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LEARNING OUTCOMES: 

This course provides the foundational education in static electromagnetic fields, and time 

varying electromagnetic waves. Through lecture, and out-of-class assignments, students are 

provided learning experiences that enable them to: 

a. Analyze and solve the problems of electric and magnetic fields that vary with three 

dimensional spatial co-ordinates as well as with time. 

b. Become proficient with analytical skills for understanding propagation of 

electromagnetic waves in different media. 

c. Understand the concept of transmission lines & their applications. 

d. Develop technical & writing skills important for effective communication. 

e. Acquire team-work skills for working effectively in groups. 
 

UNIT-I 

Electrostatics: Review of Vector algebra, Co-ordinate systems & transformation, Vector 

calculus, Coulomb’s Law, Electric Field Intensity – Fields due to Different Charge 

Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, 

Relations Between E and V, Maxwell’s Two Equations for Electrostatic Fields, Electric 

dipole, Energy Density, Convection and Conduction Currents, Dielectric Constant, Isotropic 

and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson’s and 

Laplace’s Equations, Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative 

Problems. 

UNIT-II 

Magnetostatics:  Biot-Savart Law, Ampere’s Circuital Law and Applications, Magnetic Flux 

Density, Maxwell’s Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector 

Potentials, Forces due to Magnetic Fields, Magnetic torque and moment, Magnetic dipole, 

Inductances and Magnetic Energy, Illustrative Problems. 

 

UNIT-III 

Maxwell’s Equations ( for Time Varying Fields): Faraday’s Law and Transformer e.m.f, 

Inconsistency of Ampere’s Law and Displacement Current Density, Maxwell’s Equations in 

Different Final Forms and Word Statements. Boundary Conditions of Electromagnetic fields: 

Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems. 
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UNIT-IV 

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, 

Uniform Plane Waves – Definition, All Relations between E & H, Sinusoidal Variations, 

Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – 

Characterization, Wave Propagation in Good Conductors and Good Dielectrics, 

Polarization,Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for 

both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total 

Internal Reflection, Surface Impedance, Poynting Vector,  and Poynting Theorem – 

Applications, Power Loss in a Plane Conductor, Illustrative Problems. 

 

UNIT-V 

Transmission Lines: Types, Transmission line parameters (Primary and Secondary), 

Transmission line equations, Input impedance, Standing wave ratio & power, Smith chart & 

its applications, Applications of transmission lines of various lengths, Micro-strip 

transmission lines – input impedance, Illustrative Problems.  

TEXT BOOKS: 

1. Matthew N.O. Sadiku, “Elements of Electromagnetics,” Oxford Univ. Press, 4th ed., 2008. 

2. William H. Hayt Jr. and John A. Buck, “Engineering Electromagnetics,” TMH, 7th ed., 

2006. 
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Ed., 2000.  

2. Electromagnetics – John D. Krauss, McGraw- Hill publications, 3rd ed., 1988. 

3. John D. Ryder, “Networks, Lines, and Fields,” PHI publications, Second Edition, 2012. 

4. Schaum’s out – lines, “Electromagnetics,” Second Edition, Tata McGraw-Hill 

publications, 2006. 

5. G. S. N. Raju, “Electromagnetic Field Theory and Transmission Lines,” Pearson 

Education, 2013 

6. N. NarayanaRao, “Fundamentals of Electromagnetics for Engineering,” Pearson Edu. 
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Course Objectives:

 To introduce fundamentals of static and time varying electromagnetic fields.

 To teach problem solving in Electromagnetic fields using vector calculus.
 To demonstrate wave concept with the help of Maxwell’s equations.
 To introduce concepts of polarization and fundamental theory of electromagnetic waves

in transmission lines and their practical applications.
 To analyze reflection and refraction of electromagnetic waves propagated in normal and

oblique incidences.

Unit I

Vector Analysis: Coordinate systems and transformation-Cartesian, Cylindrical and Spherical
coordinates
Vector Calculus: Differential length area and volume, line surface and volume integrals, del
operator, gradient, divergent and curl operations.
Coulomb’s Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric
Flux Density, Gauss Law and Applications, Divergence Theorem, Electric Potential, Relations
Between E and V, Maxwell’s Two Equations for Electrostatic Fields, Energy Density,
Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous
Dielectrics, Continuity Equation, Relaxation Time, Poisson’s and Laplace’s Equations,
Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

Unit Outcomes:

 Understand basic laws of static electric field. (L1)
 Derive the Maxwell’s equations for electrostatic fields. (L3)
 Solve problems applying laws of electrostatics. (L3)

Unit II

Biot-Savart Law, Ampere’s Circuital Law and Applications, Magnetic Flux Density, Maxwell’s
Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials, Forces due to
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Magnetic Fields, Magnetic dipole, Ampere’s Force Law, Inductances and Magnetic Energy,
Illustrative Problems.
Faraday’s Law and Transformer e.m.f, Inconsistency of Ampere’s Law and Displacement
Current Density, Maxwell’s equations for time varying fields, Maxwell’s Equations in Different
Final Forms and Word Statements, Illustrative Problems

Unit Outcomes:

 Understand basic laws of static magnetic field. (L1)
 Derive the Maxwell’s equations for magnetic fields. (L3)
 Solve problems applying laws of magneto statics. (L3)
 Derive the Maxwell’s equations for electromagnetic fields. (L3)

 Apply the boundary conditions of electromagnetic fields at the interface of different
media. (L2)

Unit III

Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor
Interfaces, Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves
– Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless
and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good
Conductors and Good Dielectrics, Polarization, Illustrative Problems.

Unit Outcomes:

 Understand concept of wave propagation through the Maxwell’s equations .(L1)
 Derive wave equations for different media. (L3)

 Explain concept of polarization of electromagnetic wave. (L2)

Unit IV

Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect
Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection,
Surface Impedance, Poynting Vector, and Poynting Theorem – Applications, Power Loss in a
Plane Conductor, Illustrative Problems.

