set of registers are used to check the source of error.

(UARTRSR/UARTRCR)

 OE: Overrun error (OE = 0: No data is lost).

 BE: Break error

 PE: Parity error

 FE: Framing error.

UART Flag Register (UARTFR):

The UART Flag Register holds one byte of data when FIFO buffer is disabled.

Figure: UART Flag Register (UARTFR)

 TXFE (TX FIFO Empty): Transmitter loads one byte for transmission from the FIFO

buffer.

 When FIFO becomes empty, the TXFE is raised. The transmitter then frames the byte

and sends it out via TxD pin bit by bit serially.

 RXFF (RX FIFO Full): When a byte of data is received, byte is placed in Data

register and RXFF (RX FIFO full) flag bit is raised after receiving the complete byte.

 TXFF (TX FIFOI Full): When the transmitter is not busy, it loads one byte from the

FIFO buffer and the FIFO is not full anymore and the TXFF is lowered. We can

monitor TXFF flag and upon going LOW we can write another byte to the Data

register.

UART Transmission

Step to perform UART Transmission:

 Program the RCGCUART register to get clock on UART0.

 Program the RCGCGPIO register to get the clock for PORTA.

 Program UARTCTL to disable UART0.

 Program the integer part and fractional part into baud rate registers: UARTIBRD and

UARTFBRD for UART0.

 Program UARTCC to select the system clock as UART clock.

 Set the bits in UARTLCRH register for 1 stop bit, no interrupt, no FIFO use, and for 8-

bit date size (for UART 0).

 Program TxE and RxE in UARTCTL to enable transmitter and receiver.

 Make PA0 and PA1 pins to use as digital pins.

 Configure PA0 and PA1 pins for UART.

 Loop the program for wait on TxD output. Monitor the TXFF flag bit and when it goes

low, write a data into data register.

UART Reception

Step by Step Execution of UART Reception:

 Program the RCGCUART register to get clock on UART0.

 Program the RCGCGPIO register to get the clock for PORTA.

 Program UARTCTL to disable UART0.

 Program the integer part and fractional part into baud rate registers: UARTIBRD and

UARTFBRD for UART0.

 Program UARTCC to select the system clock as UART clock.

 Set the bits in UARTLCRH register for 1 stop bit, no interrupt, no FIFO use, and for 8

-bit data size (for UART 0).

 Program TxE and RxE in UARTCTL to enable transmitter and receiver.

 Make PA0 and PA1 pins to use as digital pins.

 Configure PA0 and PA1 pins for UART.

 Loop the program for wait on TxD output. Monitor the TXFF flag bit and when it

goes low, write a data into data register.

 Monitor the RXFE flag bit in UART Flag register and when it goes LOW read the

received byte from Data register and save before it gets overwrite.

Basic UART programing

Example 1:

Program to send the characters "HELLO" to HyperTerminal of PC

#include <stdint.h>

#include "tm4c123gh6pm.h"

void UART0Tx(char c);

void delayMs(int n);

int main(void)

SYSCTL->RCGCUART |= 1; /* enable clock supply to UART*/

SYSCTL->RCGCGPIO |= 1; /* enable clock supply to PORTA */

/* UART0 initialization */

UART0->CTL = 0; /* disable UART0 */

UART0->IBRD = 104; /* 9600 baud rate

UART0->FBRD = 11; /* fractional portion*/

UART0->CC = 0; /* configured to system clock */

UART0->LCRH = 0x60; /* 8-bit, no parity, 1-stop bit, no FIFO */

UART0->CTL = 0x301; /* configure UART0 and TXE, RXE*/

/* UART0 TX0 and RX0 use PA0 and PA1. Set them up. */

GPIOA->DEN = 0x03; /* Make PA0 and PA1 as digital */

GPIOA->AFSEL = 0x03; /* Use PA0, PA1 alternate function */

GPIOA->PCTL = 0x11; /* configure PA0 and PA1 for UART */

delayMs(1); /* wait for output line to stabilize */

for(;;)

{

UART0Tx('H');

UART0Tx('E');

UART0Tx('L');

UART0Tx('L ');

UART0Tx('O');
}
}
/* UART0 Transmit */
void UART0Tx(char c)
{while((UART0->FR & 0x20) != 0); /* wait until Tx buffer not full */
UART0->DR = c; /* before giving it another byte */
}

Example 2:

Program to receive data serially via UART0

#include <stdint.h>

#include "tm4c123gh6pm.h"

char UART0Rx(void);

void delayMs(int n);

int main(void)

{

char c;

SYSCTL->RCGCUART |= 1; /* enable clock supply to UART*/

SYSCTL->RCGCGPIO |= 1; /* enable clock supply to PORTA */

/* UART0 initialization */

UART0->CTL = 0; /* disable UART0 */

UART0->IBRD = 104; /* 9600 baud rate */

UART0->FBRD = 11; /* fractional portion*/

UART0->CC = 0; /* configured to system clock */

UART0->LCRH = 0x60; /* 8-bit, no parity, 1-stop bit, no FIFO */

UART0->CTL = 0x301; /* configure UART0 and TXE, RXE */

/* UART0 TX0 and RX0 use PA0 and PA1. Set them up. */

GPIOA->DEN = 0x03; /* Make PA0 and PA1 as digital */

GPIOA->AFSEL = 0x03; /* Use PA0, PA1 alternate function */

GPIOA->PCTL = 0x11; /* configure PA0 and PA1 for UART */

for(;;)

{

c = UART0Rx(); /* get a character from UART */

}
}
/* UART0 Receive */
char UART0Rx(void)
{
char c;
while((UART0->FR & 0x10) != 0); /* wait until the buffer is not empty */
c = UART0->DR; /* read the received data */
return c; /* and return it */

