SVR ENGINEERING COLLEGE
Approved by AICTE & Permanently Affiliated to INTUA

Ayyalurmetta, Nandyal — 518503. Website: www.svrec.ac.in
Department of Electronics and Communication Engineering

(15A04712) VLSI & Embedded Systems Laboratory
IV B. Tech (ECE) | Semester 2021-22

STUDENT NAME

ROLL NUMBER

SECTION

http://www.svrec.ac.in/

SVR ENGINEERING COLLEGE
Approved by AICTE & Permanently Affiliated to INTUA

Ayyalurmetta, Nandyal — 518503. Website: www.svrec.ac.in

DEPARTMENT OF
ELECTRONICS AND COMMUNICATION ENGINEERING
CERTIFICATE
ACADEMIC YEAR: 2021-22
This is to certify that the bonafide record work done by
Mr./Ms. bearing

H.T.NO. of IV B. Tech | Semester in the

VLSI & Embedded Systems Laboratory.

Faculty In-Charge Head of the Department

http://www.svrec.ac.in/

ECE DEPT VISION & MISSION PEOs and PSOs

Vision

To produce highly skilled, creative and competitive Electronics and Communication Engineers
to meet the emergingneeds of the society.

Mission
> Impart core knowledge and necessary skills in Electronics and Communication
Engineering Through innovative teaching and learning.
> Inculcate critical thinking, ethics, lifelong learning and creativity needed for industry and
society.
> Cultivate the students with all-round competencies, for career, higher education and self-
employability.

l. PROGRAMME EDUCATIONAL OBJECTIVES (PE

PEOL1: Graduates apply their knowledge of mathematics and science to identify,
analyze and solve problems in the field of Electronics and develop sophisticated
communication systems.

PEQO2: Graduates embody a commitment to professional ethics, diversity and social
awareness in theirprofessional career.
PEQO3: Graduates exhibit a desire for life-long learning through technical training and

professional activities.

1. PROGRAM SPECIFI TCOMES (P

PSOL: Apply the fundamental concepts of electronics and communication engineering to
design a variety of components and systems for applications including signal
processing, image processing, communication, networking, embedded systems,
VLSI and control system.

PSO2: Select and apply cutting-edge engineering hardware and software tools to solve
complex Electronics and Communication Engineering problems.

PROGRAMME OUTCOMES (PO’

. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering
problems.

. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, andin multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations, and
give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects andin multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological
change.

IV. COURSE OBJECTIVES:
eTo design and draw the internal structure of the various digital integrated circuits
eTo develop VHDL/Verilog HDL source code, perform simulation using relevant simulator
and analyze the obtained simulation results using necessary synthesizer.
oTo verify the logical operations of the digital ICs (Hardware) in the laboratory.
elearn and understand how to configure EK-TM4C123GXL Launchpad digital 1/0O pins

V. RSE

TCOMES:

After the completion of the course students will be able to

Course Course Outcome statements BTL
Outcomes
Design and draw the internal structure of the various digital integrated
Co1 circui L1
uits.
Develop VHDL/Verilog HDL source code, perform simulation using
CO2 relevant simulator andanalyze the obtained simulation results using L2
necessary synthesizer.
Verify the logical operations of the digital IC*s (Hardware) in the
Co3 laboratory. L3
Learn and understand how to configure EK-TM4C123GXL Launchpad
CO4 digital I/O pins, onboard LED, RTC (Real- Time Clock), Pulse Width L4
Module, Launchpad to PC terminal and send an echo of the data input back
to the PC using UART.
Learn and understand interfacing of CC3100 WiFi module with
CO5 EKTMA4C123GXL Launchpad and configuration of static IP address for L5
CC3100 booster pack.
\VAR RSE MAPPING WITH PO’S AND PEOQ’S:
CourseTitle PO | PO | PO |PO | PO | PO | PO | PO |PO | PO | PO | PO | PSO | PSO
1 2 3 4 5 6 7 8 9 |10 | 11 | 12 1 2
VLSI &
EMBEDDED
SYSTEMS 3 3 2 3 3 2 2 1 2 2 2 2 3 2
LABORATORY
Course | PO | PO | PO | PO |PO|PO|PO|PO|PO|PO|PO|PO|PSO|PSO
Title | 1 | 2 3| 4|5 |6 |7 [8|9]|1]11]|12] 1|2
Cco1 3 3] 3 3 3 2 1 1 1 2 1 2 3 2
CO2 2 2 | 2 2 2 1 2 1 2 2 1 2 2 2
CO3 3 3] 3 3 3 3 2 2 2 1 2 3 2
CO4 2 3| 2 3 2 2 2 1 2 1 2 2 2 2
CO5 3 3| 2 2 3 2 1 1 1 2 2 1 3 1

LABORATORY INSTRUCTIONS

1. While entering the Laboratory, the students should follow the dress code. (Wear shoes

and White apron,Female Students should tie their hair back).