Unit Outcomes:

 Understand principles of reflections and refraction for different incidences. (L1)

 State concept of power flow using Poynting vector. (L2)
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 Calculate Brewster angle, power flow and surface impedance. (L3)

Unit V

Transmission Lines: Introduction, Transmission line parameters, Transmission line equivalent
circuit, Transmission line equations and their solutions in their phasor form, input impedance,
standing wave ratio, Transmission of finite length- half wave, quarter wave transmission line,
Smith chart, graphical analysis of transmission lines using Smith chart, stub matching- single and
double stub matching, Illustrative Problems.

Unit Outcomes:

 Understand the principles of transmission lines and concept of smith chart.(L1)
 Derive the input impedance of transmission line.(L3)

 Finding the line parameters through problem solving.(l4)
 Study the applications of different lengths of transmission lines.(L2)

Course Outcomes:

After completion of the course, student will be able to
CO1: Explain basic laws of electromagnetic fields and know the wave concept. (L2)
CO2: Solve problems related to electromagnetic fields. (L3)
CO3: Analyze electric and magnetic fields at the interface of different media. (L3)
CO4: Derive Maxwell’s equations for static and time varying fields. (L3)
CO5: Analogy between electric and magnetic fields. (L5)
C06: Describes the transmission lines with equivalent circuit and explain their characteristic with

various lengths. (L2)

TEXT BOOKS:

1. Matthew N.O. Sadiku, “Elements of Electromagnetics”, 4th edition. Oxford Univ. Press,
2008.

2. William H. Hayt Jr. and John A. Buck, “Engineering Electromagnetics”, 7th edition.,
TMH, 2006.

REFERENCES:

1. E.C. Jordan and K.G. Balmain, “Electromagnetic Waves and Radiating Systems”, 2nd

Edition, PHI, 2000.
2. John D. Krauss, “Electromagnetics”, 4th Edition,McGraw- Hill publication1999.
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3. Electromagnetics, Schaum’s outline series, 2nd Edition, Tata McGraw-Hill publications,
2006.
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UNIT – I- Electrostatics 
Contents 

 Basics of coordinate system 

 Coulomb’s Law 

 Electric Field Intensity - Fields due to Different Charge Distributions 

 Electric Flux Density 

 Gauss Law and Applications,  

 Electric Potential,  

 Relations between E and V 

 Maxwell’s Equations for Electrostatic Fields 

 Energy Density 

 Dielectric Constant 

 Isotropic and Homogeneous Dielectrics, 

 Continuity Equation 

 Relaxation Time 

 Poisson's and Laplace's Equations 

 Capacitance - Parallel plate 

 Problems. 
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INTRODUCTION 
 
VECTOR ALGEBRA 
 
Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces. 
 
Most of the physical quantities are either scalar or vector quantities. 
 
 

SCALAR QUANTITY: 
 
  Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a 

quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a 

scalar quantity has no directional component. 

For example when we say, the temperature of the room is 30o C, we don‘t specify the direction. 

Hence examples of scalar quantities are mass, temperature, volume, speed etc. 

A scalar quantity is represented simply by a letter – A, B, T, V, S. 

 
VECTOR QUANTITY: 

 

  A Vector has both a magnitude and a direction. Hence a vector quantity is a 

quantity that has both magnitude and direction. 
 
 Examples of vector quantities are force, displacement, velocity, etc. 

 
 
 
 A vector quantity is represented by a letter with an arrow over it or a bold letter.  

 
 

UNIT VECTORS: 

 

When a simple vector is divided by its own magnitude, a new vector is created known as 

the unit vector. A unit vector has a magnitude of one.  Hence the name - unit vector. 

A unit vector is always used to describe the direction of respective vector. 

 

 

 
Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors 

along the co-ordinate directions are referred to as the base vectors. For example unit vectors 

along X, Y and Z directions are ax, ay and az respectively. 
 

Position Vector / Radius Vector (𝑂𝑃̅̅ ̅̅   ): 

 

A Position Vector / Radius vector define the position of a point(P)  in space relative to 

the origin(O).Hence Position vector is another way to denote a point in space.  

 

𝑂𝑃̅̅ ̅̅ = 𝑥𝑎̅𝑥 + 𝑦𝑎̅𝑦 + 𝑧𝑎̅𝑧 
3
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Displacement Vector 

Displacement Vector is the displacement or the shortest distance from one point to another.  

Vector Multiplication 

When two vectors are multiplied the result is either a scalar or a vector depending on how 

they are multiplied. The two important types of vector multiplication are: 

 Dot Product/Scalar Product (A.B) 

 Cross product (A x B) 

 

1. DOT PRODUCT (A. B): 

  

Dot product of two vectors A and B is defined as: 

𝐴̅. 𝐵̅ = │𝐴̅││𝐵̅│ cos 𝜃𝐴𝐵 

   

Where 𝜃𝐴𝐵 is the angle formed between A and B.  
Also 𝜃𝐴𝐵 ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵 ≤ π 

The result of A.B is a scalar, hence dot product is also known as Scalar Product. 

 

Properties of Dot Product: 

 

1. If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then  

            

                𝐴̅. 𝐵̅= AxBx + AyBy + AzBz 

 

2. 𝐴̅. 𝐵̅= |A| |B|, if cos𝜃𝐴𝐵=1 which means θAB = 00  
 

This shows that A and B are in the same direction or we can also say that A and B are 

parallel to each other. 
 

3. 𝐴̅. 𝐵̅ = - |A| |B|, if cos 𝜃𝐴𝐵=-1 which means 𝜃𝐴𝐵 = 1800. 
 
This shows that A and B are in the opposite direction or we can also say that A and B are 

antiparallel to each other. 
 

4. 𝐴̅. 𝐵̅ = 0, if cos 𝜃𝐴𝐵=0 which means 𝜃𝐴𝐵 = 900. 5.  
This shows that A and B are orthogonal or perpendicular to each other. 

 

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have 
 

         𝑎̅𝑥 . 𝑎̅𝑥 = 𝑎̅𝑦. 𝑎̅𝑦 = 𝑎̅𝑧 . 𝑎̅𝑧 = 1 

 

          𝑎̅𝑥 . 𝑎̅𝑦 = 𝑎̅𝑦. 𝑎̅𝑧 = 𝑎̅𝑧 . 𝑎̅𝑥 = 0
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2. Cross Product (A X B): 

 

Cross Product of two vectors A and B is given as: 

 

𝐴̅𝑋𝐵̅ = │𝐴̅││𝐵̅│ sin 𝜃𝐴𝐵 𝑎̅𝑁 

 

Where 𝜃𝐴𝐵is the angle formed between A and B and 𝑎̅𝑁 is a unit vector normal to both A and B. 