}

Implementing and Programming I2C:

The TM4C123GH6PM controller includes four I2C modules with the following features:

 Devices on the I2C bus can be designated as either a master or a slave

 Supports both transmitting and receiving data as either a master or a slave

 Supports simultaneous master and slave operation

 Four I2C modes

o Master transmit

o Master receive

o Slave transmit

o Slave receive

 Four transmission speeds:

o Standard (100 Kbps)

o Fast-mode (400 Kbps)

o Fast-mode plus (1 Mbps)

o High-speed mode (3.33 Mbps)

 Clock low timeout interrupt

 Dual slave address capability

 Glitch suppression

 Master and slave interrupt generation

 Master generates interrupts when a transmit or receive operation completes (or aborts

due to an error)

 Slave generates interrupts when data has been transferred or requested by a master or

when a START or STOP condition is detected

 Master with arbitration and clock synchronization, multi-master support, and 7-bit

addressing mode.

I2C Network:

There are four on chip IIC modules in this Tiva microcontroller. The base address of

each IIC module is shown in below table:

Figure: I
2
C Networking using Tiva microcontroller

Clock should be enabled to IIC module and system control register (SYSCTL)

RCGCI2C needs to be programmed. To enable the clock SYSCTL ->RCGCI2C | = 0x0F will

enable clock to all four modules

Figure: RunMode Clock Gating Control Register (RCGCI2C)

Clock should be enabled to IIC module and system control register (SYSCTL) RCGCI2C

needs to be programmed.

To enable the clock SYSCTL ->RCGCI2C | = 0x0F will enable clock to all four modules.

Clock Speed: I2CMTPR (I2C Master Timer Period) register is programmed to set the clock

frequency for SCL.

Figure: I2C Master Time Period Register

Table: RCG12C Register Description

The formula used to set the clock speed is given below:

SCL_PERIOD = 2 x (1+TPR) x (SCL_LP+ SCL_HP) x CLK_PRD

Where

CLK_PRD: System Clock period

SCL_LP: SCL low period and it is fixed at 6.

SCL_HP: SCL High period and it is fixed at 4.

Finally, the above equation can be written as:

SCL_PERIOD = (20 x (1+TPR)/ System clock frequency

The TPR can be calculated as:

TPR = ((System clock frequency x SCL_PERIOD)/20) - 1)

TPR = (System Clock frequency)/ (20 x I2C clock) - 1

With System clock frequency of 20MHz and with I2C clock is 333 KHz, we get TPR (Timer

period) = 2.

TPR value to generate Standard, Fast and Fast mode plus SCL frequencies is given in below

table:

Table: TPR Values for I
2
C modes

The HS bit in the I2CMTPR register needs to be set for the TPR value to be used in High-

Speed mode.

Table: TPR Values for High-Speed Mode

I2CMCR (I2C Master Configuration register) is used to configure microcontroller as master

or slave. The description of I2CMCR is below:

Figure: I2C Master Configuration Register

Table: I2CMCR Register Description

Slave Address:

In a master device, the slave address is stored in I2CMSA. Addresses in I2C

communication is 7-bits. I2CMSA stores D7 to D1 bits and LSB of D0 indicate master is

receiver of transmitter.

Figure: I2C Master Slave Address Register

Data Register:

In transmit mode, a byte of data will be placed in I2CMDR (I2C Master Data

Register) for transmission.

Figure: I2C Master Data Register

Control and Status Flag Register:
The I2CMCS (I2C Master Control/Status) register is programmed for both control

and status. I2CMCS register configures the I2C controller operation. The status whether a

byte has been transmitted. That is, transmission buffer is empty and ready to transmit the next

byte. After writing a data into I2C Data register and the slave address into I2C Master Slave

address register, we can configure I2CMCS register for the I2C to start a data transmission

from Master to slave device. Writing 0x07 to I2CMCS register has all the three of STOP = 1,

RUN = 1, and START = 1 in it. To check the status of transmission, we poll the BUSBSY bit

of I2CMCS register. BUSBSY bit goes low after transmission complete. Program should also

check the ERROR bit to confirm that no error has occurred during transmission. For any error

in transmission, detected by transmitter or raised by slave, the ADRACK and DATACK will

be set. The bit ARBLST should be polled, to confirm transmitter has got access to bus and

not lost arbitration.

Figure: I2C Master Control/Status Register

Table: I2C MCS Register Description

Configuring GPIO for I
2
C Network:

GPIO pins are configured for I
2
C as follows:

 Enable the clock to GPIO pins by using system control register RCGCGPIO.

 Set the GPIO AFSEL (GPIO alternate function) for I2C pins.

 Enable digital pins in the GPIODEN register.

 I2C signals are assigned to specific pins using GPIOCTL register.

Figure: Data transmission using (a) Master Single Transmit, (b) Single Master Receive

(a) (b)

Implementing and Programming SPI:

 Serial peripheral interface (SPI) is a serial communication interface originally

designed by Motorola in late eighties. SPI and I2C came into existence almost at the same

time. Most of the modern day microcontrollers will support SPI protocol. Both SPI and I2C

offer good support for communication with low-speed devices, but SPI is better suited to

applications in which devices transfer data streams. Some devices use the full-duplex mode to

implement an efficient, swift data stream for applications such as digital audio, digital signal

processing, or telecommunications channels, but most off-the-shelf chips stick to half-duplex

request/response protocols.

SPI is used to talk to a variety of peripherals, such a

 Sensors: temperature, pressure, ADC, touchscreens, video game controllers

 Control devices: audio codecs, digital potentiometers, DAC

 Camera lenses: Canon EF lens mount

 Memory: flash and EEPROM

 Real-time clocks

 LCD, sometimes even for managing image data

 Any MMC or SD card

Description: SPI is a synchronous serial communication protocol like I2C, where master

generates clock and data transfer between master and slave happens with respect to clock.