2. The students should bring their observation book, record, calculator, necessary stationery

items and graphsheets if any for the lab classes without which the students will not be allowed

for doing the experiment.

3. All the Equipment and components should be handled with utmost care. Any breakage or

damage will becharged.

4. If any damage or breakage is noticed, it should be reported to the concerned in charge

immediately.

5. The theoretical calculations and the updated register values should be noted down in the
observation book and should be corrected by the lab in-charge on the same day of the

laboratory session.

6. Each experiment should be written in the record note book only after getting signature from

the lab in-charge in the observation notebook.

7. Record book must be submitted in the successive lab session after completion of experiment.

8. 100% attendance should be maintained for the laboratory classes.

Precautions.

1. Check the connections before giving the supply.

2. Observations should be done carefully.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR
B. Tech IV-1Sem. (ECE) LTPC
0042
15A04712 VLS| & EMBEDDED SYSTEMS LABORATORY
Note: The students are required to perform any Six Experiments from each Part of the following.
Part-A: VLSI Lab
Course Objective:
eTo design and draw the internal structure of the various digital integrated circuits

eTo develop VHDL/Verilog HDL source code, perform simulation using relevant simulator and
analyze the obtained simulation results using necessary synthesizer.

eTo verify the logical operations of the digital ICs (Hardware) in the laboratory.
Course Outcome:

After completion of the course the students will be able to

eDesign and draw the internal structure of the various digital integrated circuits

e Develop VHDL/Verilog HDL source code, perform simulation using relevant simulator
andanalyze the obtained simulation results using necessary synthesizer.

oVerify the logical operations of the digital IC*s (Hardware) in the laboratory.
Note: For the following list of experiments students are required to do the following.
Target Device Specifications

e Simulation

Synthesize the design

Generate RTL Schematic.

Generate Technology Map.

Generate Synthesis report.

e Design Summary.

List of Experiments:

Note: Use VHDL/ Verilog HDL
1. Realization of Logic Gates.

2. 3-to - 8Decoder- 74138.

3. 8 x 1 Multiplexer-74151 and 2 x 4 De-multiplexer-74155.
4. 4-Bit Comparator-7485.

5. D Flip-Flop-7474.

6. Decade counter-7490.

7. Shift registers-7495.

8. ALU Design.

Part B : Embedded C Experiments using TM4C processor:

1. Learn and understand how to configure EK-TM4C123GXL Launchpad digital 1/0 pins. Write
a C program for configuration of GP1O ports for Input and output operation (blinking LEDs,
push buttons interface).

Exercises:

a) Modify the code to make the red LED of EK-TM4C123GXL Launchpad blink.

b) Modify the code to make the green and red LEDs blink: I. Together Il. Alternately

c) Alter the code to turn the LED ON when the button is pressed and OFF when it is released.
d) Modify the delay with which the LED blinks.

e) Alter the code to make the green LED stay ON for around 1 second every time the button is
pressed. f) Alter the code to turn the red LED ON when the button is pressed and the green LED
ON when the button is released.

2. Learn and understand Timer based interrupt programming. Write a C program for EK-
TMA4C123GXL Launchpad and associated Timer ISR to toggle onboard LED using interrupt
programming technique. Exercises:

a) Modify the code for a different timer toggling frequency.
b) Write the code to turn on interrupt globally.

3. Configure hibernation module of the TM4C123GH6PM microcontroller to place the device in
low power state and then to wake up the device on RTC (Real- Time Clock) interrupt.

Exercises:

a) Write a program to configure hibernation mode and wake up the EK-TM4C123GXL
Launchpad when onboard switch SW2 is pressed.

4. Configure in-build ADC of TM4C123GH6PM microcontroller and interface potentiometer
with EK-TM4C123GXL Launchpad to observe corresponding 12- bit digital value.