Also θ ranges from 0 to π i.e. 0 ≤ 𝜃𝐴𝐵≤ π 
 

The cross product is an operation between two vectors and the output is also a vector.  

 

Properties of Cross Product: 

 

1.  If A = (Ax, Ay, Az) and B = (Bx, By, Bz) then, 
 
 
 
 
 
 
 
 
 
 

The resultant vector is always normal to both the vector A and B. 
 

 

 2.  𝐴̅𝑋𝐵̅ = 0, if sin 𝜃𝐴𝐵  = 0 which means 𝜃𝐴𝐵 = 00  or 1800;  
This shows that A and B are either parallel or antiparallel to each other. 

 

3. 𝐴̅𝑋𝐵̅ =│𝐴̅││𝐵̅│𝑎̅𝑁, if sin 𝜃𝐴𝐵  = 0 which means 𝜃𝐴𝐵 = 900. 6.  
This shows that A and B are orthogonal or perpendicular to each other. 

 

4. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have  
𝑎̅𝑥𝑋 𝑎̅𝑥 = 𝑎̅𝑦  𝑋 𝑎̅𝑦 = 𝑎̅𝑧𝑋𝑎̅𝑧 = 0 

                                             𝑎̅𝑥𝑋 𝑎̅𝑦 = 𝑎̅𝑧   , 𝑎̅𝑦 𝑋 𝑎̅𝑧 =  𝑎̅𝑥  ,   𝑎̅𝑧𝑋 𝑎̅𝑥 = 𝑎̅𝑦 
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CO-ORDINATE SYSTEMS 
 
 

Co-Ordinate system is a system of representing points in a space of given dimensions by 

coordinates, such as the Cartesian coordinate system or the system of celestial longitude and 

latitude. 
 

In order to describe the spatial variations of the quantities, appropriate coordinate system is 

required. A point or vector can be represented in a curvilinear coordinate system that may be 

orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually 

perpendicular to each other. 

 

 The different co-ordinate system available are: 
 

 Cartesian or Rectangular co-ordinate system.(Example: Cube, Cuboid) 
 

 Circular Cylindrical co-ordinate system.(Example : Cylinder) 

 

 Spherical co-ordinate system. (Example: Sphere) 

 

The choice depends on the geometry of the application. 
 

A set of 3 scalar values that define position and a set of unit vectors that define direction form 

a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All 

coordinates are defined with respect to an arbitrary point called the origin. 
 
 

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or 

𝐴̅ = 𝐴𝑥𝑎̅𝑥 + 𝐴𝑦𝑎̅𝑦 + 𝐴𝑧𝑎̅𝑧 

Where𝑎̅𝑥,𝑎̅𝑦  and 𝑎̅𝑧are the unit vectors in x, y, z direction respectively.
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Range of the variables: 

 

It defines the minimum and the maximum value that x, y and z can have in Cartesian system. 

-∞ ≤ x,y,z ≤ ∞ 
 

Differential Displacement / Differential Length (dl): 

 

It is given as  

 

  𝑑𝑙̅ = 𝑑𝑥𝑎̅𝑥 + 𝑑𝑦𝑎̅𝑦 + 𝑑𝑧𝑎̅𝑧 
 

Differential length for a line parallel to x, y and z axis are respectively given as: 

 

dl = 𝑑𝑥𝑎̅𝑥---( For a line parallel to x-axis). 
 
dl = 𝑑𝑦𝑎̅𝑦 ---( For a line Parallel to y-axis). 

dl = 𝑑𝑧𝑎̅𝑧 ---( For a line parallel to z-axis). 
 

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az. Similarly 

if the wire is in y-axis then the differential length is given as dl = dy ay. 
 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  

𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁 

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

 

For the 1st figure,  

𝑑𝑠̅̅ ̅ = 𝑑𝑦𝑑𝑧𝑎̅𝑥 
 

2nd figure,  
𝑑𝑠̅̅ ̅ = 𝑑𝑥𝑑𝑧𝑎̅𝑦 

 

3rd figure,  

𝑑𝑠̅̅ ̅ = 𝑑𝑥𝑑𝑦𝑎̅𝑧 
 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

                                                                     𝑑𝑣 = 𝑑𝑥𝑑𝑦𝑑𝑧 
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2. Circular Cylindrical Co-ordinate System 
 
 

A Vector in Cylindrical system is represented as (Ar, AǾ,  Az)    or 
 

𝐴̅ = 𝐴𝑟𝑎̅𝑟 + 𝐴∅𝑎̅∅ + 𝐴𝑧𝑎̅𝑧 

 

Where𝑎̅𝑟, 𝑎̅∅ and 𝑎̅𝑧 are the unit vectors in r, Φ  and z directions  respectively. 
 

The physical significance of each parameter of cylindrical coordinates: 
 

1. The value r indicates the distance of the point from the z-axis. It is the radius of the 

cylinder. 

2. The value Φ, also called the azimuthal angle, indicates the rotation angle around the z-

axis. It is basically measured from the x axis in the x-y plane. It is measured anti 

clockwise. 

3. The value z indicates the distance of the point from z-axis. It is the same as in the 

Cartesian system. In short, it is the height of the cylinder. 
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Range of the variables: 

 

It defines the minimum and the maximum values of r, Φ and z. 

 

0 ≤ r ≤ ∞  
0 ≤ Φ ≤ 2π 

-∞ ≤ z ≤ ∞  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System. 
 
 

 

Differential Displacement / Differential Length (dl): 

 

It is given as  

 

𝑑𝑙̅ = 𝑑𝑟𝑎̅𝑟 + 𝑟𝑑𝜑𝑎̅𝜑 + 𝑑𝑧𝑎̅𝑧 
 

Differential length for a line parallel to r, Φ  and z axis are respectively given as: 

 

dl = 𝑑𝑟𝑎̅𝑟---( For a line parallel to r-direction). 
 

dl = 𝑟𝑑𝜑𝑎̅𝜑 ---( For a line Parallel to Φ-direction). 

dl = 𝑑𝑧𝑎̅𝑧 ---( For a line parallel to z-axis). 
 