Both master and slave devices will have shift registers connected to input (MISO for master

and MOSI for slave) and output (MOSI for master and MISO for slave) as shown in figure.

Figure: Serial Peripheral Interface

Communication between the devices will start after CS (chip select) pin will go low.

(CS is an active low pin). In SPI, the 8-bit shift registers are used. After passing of 8 clock

pulses, the contents of two shift registers are interchanged. SPI is full duplex communication.

In SPI protocol both master and slaves use the same clock for communication When

CPOL= 0 the idle value of the clock is zero while at CPOL=1 the idle value of the clock is

one.

CPHA=0 means sample data on the leading (first) clock edge, while CPHA=1 means

sample data on the trailing (second) clock edge. The idle value of the clock is zero the leading

clock edge is a positive edge but if the idle value of the clock is one, the leading clock edge is

a negative edge.

In SPI protocol both master and slaves use the same clock for communication When

CPOL= 0 the idle value of the clock is zero while at CPOL=1 the idle value of the clock is

one.

CPHA=0 means sample data on the leading (first) clock edge, while CPHA=1 means

sample data on the trailing (second) clock edge. The idle value of the clock is zero the leading

clock edge is a positive edge but if the idle value of the clock is one, the leading clock edge is

a negative edge.

Figure: SPI Timing Diagram

Table: SPI Modes

SPI in Tiva Microcontroller:

The TM4C123GH6PM microcontroller includes four Synchronous Serial Interface

(SSI) modules. Each SSI module is a master or slave interface for synchronous serial

communication with peripheral devices that have Freescale SPI, MICROWIRE, or Texas

Instruments synchronous serial interfaces.

The TM4C123GH6PM SSI modules have the following features:

 Programmable interface operation for Freescale SPI, MICROWIRE, or Texas

Instruments synchronous serial interfaces

 Master or slave operation

 Programmable clock bit rate and prescaler

 Separate transmit and receive FIFOs, each 16 bits wide and 8 locations deep

 Programmable data frame size from 4 to 16 bits

 Internal loopback test mode for diagnostic/debug testing

 Standard FIFO-based interrupts and End-of-Transmission interrupt

 Efficient transfers using Micro Direct Memory Access Controller (μDMA)

 Separate channels for transmit and receive

 Receive single request asserted when data is in the FIFO; burst request asserted when

FIFO contains 4 entries

 Transmit single request asserted when there is space in the FIFO; burst request

asserted

 When four or more entries are available to be written in the FIFO.

Most SSI signals are alternate functions for some GPIO signals and default to be

GPIO signals at reset. The exceptions to this rule are the SSI0Clk, SSI0Fss, SSI0Rx, and

SSI0Tx pins, which default to the SSI function. The AFSEL bit in the GPIO Alternate

Function Select (GPIOAFSEL) register should be set to choose the SSI function.

Each data frame is between 4 and 16 bits long depending on the size of data

programmed and is transmitted starting with the MSB. There are three basic frame types that

can be selected by programming the FRF bit in the SSICR0 register:

 Texas Instruments synchronous serial

 Freescale SPI

 Microwire

For all three formats, the serial clock (SSInClk) is held inactive while the SSI is idle,

and SSInClk transitions at the programmed frequency only during active transmission or

reception of data. The idle state of SSInClk is utilized to provide a receive timeout indication

that occurs when the receive FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSInFss) pin is

active Low, and is asserted (pulled down) during the entire transmission of the frame.

We focus on the SPI features of SSI module. This microcontroller supports four SSI

modules. The SSI modules are located at the following base addresses:

Table: SPI Modules base address

Clock to SSI: RCGCSSI register is used to enable the clock to SSI modules. We need

to write RCGSSI = 0x0F to enable the clock to all SSI modules.

Figure: Synchronous Serial Interface Run Mode Clock Gating Control CRCG (SSI) Register

Configuring the SSI:

SSICR0 (SSI control register 0) is used to configure the SSI. The generic SPI is used

to transfer the byte size of data, the SSI in Tiva microcontroller allows transfer of data

between 4 bits to 16bits.

Figure: SSI Control O Register

Table: SSICRO Register Description

Bit Rate:
SSI module clock source can be either from System Clock or PIOSC (Precision

Internal Oscillator). The selected frequency is fed to pre-scaler before it is used by the Bit

Rate circuitry. The CPSDVSR (CPS Divisor) value comes from the pre-scaler divisor

register. The lower 8 bits of SSICPSR (SSI Clock Prescale) register are used to divide the

CPU clock before it is fed to the Bit Rate circuitry. Only even values can be used for the pre-

scaler since the D0 must be 0. For the pre-scaler register, the lowest value is 2 and the highest

is 254.

The SSICR0 (SSI Control register 0) allows the Bit Rate selection among other

things. The output of clock pre-scaler circuitry is divided by 1 + SCR and then used as the

SSI baud rate clock. The value of SCR can be from 0 to 255. The below formula is used to

calculate the bit rate.

Bit Rate (BR): BR=SysClk/(CPSDVSR × (1 + SCR))

Figure: SSI Clock Prescaler Register

Example:

For a Bit Rate=50 KHz and SCR=03 in SSICR0 register.

The pre-scaler register value for a given system clock frequency of 16MHz, the BR

can be calculated using above formula as:

BR = SysClk / (CPSDVSR × (1 + SCR))

50 KHz = 16 MHz / (X × (1 + 3).

The pre-scaler value is 0x50 in Hex.

SPI module can act like slave or a master. The value in a MS bit in SSI control

register 1 (SSICR1) decide the microcontroller as master or slave. SSE bit in the SSICR1

register is used to enable/ disable the SPI.