Exercises:

a) Tabulate ten different position of the Potentiometer and note down the Digital value and
calculate the equivalent analog value.

b) Use the ADC to obtain the analog value from the internal temperature sensor.

c) Configure Dual ADC modules to read from 2 analog input (could be from 2 potentiometers)
d) What are the trigger control mechanism for this ADC?
e) What does the resolution refer on ADC Specification?

f) The current sampling method is single ended sampling. This ADC could also be configured to
do differential sampling. What is the difference between the two methods of sampling?

5. Learn and understand the generation of Pulse Width Module (PWM) signal by configuring
and programming the in-build PWM module of TM4C123GH6PM microcontroller.

Exercises:
a) Change the software to output a set Duty Cycle, which can be user programmed.

b) Change the frequency of the PWM Output from 6.25 KHz to 10 KHz and do the tabulation
again.

c) Generate Complementary signals, route it to two pins, and observe the waveforms.
d) What is dead band generation mean and where is it applied?

e) Is it possible to construct a DAC from a PWM? Identify the additional components and
connection diagram for the same.

) Sketch the gate control sequence of 3 phase Inverter Bridge and how many PWM generator
blocks are required? Can we generate this from TIVA Launchpad?

6. Configure the PWM and ADC modules of TM4C123GH6PM microcontroller to control the
speed of a DC motor with a PWM signal based on the potentiometer output.

Exercises:
a) With the same ADC input configure 2 PWM generator modules with 2 different frequencies.

b) Read the Internal temperature sensor and control a DC Motor that could be deployed in fan
Controller by observing the unit or ambient temperature.

¢) What is the resolution of the PWM in this experiment?
d) What would be the maximum frequency that can be generated from the PWM generator?
e) Briefly explain an integrated application of ADC and PWM based control.

7. Learn and understand to connect EK-TM4C123GXL Launchpad to PC terminal and send an
echo of the data input back to the PC using UART.

Exercises:
a) Change the baud rate to 19200 and repeat the experiment.
b) What is the maximum baud rate that can be set in the UART peripheral of TIVA?

) Modify the software to display “Switch pressed” by pressing a user input switch on the
Launchpad.

8. Learn and understand interfacing of accelerometer in Sensor Hub Booster pack with EK-
TM4C123GXL Launchpad using 12C.

Exercises:
a) Make a LED ON when the acceleration value in the x axis crosses a certain limit, say +5.

b) What is the precaution taken in this experiment in order to avoid the overflow of UART
buffer?

¢) Change the value of PRINT_SKIP_COUNT to 100 and see the difference in the output.

d) Change MPU9150 ACCEL_CONFIG_AFS SEL 2Gto
MPU9150 ACCEL_CONFIG_AFS_SEL_4G on line 461 of the same source file and Observe
the difference.

9. USB bulk transfer mode: Learn and understand to transfer data using bulk transfer mode with
the USB2.0 peripheral of the TM4C123GHG6PM device.

Exercises:
a) What are the different modes offered by USB 2.0?
b) What are the typical devices that use Bulk transfer mode?

10. Learn and understand to find the angle and hypotenuse of a right angle triangle using IQmath
library of TivaWare.

Exercises:

a) Change the base and adjacent values in the program to other values, build the program and
observe the values in the watch window.

b) Open IQmathLib.h and browse through the available functions. What function is to be used if
the 1Q number used in the program is to be converted to a string?

11. Learn and understand interfacing of CC3100 WiFi module with EKTM4C123GXL
Launchpad and configuration of static IP address for CC3100 booster pack.

Exercises:

a) Try pinging the same IP address before connecting to the Access Point (AP) and note down
the observation.

b) What is the difference between static IP address and dynamic IP address?

12. Configure CC3100 Booster Pack connected to EK-TM4C123GXL Launchpad as a Wireless
Local Area Network (WLAN) Station to send Email over SMTP.

Exercises:

a) In the terminal output window, we have received a debug message “Pinging...!”. Search in the
code and change the message to “Pinging the website”. Repeat the experiment to observe this
change in the Serial Window.

b) In line no:62 of main. C replace www.ti.com with any non-existing web address and repeat
the experiment and observe what happens

c) In line no: 62 of main. C replace again with www.ti.comand repeat the experiment.

d) Identify the code that helps in establishing connection over SMTP. Modify the code to trigger
E-mail application based upon external analog input.

e) How to configure the AP WLAN parameters and network parameters (IP addresses and DHCP
parameters) using CC3100 API.