 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  
𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁 

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

This surface describes a circular disc. Always remember- To define a circular disk we 

need two parameter one distance measure and one angular measure. An angular parameter 

will always give a curved line or an arc. 
 

In this case dΦ is measured in terms of change in arc. 
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Arc is given as: 
 
Arc= radius * angle 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜑𝑎̅𝑧 

𝑑𝑠̅̅ ̅ = 𝑑𝑟𝑑𝑧𝑎̅𝜑 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜑𝑎̅𝑟 

 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟𝑑𝑟𝑑𝜑𝑑𝑧 
 

3. Spherical coordinate System: 
 

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two 

scalarvalues (θ, Φ) have angular units (degrees or radians). 
 

A Vector in Spherical System is represented as (Ar ,AӨ, AΦ)  or  

𝐴̅ = 𝐴𝑟𝑎̅𝑟 + 𝐴𝜃𝑎̅𝜃 + 𝐴𝜑𝑎̅𝜑 

Where𝑎̅𝑟,𝑎̅𝜃  and 𝑎̅𝜑 are the unit vectors in r, θ and Φ direction respectively. 

 

The physical significance of each parameter of spherical coordinates: 

 

1. The value r expresses the distance of the point from origin (i.e. similar to 

altitude). It is the radius of the sphere. 

2. The angle θ is the angle formed with the z- axis (i.e. similar to latitude). It is also 

called the co-latitude angle. It is measured clockwise. 

3. The angle Φ, also called the azimuthal angle, indicates the rotation angle around the z-

axis (i.e. similar to longitude). It is basically measured from the x axis in the x-y plane. 

It is measured counter-clockwise. 
 

Range of the variables: 

 

It defines the minimum and the maximum value that r, θ and υ can have in spherical co-ordinate 

system. 

 

 0 ≤ r ≤ ∞  
    0 ≤ θ ≤ π 

    0 ≤ Φ≤ 2π 
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Differential length: 

It is given as 

𝑑𝑙̅ = 𝑑𝑟𝑎̅𝑟 + 𝑟𝑑𝜃𝑎̅𝜃 + 𝑟 sin 𝜃 𝑑𝜑𝑎̅𝜑 

 

Differential length for a line parallel to r, θ and Φ axis are respectively given as: 
 

 dl = 𝑑𝑟𝑎̅𝑟--(For a line parallel to r axis) 

 

dl = 𝑟𝑑𝜃𝑎̅𝜃---( For a line parallel to θ direction) 

 

 dl = 𝑟 sin 𝜃 𝑑𝜑𝑎̅𝜑 --(For a line parallel to Φ direction) 

 

 

Differential Normal Surface (ds): 
 

Differential surface is basically a cross product between two parameters of the surface.  

The differential surface (area element) is defined as  
𝑑𝑠̅̅ ̅ = 𝑑𝑠𝑎̅𝑁 

Where𝑎̅𝑁, is the unit vector perpendicular to the surface. 

 

𝑑𝑠̅̅ ̅ = 𝑟𝑑𝑟𝑑𝜃𝑎̅𝜑 

𝑑𝑠̅̅ ̅ = 𝑟2 sin 𝜃 𝑑𝜑𝑑𝜃𝑎̅𝑟 

𝑑𝑠̅̅ ̅ = 𝑟 sin 𝜃 𝑑𝑟𝑑𝜑𝑎̅𝜃 
 

Differential Volume: 
 

The differential volume element (dv) can be expressed in terms of the triple product. 

𝑑𝑣 = 𝑟2 sin 𝜃 𝑑𝑟𝑑𝜑𝑑𝜃 
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Coordinate transformations: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12



 
DEPT. OF ECE 

 

EMTL  
 

 
 
 
 

 
 
 
 
 

DIVERGENCE THEOREM: 

 

It states that the net outward flux of a vector field A through a closed surface S is equal to the 

volume integral of the divergence of the field A inside the surface. 
 
 
 
STOKES THEOREM: 
 

 

It states that the circulation of a vector field A around a closed path L is equal to the 

surface integral of the curl of A over the open surface S bounded by L. 
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Electrostatics:  
 
Electrostatics is a branch of science that involves the study of various phenomena caused by 

electric charges that are slow-moving or even stationary. Electric charge is a fundamental 

property of matter and charge exist in integral multiple of electronic charge.  Electrostatics as the 

study of electric charges at rest. 
 
The two important laws of electrostatics are 
 

 Coulomb‘s Law. 

 Gauss‘s Law. 
 

 

 Both these laws are used to find the electric field due to different charge configurations. 

 

Coulomb‘s law is applicable in finding electric field due to any charge configurations where as 

Gauss‘s law is applicable only when the charge distribution is symmetrical. 
 
Coulomb's Law  

Coulomb's Law states that the force between two point charges Q1and Q2 is directly 

proportional to the product of the charges and inversely proportional to the square of the distance 

between them.  

A point charge is a charge that occupies a region of space which is negligibly small compared to 

the distance between the point charge and any other object. 

Point charge is a hypothetical charge located at a single point in space. It is an idealized model of 

a particle having an electric charge. 

Mathematically,   , where k is the proportionality constant.  

 

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 

Force F is in   Newtons (N)  and  ,   is called the permittivity of free space.  

 

(We are assuming the charges are in free space. If the charges are any other dielectric medium, 

we will use   instead where   is called the relative permittivity or the dielectric 

constant of the medium). 

 

Therefore  ....................... (1) 14
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As shown in the Figure 1 let the position vectors of the point charges Q1and Q2 are given by  

and  . Let  represent the force on Q1 due to charge Q2.     

 

                     

                      Fig 1: Coulomb's Law 

The charges are separated by a distance of . We define the unit vectors as  

and  

can be defined as .  