Figure: SSI Control 1 Register

Data Register:

The SSIDR is used for both as transmitter and receiver buffer. In SPI handling 8-bit

data, will be placed into the lower 8-bits of the register and the rest of the register are unused.

In the receive mode, the lower 8-bit holds the received data.

Figure: SSI Data Register

Status Flag Register: SSISR is used to monitor transmitter/receiver buffer is empty.

Figure: SSI Status Register

Table: SSI Status Register Description

SPI data Transmission:

To perform SPI data transmission, follow the steps given below:

 Enable the clock to SPI module in system control register RCGCSSI.

 Before initialization, disable the SSI via bit 1 of SSICR1 register.

 Set the Bit Rate with the SSICPSR prescaler and SSICR0 control registers.

 Select the SPI mode, phase, polarity, and data width in SSICR0 control register.

 Set the master mode in SSISCR1 register.

 Enable SSI using SSICR1 register.

 Assert slave select signal.

 Wait until the TNF flag in SSISR goes high, then load a byte of data into SSIDR.

 Wait until transmit is complete that is, transmit FIFO empty and SSI not busy.

 De-assert the slave signal

NVIC interrupt for SSI:

Interrupt handler can be used for transmission and reception of data. By enabling the

interrupt in SSIIM (SSI Interrupt mask) register, NVIC interrupt controller will enable

interrupts from SSI and execute the corresponding interrupt service routine. All SSI interrupts

are masked upon reset.

Figure: SSI Interrupt Mask Register

Table: SSI Interrupt Mask Register Description

/* Program for Tiva Microcontroller to use SSI1 (SPI) to transmit A to Z characters*/

#include "TM4C123GH6PM.h"

void init_SSI1(void);

void SSI1Write(unsigned char data);

int main(void)

{

unsigned char i;

init_SSI1(); for(;;)

{for (i = 'A'; i <= 'Z'; i++)

{SSI1Write(i); /* write a character */

}

void SSI1Write(unsigned char data)

{

GPIOF->DATA &= ~0x04; /* assert SS low */

while((SSI1->SR & 2) == 0); /* wait until FIFO not full */

while(SSI1->SR & 0x10); /* wait until transmit complete */

GPIOF->DATA |= 0x04; /* keep SS idle high */

void init_SSI1(void)

{

SYSCTL->RCGCSSI |= 2; /* enable clock to SSI1 */

/* configure PORTD 3, 1 for SSI1 clock and Tx */

GPIOD->DEN |= 0x09; /* and make them digital */

GPIOD->AFSEL |= 0x09; /* enable alternate function */

GPIOD->PCTL &= ~0x0000F00F; /* assign pins to SSI1 */

GPIOD->PCTL |= 0x00002002; /* assign pins to SSI1 */

/* configure PORTF 2 for slave select */

GPIOF->DEN |= 0x04; /* make the pin digital */

GPIOF->DIR |= 0x04; /* make the pin output */

GPIOF->DATA |= 0x04; /* keep SS idle high */

/* SPI Master, POL = 0, PHA = 0, clock = 4 MHz, 16 bit data */

SSI1->CR1 = 0; /* disable SSI and make it master */

SSI1->CC = 0; /* use system clock */

SSI1->CPSR = 2; /* prescaler divided by 2 */

SSI1->CR1 |= 2; /* enable SSI1 */

}

void SystemInit(void)

{

SCB->CPACR |= 0x00f00000;

}

Case Study: Tiva based embedded system application using the

interface protocols for communication with external devices
“Sensor Hub BoosterPack”

Weather broadcasting system require some smart technique to monitor the weather

conditions of different places. It is useful for the meteorological department for the detection

of the environmental condition with the help of a balloon. In this case study we are using four

sensors Accelerometer, gyroscope, temperature sensor and pressure sensor. The Tiva booster

pack with various sensors is mounted on the balloon and accelerometer used for the detection

of acceleration of the balloon and gyro scope is used for the position detection of the balloon

and pressure and temperature sensor senses pressure and temperature of the environment

respectively. These all gathered information sent to the ground station with the help of

satellite communication system installed at the balloon and the meteorological department‟s

ground station. The collected information is used for the public weather broadcasting.

Figure: Flowchart for Interfacing TIVA with Sensor Hub Booster Pack

Embedded Networking Fundamentals:

Introduction:

Embedded networking technologies such as ZigBee, NFC, Bluetooth, Wi-Fi etc. are

key elements in designing internet enabled applications. For example, in a residential set-up,

these enable control of all devices remotely, even if there is no one physically present in the

house. Such a „Smart home’ allows the owner to monitor and control all smart equipment

including power controls, security devices such as surveillance camera, etc. remotely. That is

possible by using Wi-Fi technology, gateway solutions that provide connection to Cloud and

of course the Internet to access the devices. Other typical application areas are monitoring,

smart Grid, Smart Transport, smart plug, wearable devices, health monitoring etc.

Figure: Embedded Network

This chapter covers wireless sensor networks as well as different wireless protocols,

which provide connectivity between smart devices and gateway solutions. Readers will also

learn about the CC3100 wireless module and how its architecture that provides wireless

connectivity can be interfaced with TIVA C Series. The chapter also discusses the

configuration of this module in access point mode with the TIVA Launchpad for use in

typical IoT applications.

Microcontrollers are used to design intelligent embedded systems such as

smartphones, netbooks, digital TVs, mp3 players, smart-watches, smart-sensors, etc. These

smart things can be connected together to form an embedded network that imparts

intelligence to bigger things like homes, buildings, fields, forests and cities. The above figure

shows different sensors and systems involved in a typical smart-home application. An

embedded network of smart things like automatic home appliances, lights, door sensors,

CCTV cameras, refrigerators, etc. can provide smart-home users with more convenient and

high-quality living experience.