13. Configure CC3100 Booster Pack connected to EK-TM4C123GXL Launchpad asa HTTP
server.

Exercises:
a) Where are the webpages stored in the CC3100?
b) What happens if we try to access a webpage, which is not there inside the CC3100?

c) List 3 applications with a 3 to 4-line brief description that you think can be performed with
this experimental setup.

INDEX

Mr./Ms. Roll Number:
. . Signature
S.No Date Title of the Experiment | Text Book | Page No. | Marks of the Staff
PART-A
1 Introduction to T1
ISE Xilinx
Software
) Introduction To T2
TIVA
MICROCONTRO
LLER

PART - A : LIST OF EXPERIMENTS

Introduction to ISE Xilinx
Software and Spartan 3E

1 FPGA
REALIZATION OF
2 LOGIC GATES
3 3 x 8 DECODER —
IC74138
8 X 1 MULTIPLEXER-
4 74151 AND 1 X 4
DEMULTIPLEXER-
74155
4-BIT COMPARATOR-
5 7485
6 D Flip-Flop-7474
7 ALU

PART - B : LIST OF

EXPERIMENTS

BLINKING LED’S AND
PUSH BUTTON
INTERFACE USING
TMACGHG6PM

TIMER BASED
INTERRUPT
PROGRAMMING USING
TMA4C123GXL

10

HIBERNATION
MODULE FOR
TM4C123GH6PM
MICROCONTROLLER

IN-BUILD ADC OF
11 TMA4C123GH6PM &
POTENTIOMETER
WITH TM4C123GXL

PWM AND ADC

12 MODULES OF
TM4C123GH6PM
MICROCONTROLLE
R

SENSORHUB BOOSTER
PACK WITH
TM4C123GXL

13

PART C - Additional Experiment Beyond the Curriculum

JK-FLIPFLOP USING

15 VHDL
16 ECHO OF THE DATA
INPUT BACK TO THE PC
USING UART
TEXT BOOKS:

T1: 1. Kamran Eshraghian, Eshraghian Douglas and A. Pucknell, “Essentials of
VLSI circuits and systems”, PHI, 2013 Edition.

2. K.Lal Kishore and V.S.V. Prabhakar, “VLSI Design”, IK Publishers

T2: 1. Embedded Systems: Real-Time Interfacing to ARM Cortex-M
Microcontrollers, 2014, Create space publications ISBN: 978-1463590154.

2. Embedded Systems: Introduction to ARM Cortex - M Microcontrollers, 5th
edition Jonathan W Valvano, Createspace publications ISBN-13: 978-1477508992

3. Embedded Systems 2E Raj Kamal, Tata McGraw-Hill Education, 2011 ISBN

0070667640,9780070667648

Introduction to ISE Xilinx Software and Spartan 3E FPGA

AIM: TO Become familiar with the Xilinx ISE Foundation software package and Simulate and verify
functionality of XOR Gate

SOFTWARE REQUIRED:
1. Xilinx ISE Foundation Series
2. Personal Computer
3. Spartan 3E

PROCEDURE:

1. Read the Introductory Tutorial for Xilinx ISE Foundation v10.1

2. Go through the steps of the tutorial and implement the given logic function.
3. Implement the XOR Gate.

Introductory Tutorial for Xilinx ISE Foundation

Open Xilinx Project Navigator.

Specify device properties.

E File Edie View Project - s T

DPEg-xob mEoo[selreQ

& Design Orervien o

(& Summary
0B Properics

Madule evt Uizt

Timing Consrsnts

4 Route Messages
O Timing Messages
O Bitgen Messagy
Al implementation Messages
= Detailed Reports
[Synthesss Report Top-Level Source Type. HOL
)] Synthesis Taol ST (VHDLNVeritog)
Simulstor

Aaaaan

vHOL
perty Speci in Project File |Store all values

Manual Compile Order

VHDL Source Analysis Standard wHDL-

[Annan

<

Enable Massaqe Filtening. u]
) Shew Feiling Constrsints
] Show Wamings

5 Show Eors

[t

[=

| Consnie
TE03CE/ KK, V" Anto 1ibTaTy WOTK
oy,

z
|[&] cormole @ Evors [L Warnngs | Frd n e Resuls

Add new source to the project.
Select source type [VHDL or Verilog].