Similarly the force on Q1 due to charge Q2 can be calculated and if represents this force then 

we can write  

When we have a number of point charges, to determine the force on a particular charge due to all 

other charges, we apply principle of superposition. If we have N number of charges 

Q1,Q2,.........QN located respectively at the points represented by the position vectors , ,......  

, the force experienced by a charge Q located at is given by,  
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Electric Field: 

Electric field due to a charge is the space around the unit charge in which it experiences a force. 

Electric field intensity or the electric field strength at a point is defined as the force per unit 

charge. 
 

Mathematically, 
 

E = F / Q 
 

OR 
 

F = E Q 

The force on charge Q is the product of a charge (which is a scalar) and the value of the 

electric field (which is a vector) at the point where the charge is located. That is  

or,  

The electric field intensity E at a point r (observation point) due a point charge Q located at 

(source point) is given by:  

 

For a collection of N point charges Q1 ,Q2 ,.........QN located at , ,...... , the electric field 

intensity at point is obtained as  

 

The expression (6) can be modified suitably to compute the electric filed due to a continuous 

distribution of charges.  

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as 

the source region.  

For an elementary charge , i.e. considering this charge as point charge, we can 

write the field expression as:  
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Fig 2: Continuous Volume Distribution of Charge 

When this expression is integrated over the source region, we get the electric field at the point P 

due to this distribution of charges. Thus the expression for the electric field at P can be written 

as:  

...............volume charge........................... 

Similar technique can be adopted when the charge distribution is in the form of a line charge 

density or a surface charge density.  

.....................line charge ................ 

..................surface charge...................... 

 

Electric Lines of Forces: 
 

Electric line of force is a pictorial representation of the electric field. 
 
Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or 

curved path along which a unit positive charge tends to move in an electric field. 
 

 

Properties Of Electric Lines Of Force: 
 

1. Lines of force start from positive charge and terminate either at negative 

charge or move to infinity. 

2. Similarly lines of force due to a negative charge are assumed to start at 

infinity and terminate at the negative charge. 

17
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3. The number of lines per unit area, through a plane at right angles to the lines, is 

proportional to the magnitude of E. This means that, where the lines of force are close 

together, E is large and where they are far apart E is small. 

 

4. If there is no charge in a volume, then each field line which enters it must also leave it. 

 
5. If there is a positive charge in a volume then more field lines leave it than enter it. 

 
6. If there is a negative charge in a volume then more field lines enter it than leave it. 

 
7. Hence we say Positive charges are sources and Negative charges are sinks of the field. 

 

8. These lines are independent on medium. 

 

9. Lines of force never intersect i.e. they do not cross each other. 

 

10. Tangent to a line of force at any point gives the direction of the electric field E at that 

point. 

 

Electricfluxdensity: 

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at 

a particular point. The electric field depends on the material media in which the field is being 

considered. The flux density vector is defined to be independent of the material media (as we'll 

see that it relates to the charge that is producing it).For a linear isotropic medium under 

consideration; the flux density vector is defined as:   

 

We define the electric flux  as  
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Gauss's Law: 

 Gauss's law is one of the fundamental laws of electromagnetism and it states that the total 

electric flux through a closed surface is equal to the total charge enclosed by the surface.  

          

Fig 3: Gauss's Law 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric 

constant . The flux density at a distance r on a surface enclosing the charge is given by  

 

If we consider an elementary area ds, the amount of flux passing through the elementary area is 

given by  

 

But , is the elementary solid angle subtended by the area at the location of Q. 

Therefore we can write  

For a closed surface enclosing the charge, we can write  

which can seen to be same as what we have stated in the definition of Gauss's Law.  

19
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This equation is called the 1st Maxwell's equation of electrostatics. 

 

Application of Gauss's Law: 

Gauss's law is particularly useful in computing or where the charge distribution has some 

symmetry. We shall illustrate the application of Gauss's Law with some examples.  

1.    due to an infinite line charge  

As the first example of illustration of use of Gauss's law, let consider the problem of 

determination of the electric field produced by an infinite line charge of density LC/m. Let us 

consider a line charge positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the 

line charge is assumed to be infinitely long, the electric field will be of the form as shown in Fig. 

4(b) (next slide).  

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can 

write,  

 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the 

electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we 
20
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can write,  

 

 

 

Fig 4: Infinite Line Charge 

 

2.  Infinite Sheet of Charge  

As a second example of application of Gauss's theorem, we consider an infinite charged sheet 

covering the x-z plane as shown in figure 5. Assuming a surface charge density of for the 

infinite surface charge, if we consider a cylindrical volume having sides placed symmetrically 

as shown in figure 5, we can write:  
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Fig 5: Infinite Sheet of Charge 

 

It may be noted that the electric field strength is independent of distance. This is true for the 

infinite plane of charge; electric lines of force on either side of the charge will be perpendicular 

to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives 

the strength of the field, the field becomes independent of distance. For a finite charge sheet, the 

field will be a function of distance. 

 

3.  Uniformly Charged Sphere  

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m3. To 

determine   everywhere, inside and outside the sphere, we construct Gaussian surfaces of 

radius r < r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).  

For the region   ; the total enclosed charge will be  

 

  

 

       Fig 6: Uniformly Charged Sphere 
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By applying Gauss's theorem,  

 

Therefore 

 

For the region ; the total enclosed charge will be  

                                

By applying Gauss's theorem,  

 

 
Electric Potential / Electrostatic Potential (V): 
 

If a charge is placed in the vicinity of another charge (or in the field of another charge), it 

experiences a force. If a field being acted on by a force is moved from one point to another, then 

work is either said to be done on the system or by the system. 

 

Say a point charge Q is moved from point A to point B in an electric field E, then the 

work done in moving the point charge is given as: 
 

WA→B = - ∫AB (F . dl) = - Q ∫AB(E . dl) 

 

where the – ve sign indicates that the work is done on the system by an external agent.  
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The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 

 

VAB = WA→B / Q 
 

 - ∫AB(E . dl) 

 
 - ∫InitialFinal (E . dl) 
 

If the potential difference is positive, there is a gain in potential energy in the movement, 

external agent performs the work against the field. If the sign of the potential difference is 

negative, work is done by the field. 