Figure: Embedded Network for Smart Home Application

IoT Overview and Architecture:

Communication between computers or embedded devices in a network involves

exchanging useful messages over a medium like air, telephone line, Ethernet, etc. Each

device must have an address or ID using which, it can be uniquely identified in the network.

The devices must follow some rules while communicating with each other, so that messages

are exchanged in a proper manner. IP (Internet Protocol) provides a set of unique addresses to

the devices, whereas TCP (Transport Control Protocol) describes a set of rules to be followed

to exchange messages in a proper way.

In the smart home application shown in the below figure TCP/IP protocol can be used

over Ethernet to provide Internet connectivity to the outside world. As shown in figure, this

will enable the user to monitor or control the smart home functions from anywhere in the

world using a PC, laptop or a smartphone.

Figure: Smart Home Architecture with TCP/IP connectivity to the Internet

Internet Protocol version 6 (IPv6):

IPv6 is the most recent version of the Internet Protocol (IP), the communications

protocol that provides an identification and location system for computers on networks and

routes traffic across the Internet.

IPv6 advantages for IoT:

 Adoption: The Internet Protocol is a must and a requirement for any Internet

connectivity. It is the addressing scheme for any data transfer on the web.

 Scalability: IPv6 offers a highly scalable address scheme. The present scheme of

Internet Governance provides at most 2 x 1019 unique, globally routable, addresses.

 Solving the NAT barrier: Due to the limits of the IPv4 address space, the current

Internet had to adopt a stopgap solution to face its unplanned expansion: the Network

Address Translation(NAT). It enables several users and devices to share the same

public IP address. The NAT users are borrowing and sharing IP addresses with others.

While this technique allows single stakeholders to mount large applications, it

becomes completely unmanageable if the same end-points are to be used by many

different stakeholders; this would occur in an IoT deployment where the same sensors

are to be used by multiple, independent, stakeholders. Secondly the mechanism

cannot be used to access specific end-points from the Internet.

 Multi-Stakeholder Support: IPv6 provides for end devices to have multiple addresses

and an even more distributed routing mechanism than the IPv4 Internet. This allows

different stakeholders to assign IoT end-device addresses that are consistent with their

own application and network practices. Thus multiple stakeholders can deploy their

own applications, sharing a common sensor/actuation infrastructure, without

impacting the technical operation or governance of the Internet.

Internet of Things (IOT):

Klevin Ashton introduced the term “Internet of Things” (IOT), to the world of

technology in 1999. Since then, IoT has generated a lot of interest, and it is expected that the

number of „things‟ connected to IoT will grow from 20 billion things in 2015 to an estimated

200 billion by 2020. It refers to a scenario in which all the real-life things (including objects,

people and animals) are connected to internet, and can transfer data over it preferably to a

cloud. This data can then be used by businesses and the people, to create a world of new

possibilities and to benefit from it. Fig. 5.7 shows the three main components of IoT i.e.

things, data (cloud) and the people. For e.g. a smart refrigerator can sense the quantity of

items inside it, and then automatically generate a shopping list to be ordered on-line. This list

is put by the smart refrigerator on the cloud, where the best deals are offered for online

purchase.

Figure: Main components of IoT

IOT is considered as a scenario of accessing any information from anywhere and

accessible to everyone. This is described as follows:

Anything: Eventually, any device, appliance or entity will be seamlessly connected to the

Internet. Connectivity will not be the main feature of the device, but will extend the device’s

capabilities.

Anywhere: Any conceived wireless connectivity framework should be abstract enough to

run from any location – both geographically and from a network topology perspective. The

former refers to Internet-based ubiquity; the latter, refers to the ability to clone the framework

into intranet environments where Internet access is limited or undesired. Acknowledging the

structure of the Internet beyond the public domain is important to enable the expansion of the

IoT paradigm.

Anyone: Currently, not all things are connected to the IoT. But an IoT ecosystem that is easy

to use and secure is not that far away. This will make the IoT accessible to anyone. Anyone

will be able to connect their product to the Internet, and also customize it to their personal

preferences.

Applications of IOT:

With the industry’s broadest IoT-ready portfolio of wired and wireless connectivity

technologies, microcontrollers, processors, sensors and analog signal chain and power

solutions, TI offers cloud ready system solutions. From high-performance home, industrial

and automotive applications to battery-powered wearable and portable electronics or energy-

harvested wireless sensor nodes, TI makes developing applications easier with hardware,

software, tools and support to get anything connected as an IoT device.

In automotive appliances, IoT is mainly used for infotainment purposes such as

connecting between the phones and the speakers of the car, activating the engine through

voice control etc.

The IoT paradigm discussed may be encountered in a wide variety of venues that span

across various activity circles throughout the day using different kinds of devices. In the

personal area network we encounter wearable devices for entertainment and location

tracking. For example, it can be a Bluetooth headset or a GPS tracker. These devices facilitate

the user to help enhance their health and wellness, and to gather information around the user.

At home we are surrounded with an ever-growing number of appliances, multimedia devices

and other consumer gadgets.

In home automation systems, IoT applications include monitoring and controlling the

devices inside a home in an intelligent way. They include lighting and temperature control

among the connected appliances for effective use of energy.

While on-the-go, we use private or public transportation vehicles and infrastructure to

improve our mobility time utilization. In industries, sensors might be introduced for

production efficiency, maintenance and failure management. And at a metropolitan level

smart building management systems include smart cities equipped with smart city lights,

residential e-meters, surveillance cameras for traffic control, pipeline leak detection etc.

Healthcare IoT applications include remote monitoring of patients for example heart rate,

blood pressure level etc.