ISE Project Navigator (P20131013) - CAANURADHA\VLSI_EXP\VLSI_EXP.xise

View: ® {8 tpiementaton () G Smulaton
Haerarchy -
£ 0 xcTal00r3csqias

Select source type, fie name and s location

1P (CORE Generatar & Architecture Wizard)
Schematic

e
i
Desg
[}
&
&
&)
4|

a
B

A Source: To add an
existng fle to the project. i Embedded Processor

B3 Mo Processes Rumning

Ho single design module i selected.
@ 3 Design Urilities

EIEIEEILA

<
[H consoe [© Emors | L Waress | 38 FrdnPicsenis
Add 8 new source to the project

Specify input and output port names.

- ISE Project Navigator (P.20131013) - CAANURADHA\VLSI_EXPAVLSI_EXP.xise
Fle Edit View ect Source Process Tool

n woex
View: ®) $E Implementation () Smulation
Hiesarchy A
5 [xeTal00e3csg32e

Empty View

The view currently contains no fes.
Vous 2 ack fles o the project

Direction

i

Na single design module is selected.
@Y Design Unilties

cleielz = =il =]
pPODooooooo g

:
!
!

<
] Corsole @ Bvors | Iy Warngs | 84 FrnFlesResits
Add 3 new sourca tothe project

New source summary window will appear as shown below.

- ISE Project Navigator (P.20131013) - CAANURADHA\VLSLEXPAVLSI_EXPxise

rEAST I
Deson wDEx
;| view: ® 5 mplementation () i Smulston
Hiesarchy 2

& 0 xeTal0indesgidd
Empty View

The view aurently contains no fles.

*Add Source: To add an
‘axiatng fie to the project

€2 Mo Processes Runng

No single design madule i selected.
@Y Design Uities

EIEIEEIN

<
&l consoe €@ Evors | £, Wamings | @4 FidinFies et
Add a new source to the projact

Enter program code in the HDL editor window.

[2) File Edit View Project Source Process Tools Windew Layout Help
OpEdefsobx vl [Lrep sl 2E0[,sepfl@
[Design ~08x & Tool versicna:
[| wew: ® 63} impiementation () [Smuason Descziptic
Hierarchy
& wsier
5 0 xcfal00r-3csgias
EXP_PROC - Behaviorsl [EXP_PI

Llibzary T

declazation if using
4 or Unsigned val

OOl¥eds|s

Llowing library declaracion if
< v rimicives in this code.
£ o Processes furrieg
Processes: EXP_PROC - Behavi
Design Summary/Reparts
Desigr Utiities
User Constraints
Synthesize - XST
Implement Design
Genenate Programming File
Configure Torget Device
Analyze Design Using ChipScape:

architecture Behavioral of EXP_PROC 13

beqin
ce n a5y

end Behaviorsl:

2 st 2 esgn [Fles [e [
[Console

Started : "Launching ISE Text Editor to edic EXP_PROC.vha™.
Launching Design Summary/Report Viewer...

<
[& corsoe | @ Erors [1\ Worrings | (§4_FindinFles Results
Create a newfile Ln41 Col 13 VHDL

Save the program and synthesize the process.

The design summary window after synthesis appears as shown below.

Fie Edi View Proect Soure Proces Tools \Windew layost Hep _
Bxlwa| rrpRrAR RS Leirs L@

@ vis e
5 0 xcTaoresgiaa
R EXP_PROC

o)

1|28 |8

seciaracion if using
& or Unsigned values

@G| ¥ & »[1®

T Synthesize - KST
iew RTL Schematic
View Technology Schematic
£ Check Syntax
B2 Generate Post-Syrthesis Sim_.. egin
T3 Implement Design c<= h AND B4
) Generate Programming File
© B Configure Target Device
£ Anslyze Design Using ChipScope

arcnicecture Bensviersl of EXE_PROC 12

end Behaviozal;

<
= st | B2 poon L9 Fles |1 wbes | [3)
[canscie

Frocess "Check Syncax” compleced succesafully

z
(3] Consie | @ Brors | L wamngs | g4 Fndin Fies Renits
Lnd1Col 13 VHOL

Create another new source.