 
The electrostatic field is conservative i.e. the value of the line integral depends only on 

end points and is independent of the path taken. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Since the electrostatic field is conservative, the electric potential can also be written as: 
 

 

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝐵

𝐴

. 𝑑𝑙̅ 

 

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝑝0

𝐴

. 𝑑𝑙̅ − ∫ 𝐸̅

𝐵

𝑝0

. 𝑑𝑙̅  

𝑉𝐴𝐵 = − ∫ 𝐸̅

𝐵

𝑝0

. 𝑑𝑙̅ +  ∫ 𝐸̅

𝐴

𝑝0

. 𝑑𝑙̅ 

 

𝑉𝐴𝐵 = 𝑉𝐵 − 𝑉𝐴
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Thus the potential difference between two points in an electrostatic field is a scalar field that 

is defined at every point in space and is independent of the path taken. 
 

 

- The work done in moving a point charge from point A to point B can be written as: 
 

WA→B = - Q [VB – VA] =  −𝑄 ∫ 𝐸̅
𝐵

𝐴
. 𝑑𝑙̅ 

 
- Consider a point charge Q at origin O. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Now if a unit test charge is moved from point A to Point B, then the potential difference between 

them is given as: 
 
 
 
 
 
 
 
 
 
 
 
 

 

- Electrostatic potential or Scalar Electric potential (V) at any point P is given by: 
 

 

𝑉 = − ∫ 𝐸̅
𝑃

𝑃0

. 𝑑𝑙̅
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The reference point Po is where the potential is zero (analogues to ground in a circuit). 

The reference is often taken to be at infinity so that the potential of a point in space is 

defined as 
 

𝑉 = − ∫ 𝐸̅
𝑃

∞

. 𝑑𝑙̅ 

 

Basically potential is considered to be zero at infinity. Thus potential at any point ( rB = r) due 

to a point charge Q can be written as the amount of work done in bringing a unit positive 

charge frominfinity to that point (i.e. rA → ∞) 
 

 

Electric potential (V) at point r due to a point charge Q located at a point with position vector  
r1 is given as: 
 
 
 
 
 
                       
 
Similarly for N point charges Q1, Q2 ….Qn located at points with position vectors r1,  
r2, r3…..rn, theelectric potential (V) at point r is given as: 

 

 

 

 

 

 

The charge element dQ and the total charge due to different charge distribution is given as: 

 

dQ = ρldl → Q = ∫L (ρldl) → (Line Charge) 

 

dQ = ρsds → Q = ∫S (ρsds) → (Surface Charge) 

 

dQ = ρvdv → Q = ∫V (ρvdv) → (Volume Charge)  
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Second Maxwell’s Equation of Electrostatics: 
 

The work done per unit charge in moving a test charge from point A to point B is the 

electrostatic potential difference between the two points(VAB). 
 

VAB = VB – VA 

 

Similarly, 
 

VBA = VA – VB 

 

Hence it‘s clear that potential difference is independent of the path taken. Therefore 
 

VAB  = - VBA 

 

 

VAB+ VBA = 0 
 

 

 ∫AB (E . dl) + [ - ∫BA (E . dl) ] = 0 
 
 
 
 
 
 
 
 
The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form.. 

The above equation shows that the line integral of Electric field intensity (E) along a closed path 

is equal to zero. 

In simple words―No work is done in moving a charge along a closed path in an electrostatic 

field. 
 

Applying Stokes‘ Theorem to the above Equation, we have:  
 
 
 
 
 
 
 
 
 

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or 

Conservative Field. Hence an electrostatic field is also called a conservative field. 
The above equation is called the second Maxwell‘s Equation of Electrostatics in differential 
form. 
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Relationship Between Electric Field Intensity (E) and Electric Potential (V): 
 
 Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can 

be written as:  
 
 
 
 
 
 
 
 
 
 
 
 

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V). 

The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite   to 

the direction in which V increases. 
 

Energy Density In Electrostatic Field / Work Done To Assemble Charges: 
 
 
In case, if we wish to assemble a number of charges in an empty system, work is required to do 

so. Also electrostatic energy is said to be stored in such a collection. 
 
Let us build up a system in which we position three point charges Q1, Q2 and Q3 at position r1, 

r2 and r3 respectively in an initially empty system. 
 
Consider a point charge Q1 transferred from infinity to position r1 in the system. It takes no 

work to bring the first charge from infinity since there is no electric field to fight against (as the 

system is empty i.e. charge free). 
 

Hence, W1 = 0 J 

 

Now bring in another point charge Q2 from infinity to position r2 in the system. In this case we 

have to do work against the electric field generated by the first charge Q1. 
 

Hence, W2 = Q2 V21 
 

 

where V21 is the electrostatic potential at point r2 due to Q1. 
 

 

- Work done W2 is also given as: 
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Now bring in another point charge Q3 from infinity to position r3 in the system. In this case 

we have to do work against the electric field generated by Q1 and Q2. 

 

Hence, W3 = Q3 V31 + Q3 V32 = Q3 ( V31 + V32 ) 
 

 

where V31 and V32 are electrostatic potential at point r3 due to Q1 and Q2 respectively. 
 

 

The work done is simply the sum of the work done against the electric field generated by 

point charge Q1 and Q2 taken in isolation: 
 
 
 
 
 
 
 
 
 
 

 

- Thus the total work done in assembling the three charges is given as: 
 

 

WE = W1 + W2 + W3 
 

 0 + Q2 V21 + Q3 ( V31 + V32 ) 
 
 

 

 Also total work done ( WE ) is given as:  
 
 
 
 
 
 
 
 
 

If the charges were positioned in reverse order, then the total work done in assembling them 

is given as: 
 

WE = W3 + W2+ W1  

       = 0 + Q2V23 + Q3( V12+ V13)
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Where V23 is the electrostatic potential at point r2 due to Q3 and V12 and V13 are electrostatic 

potential at point r1 due to Q2 and Q3 respectively. 
 

 

- Adding the above two equations we have, 
 

 

2WE = Q1 (V12 + V13) + Q2 (V21 + V23) + Q3 (V31 + V32) 
 

= Q1 V1 + Q2 V2 + Q3 V3 
 
 

 

Hence 
 

WE =1 / 2 [Q1V1 + Q2V2 + Q3V3] 
 
 

 

where V1, V2 and V3 are total potentials at position r1, r2 and r3 respectively. 
 