Architecture of IOT:

The IoT players: We need to get a wider view of the IoT playground. To do that, the key

players must first be identified. We classify the players into three clusters: users, things and

services

 Users are human participants that use services and their own end equipment’s. They

mostly consume information and may inspire actions through profile settings and

other decision making processes.

 Things are physical or virtual endpoints representing either a data source, data sink or

both. They feed or consume information to and from the Internet.

 Services are information aggregators and may provide tools for data analysis of

different kinds. In some cases can be used to carry out actions requested by clients,

either users or things.

Figure: The IOT Players

The different devices and environments needed in IoT can be layered as shown in the

figure. The sensors and devices needed in the IoT environment are the bottom layer. The

different types of sensors can be temperature, pressure, moisture etc. The data captured by the

sensors needs to be processed using processors and enabling technologies. The technologies

include RFID detection, motion sensing etc. Some of the technologies that enable these

devices are discussed further in the Wireless Sensor networks section. Examples include

Bluetooth, Wi-Fi etc. The processed data can be stored using cloud infrastructures and thus in

turn provide different IoT services. The different types of IoT services include Home

automation, healthcare services, energy management, emergency services among others.

Figure: Architecture of IoT

Challenges of IOT:

Preparing the lowest layers of technology for the horizontal nature of the IoT requires

manufacturers to deliver on the most fundamental challenges, including:

Connectivity: There is not one connectivity standard that “wins” over the others. There are a

wide variety of wired and wireless standards as well as proprietary implementations used to

connect the things in the IoT. The challenge is getting the connectivity standards to talk to

one another with one common worldwide data currency.

Power management: More things within the IoT need to be battery powered or use energy

harvesting to be more portable and self-sustaining. Line-powered equipment need to be more

energy efficient. The challenge is making it easy to add power management to these devices

and equipment. Wireless charging incorporates connectivity with charge management.

Complexity: Manufacturers are looking to add connectivity to devices and equipment that

has never been connected before to become part of the IoT. Ease of design and development

is essential to get more things connected especially when typical RF programming is

complex. Additionally, the average consumer needs to be able to set-up and use their devices

without a technical background

Rapid evolution: The IoT is constantly changing and evolving. More devices are being

added everyday and the industry is still in its naissance. The challenge facing the industry is

the unknown; unknown devices, unknown applications, unknown use cases. Given this, there

needs to be flexibility in all facets of development. Processors and microcontrollers that range

from 16–1500 MHz to address the full spectrum of applications from a microcontroller

(MCU) in a small, energy-harvested wireless sensor node to high-performance, multi-core

processors for IoT infrastructure. A wide variety of wired and wireless connectivity

technologies are needed to meet the various needs of the market. Last, a wide selection of

sensors, mixed-signal and power-management technologies are required to provide the user

interface to the IoT and energy-friendly designs.

 There are several fundamental features that a “thing” has to encompass to be a good

IoT solution. Among these, the most important features are energy efficiency,

security, data handling and simplicity.

Energy Efficiency: As the number of devices grows, even small amounts of excessive power

are a noticeable waste. When it comes to power, the challenge is to ensure that adding

Internet connectivity does not impose a change to the power supply. In other words, ideally it

should fit within the existing power budget headroom. The TIVA Launchpad, being an ultra-

low power MCU ensures that the IoT application takes minimal power.

Security: Security is always a challenge in data networks. This challenge intensifies in the

case of the IoT simply because there are more entry points thereby creating more penetration

points. This increased system vulnerability makes the battle for security inevitable. In an IoT

solution, threats also take a new level of magnitude since it is not just data that is put at risk.

With IoT the damage potential is much higher (e.g., opening a door remotely, taking a

burglar alarm system offline). There will surely be a never-ending fight towards better

security. This provides inbuilt security features to address major security requirements.

Data handling: Massive deployment of endpoints results in higher node density. This

requires demand for higher capacity. Furthermore, large quantities of data that are generated

create a need for accessible storage. In addition, real network latency introduces a challenge

to limited resource systems. The TI wireless modules provide easy interfacing with the TIVA

Launchpad to provide connectivity that suits the need of the IoT application.

Overview of Wireless Sensor Networks and Design

Examples:

 Wireless Sensor Networks (WSNs) are networks of tiny, battery powered sensor

nodes with limited onboard processing, storage and radio capabilities. Recent advances in

micro-electro-mechanical systems (MEMS) technology, embedded electronics and wireless

communication have made it possible to develop low-power and low-cost sensor nodes that

are small in size and communicate using wireless medium over short distances. The sensor

units in the nodes can sense any desired parameter (like temperature, pressure humidity,

movement etc.) in an area that is covered by the network. The sensed data is then relayed

through the network to the base station, where information can be generated and acted upon

to serve the purpose for which the network has been deployed.

WSNs are on the verge of being utilized for many challenging real-life applications

like early earthquake warning systems, battlefield surveillance, environment and habitat

monitoring, healthcare, smart homes and buildings etc... This involves deploying a large

number of nodes in the area to be sensed by the network. This large-scale deployment often

requires the nodes to possess self-organizing capability to form a network without any human

intervention. A typical cluster-based sensor network topology as shown in Figure consists of

a base station, cluster-head nodes and sensor nodes. The base station is normally connected to

the outside world through internet link or a user terminal.

Figure: A Typical Sensor Network Architecture

Wireless Connectivity in Embedded Networks:

Wireless communication has become a preferred choice for connecting the devices in

embedded networks. Communication technologies like NFC, ZigBee, Bluetooth, WiFi, and

cellular have already become popular with developers working on Smart Homes, Sensor

Networks and IoT based applications. The choice of a connectivity option depends upon

various factors like communication range, bandwidth requirements, security issues, and

power consumption. Before learning more detail about these wireless communication

technologies, a brief overview of the Open System Interconnection (OSI) model used for

communication between two entities is given below:

OSI Model for Communication:

OSI model is a conceptual model that is used to organize the various functions of a

communication system by arranging them into seven different layers as shown in below

figure. The function performed by each layer in implementing an end-to-end communication

system is described below:

Physical Layer:

This layer specifies the physical medium used to transmit bits between

communicating systems. In wired systems, the physical layer may specify the use of copper

wires or fiber optic cable for wired systems. Similarly for wireless technology like ZigBee,

the physical layer specifications mention the use of 2.4 GHz ISM frequency band as one of

the options for communication.

Data Link Layer:

When two or more nodes try to use the physical media simultaneously for data

transfer, the data packets may collide and, the nodes need to try again for access to the media.

In this case, data link layer acts as a local traffic cop to regulate the medium access by the

nodes of the network. Another important role of the data link layer can be to detect and

correct the errors that may occur when data is transferred on the medium.

Network Layer:

The primary function of network layer is to forward data packets (received from

higher layers) from one point to another over the network. The data packets may travel across

many different networks, guided on the way by gateway and router devices, to their final

destination.

Transport Layer:

This layer provides a reliable end-to-end connection oriented data transfer along with

error and flow control services. Transmission Control Protocol (TCP) is the most common

transport layer protocol used on Internet.

Session Layer:

The reliable end-to-end connection provided by transport layer is used to set-up an

interactive session between the two communicating computers or end-user applications. The

session layer protocols are responsible to open, manage and close these sessions to support

effective data communication.

Presentation Layer:

This layer ensures that the data presented to the application layer is in proper format

and ready to be used. For example, data transmitted in EBCDIC-code by the sender may be

converted at the receiver end by presentation layer to ASCII code format used by the

application layer.

Application layer:

The protocols used in this layer define the user interface that finally displays the

information to the user.

Figure: Protocol stack of OSI

Wi-Fi:

Wi-Fi is a wireless local area network (WLAN) technology that allows electronic devices to

network using the 2.4 GHz or 5 GHz ISM radio bands. It is based on the IEEE 802.11 MAC

and physical layer standards for WLAN and is the most pervasive choice for connectivity

with the Internet, especially in the home LAN environment. Wi-Fi supports very fast data

transfer rates, but consumes a lot of power which makes it unviable for low-power

applications. Nevertheless, the embedded networks, wireless sensor network applications and

Internet-of-Things implementations explicitly make use of Wi-Fi as a preferred choice for

connectivity to the Internet.

Adding Wi-Fi capability to the Microcontroller:

To illustrate the use of wireless connectivity in embedded networks, this section discusses the

usage of Wi-Fi technology with a microcontroller. Wi-Fi is very widely used to provide

connectivity between user and embedded systems. For example, a user can interact with

utility systems (like AC, Garage door, Coffee machine, etc.) in a smart-home using a

smartphone, provided both (smart-home and smartphone) are connected to the internet.

TI provides low-power and easy-to-use Wi-Fi solutions that include battery-operated

Wi-Fi designs with more than a year of battery life on two AA batteries. TI’s Simple Link

Wi-Fi CC3100 module is a wireless network processor with on-chip Wi-Fi, internet, and

robust security protocols. It can be used to connect any low-cost microcontroller (MCU). A

functional block diagram of CC3100 module is shown in the below figure.

Figure: Functional diagram of SimpleLink Wi-Fi CC3100 Module

Figure: CC3100 Booster Pack (SimpleLink Wi-Fi) mounted on TIVA Launchpad

Embedded Wi-Fi:

It is important to understand the hardware and software architecture of any device

before using it in a design. Figure 5.17 shows the hardware architecture for SimpleLink Wi-

Fi CC3100 module, that can be used to provide Wi-Fi connectivity to any micro-controller

based system. It consists mainly of two parts:

I. Wi-Fi Network Processor Subsystem

II. Power-management Subsystem

Wi-Fi Network Processor Subsystem:

The Wi-Fi Network Processor subsystem mainly consists of the following:

1) Dedicated ARM MCU – It executes the Wi-Fi and Internet protocols required to

communicate over the Internet using Wi-Fi connectivity.

2) ROM–stores pre-programmed Wi-Fi driver and multiple Internet protocols

3) TCP/IP Stack – supports communication with Figure Hardware Architecture for

CC3100 computer systems on the Internet

4) Crypto Engine – provides fast, and secure Wi-Fi as well as Internet connectivity

5) 802.11 b/g/n Radio, Baseband and Medium Access Control - for wireless

transmission and reception of data

6) SPI/ UART Interface – connects the CC3100 module to the host MCU.

Figure: Hardware Architecture for CC3100

Power Management Subsystem:

The power management subsystem of CC3100 module provides the CC3100 module

with an integrated DC-to-DC converter with a wide range of power supply from 2.3 to 3.6 V.

This subsystem enables low-power consumption modes such as hibernate with RTC mode,

which requires approximately 7 μA of current.

Features of Wi-Fi supported by CC3100 chip:

The Wi-Fi network processor sub-system in SimpleLink Wi-Fi CC3100 device

integrates all protocols for Wi-Fi and Internet, greatly minimizing MCU software

requirements. With built-in security protocols, SimpleLink Wi-Fi provides a simple yet

robust security experience. This section discusses the features of Wi-Fi supported by the

CC3100 device. A list of features and the functionality provided by them is given in below

Table.

Table: Wi-Fi features

User APIs for Wireless and Networking Applications:

In order to simplify the development using the SimpleLink Wi-Fi devices, TI provides

a simple and user friendly host driver software. This driver software allows any MCU (like

TIVA platform) to interact with a SimpleLink device and performs the following

functions:User APIs for Wireless and Networking applications.