 

- The result can be generalized for N point charges as:  
 
 
 
 
 
 
 
 

The above equation has three interpretation: This equation represents the potential energy of the 

system.This is the work done in bringing the static charges from infinity and assembling them in 

the required system. This is the kinetic energy which would be released if the system gets 

dissolved i.e. the charges returns back to infinity. 
 
  In place of point charge, if the system has continuous charge distribution ( line, surface or 

volume charge), then the total work done in assembling them is given as: 
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Since ρv = ∇ . D and E = - ∇ V, 
 

Substituting the values in the above equation, work done in assembling a volume charge 

distribution in terms of electric field and flux density is given as: 
 
 
 
 
 
 
 
 

The above equation tells us that the potential energy of a continuous charge distribution 

is stored in an electric field. 
 
 
 The electrostatic energy density wE is defined as:  
 
 
 
 
 
 
 

ELECTROSTATICS-II 

 

Properties of Materials and Steady Electric Current: 
 

Electric field can not only exist in free space and vacuum but also in any material medium. When 

an electric field is applied to the material, the material will modify the electric field either by 

strengthening it or weakening it, depending on what kind of material it is. 
  

Materials are classified into 3 groups based on conductivity / electrical property: 

 

 Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (σ >> 1).  
 Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (σ << 1). 

 Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity. 
 
Conductivity (σ) is a measure of the ability of the material to conduct electricity. It is 
the reciprocal of resistivity (ρ). Units of conductivity are Siemens/meter and mho. 

 

The basic difference between a conductor and an insulator lies in the amount of free electrons 

available for conduction of current. Conductors have a large amount of free electrons where as 

insulators have only a few number ofelectrons for conduction of current. Most of the conductors 

obey ohm‘s law. Such conductors are also called ohmic conductors. 
 
  Due to the movement of free charges, several types of electric current can be caused. 
 
The different types of electric current are: 
 

 Conduction Current.  
 Convection Current. 

 Displacement Current. 
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Electric current: 

 

Electric current (I) defines the rate at which the net charge passes through a wire of 

cross sectional surface area S. 
 

Mathematically, 

 

If a net charge ΔQ moves across surface S in some small amount of time Δt, electric current(I) 
 
is defined as:  
 
 
 
 
 
 
 

How fast or how speed the charges will move depends on the nature of the material medium. 
 

Current density: 

 

 Current density (J) is defined as current ΔI flowing through surface ΔS. 

 

Imagine surface area ΔS inside a conductor at right angles to the flow of current. As the 

area approaches zero, the current density at a point is defined as:  
 
 
 
 
 
 
 

 

The above equation is applicable only when current density (J) is normal to the surface. 
 

In case if current density(J) is not perpendicular to the surface, consider a small area ds of 

the conductor at an angle θ to the flow of current as shown:  
 
 
 
 
 
 
 
 
 
 

 

In this case current flowing through the area is given as: 

 

dI = J dS cosθ = J . dS       and       𝐼 = ∫ 𝐽̅ 

𝑆
. 𝑑𝑠̅̅ ̅  
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Where angle θ is the angle between the normal to the area and direction of the current. 

 

From the above equation it‘s clear that electric current is a scalar quantity. 
 

 

CONVECTION CURRENT DENSITY: 
 

Convection current occurs in insulators or dielectrics such as liquid, vacuum and rarified gas. 

Convection current results from motion of electrons or ions in an insulating medium. Since 

convection current doesn‘t involve conductors, hence it does not satisfy ohm‘s law. Consider a 

filament where there is a flow of charge ρv at a velocity u = uy ay.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

- Hence the current is given as: 
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Where uy is the velocity of the moving electron or ion and ρv is the free volume charge density. 

 

- Hence the convection current density in general is given as: 
 

J = ρv u 
 

Conduction Current Density: 
 

Conduction current occurs in conductors where there are a large number of free electrons. 

Conduction current occurs due to the drift motion of electrons (charge carriers). Conduction 

current obeys ohm‘s law. 

 When an external electric field is applied to a metallic conductor, conduction current 

occurs due to the drift of electrons. 
 
The charge inside the conductor experiences a force due to the electric field and hence should 

accelerate but due to continuous collision with atomic lattice, their velocity is reduced. The net 

effect is that the electrons moves or drifts with an average velocity called the drift 

velocity (υd) which is proportional to the applied electric field (E). 
 
 

Hence according to Newton‘s law, if an electron with a mass m is moving in an electric 

field E with anaverage drift velocity υd, the the average change in momentum of the free 

electron must be equal to the applied force (F = - e E).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The drift velocity per unit applied electric field is called the mobility of electrons (μe). 

υd = - μe E 

 

where μe is defined as:  
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Consider a conducting wire in which charges subjected to an electric field are moving with 

drift velocity υd. 

Say there are Ne free electrons per cubic meter of conductor, then the free volume  
charge density(ρv)within the wire is 
 

ρv= - e Ne 
 

The charge ΔQ is given as: 
 

ΔQ = ρv ΔV = - e Ne ΔS Δl = - e Ne ΔS υd Δt 

 

- The incremental current is thus given as:  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The conduction current density is thus defined as:  
 
 
 
 
 

 

where σ is the conductivity of the material. 

 

The above equation is known as the Ohm‘s law in point form and is valid at every point 

in space. 
 
In a semiconductor, current flow is due to the movement of both electrons and  
holes, hence conductivity is given as: 
 

σ = ( Ne μe + Nh μh )e 
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DIELECTRC CONSTANT: 
 

It is also known as Relative permittivity. 
 

If two charges q 1 and q 2 are separated from each other by a small distance r. Then by 

using the coulombs law of forces the equation formed will be 
 
 
 
 
 

 

In the above equation  is the electrical permittivity or you can say it, Dielectric constant. 
 

If we repeat the above case with only one change i.e. only change in the separation 

medium between the charges. Here some material medium must be used. Then the 

equation formed will be.  
 