1. Provides a simple API for user application development.

2. Handles the communication of MCU with the SimpleLInk device.

3. Provides flexibility in working with a MCU, with or without an OS.

4. Works with existing UART or SPI physical interface drivers

5. Compatible with 8-bit, 16-bit or 32-bit MCUs

The SimpleLink Host Driver includes a set of six logical and simple API modules:

 Device API – Manages hardware-related functionality such as start, stop, set, and get

device configurations.

 WLAN API – Manages WLAN, 802.11 protocol-related functionality such as device

mode (station, AP, or P2P), setting provisioning method, adding connection profiles,

and setting connection policy.

 Socket API – The most common API set for user applications, and adheres to BSD

socket APIs.

 NetApp API – Enables different networking services including the Hypertext

Transfer Protocol (HTTP) server service, DHCP server service, and MDNS

client\server service.

 NetCfg API – Configures different networking parameters, such as setting the MAC

address, acquiring the IP address by DHCP, and setting the static IP address.

 File System API – Provides access to the serial flash component for read and write

operations of networking or user proprietary data.

Building IoT applications using CC3100 user API:

Get whether application using CC3100:

This application demonstrates how to connect to openweathermap.org server and

request for weather details of a city. The application opens a TCP socket w/ the server and

sends a HTTP Get request to get the weather details. The received data is processed and

displayed on the console window as shown below.

Figure: Block diagram of Get Weather application

Figure: Get Weather Application Console Window

Figure: Flow Chart of getting weather application

To perform this application, we need to set an IP address for the device CC3100 with

TIVA Launchpad. We can set IP address for the device CC3100 statically or dynamically as

we discussed in the session. The below steps demonstrates the configuration of a static IP

address for CC3100 TIVA Launchpad. Here the device connects to the Access Point (APwith

the configured static IP. The static IP address is stored inside the non-volatile memory of

CC3100.The basic steps for assigning IP address to a CC3100 device are given in the

flowchart shown in figure.

Figure: Flowchart for configuring a static IP address for CC3100 module

In this case study the module CC3100 is configured as a Wireless Local Area

Network (WLAN) Station to connect to the internet and open weather.org as a server. A

wireless local area network (WLAN) is a wireless computer network that connects two or

more devices without wires within a confined area for example within a building. This

facilitates the users to stay connected without physical wiring constraints and also access

Internet. Wi-Fi is based on IEEE 802.11 standards including IEEE 802.11a and

IEEE802.11b.

All nodes that connect over a wireless network are referred to as stations (STA).

Wireless stations can be categorized into Wireless Access Points (AP) or clients. Access

Points (AP) work as the base station for a wireless network. The Wireless clients could be

any device such as computers, laptops, mobile devices, smartphones etc. The flowchart for

this case study is shown in figure.

Figure: Flowchart for using CC3100 as a WLAN Station

We can also make CC3100 module as a HTTP server with TIVA Launchpad. HTTP

is an acronym for Hyper Text Transfer Protocol. HTTP is a client/server protocol used to

deliver hypertext resources (HTML web pages, images, query results, and so forth) to the

client side. HTTP works on top of a predefined TCP/IP. (Transmission Control Protocol /

Internet Protocol). HTTP web server allows endusers to remotely communicate with the

CC3100 by using a standard web browser. The HTTP web server enables the following

functions:

 Device configuration

 Device status and diagnostic

 Application-specific functionality

The HTTP server handles the HTTP request by listening on the HTTP socket id which

is by default 80. Based on the request type, such as HTTP GET or HTTP POST, the server

handles the request URI resource and content. The server then composes the appropriate

HTTP response and returns it to the client. The server communicates with the serial flash file

system, which hosts the web page files. The files are saved in the serial flash with their

individual filenames.

If we configure CC3100 as a server then it will be in Access Point (AP) mode with a

pre-defined SSIDNAME and uses the sample HTML pages stored in Flash which can be

accessed by the clients. Clients can connect to CC3100 and request for web-pages using the

IP of device from any standard web browser. There are pre-programmed html pages already

residing on the flash and new HTML pages can be downloaded on serial-flash of CC3100

using CCS_UniFlash utility using a separate tool EMU-BOOST. The scope of this study will

be to use the existing html pages already pre-programmed in the flash by default. The

flowchart for using CC3100 device as a HTTP server is given in below figure.

Figure: Flowchart for configuring CC3100 as a HTTP Server

Case Study: Tiva based Embedded Networking Application:

“Smart Plug with Remote Disconnect and Wi-Fi Connectivity”:

In this application, the WiFi enabled Smart plug helps you to control any connected

device from home or remotely from anywhere in the world with internet access such as home

appliances like control portable heaters or window ac, turn on a light, Smart Grid and in

building automation. A smart plug is an electronic device, generally connected to other

devices or networks via different wireless protocols such as Bluetooth, NFC, WiFi, 3G, etc.,

that can operate to some extent interactively and autonomously.

Now an day all application like home automation and building automation requires

two main aspects of Smart Plug technology.

 Android and cloud based remote access.

 Remote disconnect and Wi-Fi connectivity based upon power consumption.

In this case study the WiFi enabled Smart Plug utilizes a TIVA Launchpad to monitor the

energy consumption for a single load and control the high-voltage side of the design. This

data is then passed to a CC3100 module to communicate the data over Wi-Fi to a Cloud

server. A solid state relay enables the application to control the load, based on its energy

consumption. And this system is powered from a highly compact and efficient UCC28910D

High-Voltage Flyback Switcher with Primary-Side Regulation and Output Current Control.

Figure: Block diagram of Smart Plug with WiFi connectivity

Figure: Flow chart of Smart Plug with Wi-Fi connectivity