 
 

 

Now after division of above two equations  
 
 
 
 
 

 

In the above figure 
 

 is the Relative Permittivity. Again one thing to notice is that the dielectric constant is 

represented by the symbol (K) but permittivity by the symbol  
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CONTINUITY EQUATION: 
 

The continuity equation is derived from two of Maxwell's equations. It states that the 

divergence of the current density is equal to the negative rate of change of the charge density, 
 
 
 
 

 

Derivation 
 

One of Maxwell's equations, Ampère's law, states that  
 
 
 
 

 

Taking the divergence of both sides results in  
 
 
 
 
 

but the divergence of a curl is zero, so that  
 
 
 
 
 

Another one of Maxwell's equations, Gauss's law, states that  
 
 

 

Substitute this into equation (1) to obtain  
 
 
 
 
 

which is the continuity equation. 
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39



 
DEPT. OF ECE 

 

EMTL  
 

LAPLACE'S AND POISSON'S EQUATIONS: 
 
 

A useful approach to the calculation of electric potentials is to relate that potential to the 

charge density which gives rise to it. The electric field is related to the charge density by the 

divergence relationship  
 
 
 
 
 
 

 

and the electric field is related to the electric potential by a gradient relationship  
 
 
 
 

Therefore the potential is related to the charge density by Poisson's equation  
 
 
 
 
 
 

In a charge-free region of space, this becomes LaPlace's equation  
 
 
 

 

This mathematical operation, the divergence of the gradient of a function, is called the 

LaPlacian. Expressing the LaPlacian in different coordinate systems to take advantage of the 

symmetry of a charge distribution helps in the solution for the electric potential V. For example, 

if the charge distribution has spherical symmetry, you use the LaPlacian in spherical polar 

coordinates. 
 

Since the potential is a scalar function, this approach has advantages over trying to calculate the 

electric field directly. Once the potential has been calculated, the electric field can be computed 

by taking the gradient of the potential. 
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Polarization of Dielectric: 
 

If a material contains polar molecules, they will generally be in random orientations when 

no electric field is applied. An applied electric field will polarize the material by orienting 

the dipole moments of polar molecules. 
 
 

 

This decreases the effective electric 

field between the plates and will 

increase the capacitance of the parallel 

plate structure. The dielectric must be 

a good electric insulator so as to 

minimize any DC leakage current 

through a capacitor.  
 
 
 
 
 
 
 
 
 
 

The presence of the dielectric decreases the electric field produced by a given charge density.  
 
 
 
 

 

The factor k by which the effective field is decreased by the polarization of the 

dielectric is called the dielectric constant of the material. 
 
 
 

Capacitance: 
 

The capacitance of a set of charged parallel plates is increased by the insertion of adielectric 

material. The capacitance is inversely proportional to the electric field between the plates, 

and the presence of the dielectric reduces the effective electric field. The dielectric is 

characterized by a dielectric constant k, and the capacitance is multiplied by that factor. 
 

Parallel Plate Capacitor  
 
 

 

 Show  
 
 

The capacitance of flat, parallel metallic plates of area A and separation d is given by 

the expression above where: 
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= permittivity of space and 
 
 

k = relative permittivity of the dielectric material between the plates. 

 

k=1 for free space, k>1 for all media, approximately =1 for air. 

 

The Farad, F, is the SI unit for capacitance and from the definition of capacitance is seen to 

be equal to a Coulomb/Volt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Series and parallel Connection of capacitors 

Capacitors are connected in various manners in electrical circuits; series and parallel connections 

are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such 

connections. 

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can 

write, 

.......................(1) 
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Fig 1.: Series Connection of Capacitors 

 

 

  

Fig 2: Parallel Connection of Capacitors 

The same approach may be extended to more than two capacitors connected in series. 

Parallel Case: For the parallel case, the voltages across the capacitors are the same. 

The total charge  

Therefore,                          
 

Capacitance of Parallel Plates:  

 

 The electric field between two large parallel plates 

is    given by 
 
 
 
 
 
 
 
 
 
 
 
 

The voltage difference between the two plates can be expressed in terms of the workdone on 

a positive test charge q when it moves from the positive to the negative plate. 
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It then follows from the definition of capacitance that  
 
 
 
 
 

 

Spherical Capacitor: 

 
The capacitance for spherical or cylindrical conductors can be obtained by evaluating 

the voltage difference between the conductors for a given charge on each. 
 

By applying Gauss' law to an charged conducting sphere, the electric field outside it is found to 

be 
 
 
 
 
 
 
 
 
 
 

The voltage between the spheres can be found by integrating the electric field along a radial line:  
 
 
 
 
 
 

 

From the definition of capacitance, the capacitance is  
 
 
 
 
 
 
 
 
 
 

Isolated Sphere Capacitor: 

An isolated charged conducting sphere has capacitance. Applications for such a capacitor may 

not be immediately evident, but it does illustrate that a charged sphere has stored some energy as 

a result of being charged. Taking the concentric sphere capacitance expression: 
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and taking the limits  gives 
 
 
Further confirmation of this comes from examining the potential of a charged conducting sphere:  
 
 
 
 
 
 
 

Cylindrical Capacitor: 
 

For a cylindrical geometry like a coaxial cable, the capacitance is usually stated as a 

capacitance per unit length. The charge resides on the outer surface of the inner conductor and 

the inner wall of the outer conductor. The capacitance expression is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The capacitance for cylindrical orspherical conductors can be obtained by evaluating the voltage 

difference between the conductors for a given charge on each. By applying Gauss' law to an 

infinite cylinder in a vacuum, the electric field outside a charged cylinder is found to be 
 
 
 
 
 
 

The voltage between the cylinders can be found by integrating the electric field along a 

radial line: 
 
 
 
 
 
 
 

From the definition of capacitance and including the case where the volume is filled 

by a dielectric of dielectric constant k, the capacitance per unit length is defined above. 
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Solved problems: 
 
Problem1: 

 

 
 

Problem-2 

 
 

Problem-3 

 
 

Problem-4 
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Problem-5 

 
 

 

 

Problem-6 

 
 

 

Problem-7 

 
 

Problem-8 
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Problem-9 

 
Problem-10 

 
 

Problem-11 
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Problem-12 

 

 
 

 

 

Problem-13 
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