ISE Project Navigator (P.20131013) - CAANURADHAAVLSI_EXPAVLSI_EXP.xise - [EXP_PROCvhd]

2 AN P IL

A New Source Wizard
5 O xelal00t Scsgide o e
D% EXP_PROC - Behavioral [EXP_PR Fabect Source Tvse

Select surce type, fle name and tsfocation

ChipScope Defindion and Cannection File
Implementation Constrsints File
P (CORE Genesatar & Architecture Waard)

Location:

CMRATAVSL W
£ HoFrocesses Rurning
Procasses: EXP_PROC - Behaviorsl
X Design Summary/Reponts
; Design Uilties
: User Constraints
2@ Synihesize - 35T
2 rew RTL Schematic
& View Technology Schematic
E2@ Check Syntax
Generate Post-Synihess Sim
Implement Design
Generate Programmng Fle
Configure Target Device
Analyze Design Using ChipScape

Embedded Processer

BEEOREEREIS

St B Desge D) Lireries

5| Cocle Q) Brors | Ly Wamings | G4 Findin e Resuls
#cdd » new source 1o the project Ln41 Col13 VHOL

Select source type as Test bench wave form.

ISE Project Navigator (P.20131013) - CAANURADHA\VLSI_EXP\VLSI_EXP.ise - [EXP_PROC.vhd|

L

v (® 5 implementation

| [Fiararcny . :
@ wsoe & Dependt New Source Wizard
O xcTaliocsq3z

S I Select Saurce Type
[EXP_PROC - Behavieral (EXP_PR " e e e s st

[BMM File
€4 ChipScope Definition and Connection File

STEENCH

. Locaton:
| MEADHAVAST_BXP
| €3 Hoprocesses urmng [F] ¥HO Package
- VHDL Test Bench
se5 EXP_PROC - Behavioral
Design Summary/Reports
Design Utiies
User Constraints
2@ Synthesize - XST

B Embedded Processer

s Technelogy Schematic

3O Check Symtax

P2 Generate Post-Synthesis Sim.
Implement Design
Generate Programming File
Configure Target Device

end Behavioral:
Design Using ChigScope

a Start U2 Desn L) Fles | I Libaries Diesign Summery (Symihesized)

Cansaie

Corcoke @) Ermors | A, Wamngs | (88 Frd nFies Reasts

Add 2 new source ta the project

Associate thé test bench to the 51;6.7

ISE Project Navigator (P.20131013) - CAANURADHA\VLSI_EXP\VLSI_EXP.xise - [EXP_PROC.vhd]

Ln41 Col 13 VHDL

BELEEE] % < |0 o s rRRE A AP LR X 4N
Desn woEx

14 | Vew: ® 8 impementaton O i Smiaton
s age New Source Wizard B
5 € xc7al00t3csgazd

el EXP_PROC - Befaviorl (X sson [e s o s e rew s

EXP_PROC

-~ Uncemment

€2 NoProcesses Running

Processes: EXP_PROC - Behavioral
X Design Summary/Reports
W Design Utilities
w User Constraints
& EQE Synthesize - X5T
View RTL Schematic
View Technolegy Schematic azchitecturs|
EAD Check Syntax n More Info Cancel
Generate Post-ynthesis Sim. oagin
&) Implement Design Cem B 2D B;
€2 Generate Programming File
@ {% Configure Target Device
€4 Analyze Design Using ChipScope

entity EXP_F
porc (A
B

c
end EXP_PROC

end Benavioral:

= Strt | @8 Design | Fles [Ubrares| | [EXP_PROC.vhd x Design Summary (Synthesized)

Conzole

Process "Check Syntax" completed successfully

Console |@) Emors | g\ Wamings | 108 Findin Fies Results

Add a new source to the project Lnd1 Col13 VHDL

Test bench wave form summary window will appear as shown below.

= AN ©

Enter program code for Assign clock and timing details Give the input for the source.

ISE Project Navigator (P-20131013) - CAANURADHA\VLS|_EXP\VLSI_EXP.xise - [TESTBENCH.vhd] - o IEN
Window Layout Help
==l L HLE X -

(TESTBENG

4

Save the input waveforms and perform behavioral simulation.
The simulated output waveforms window will be as shown below.

ISim (P.20131013) - [Defaultwefg)

#Select View RTL Schematic for view

ISE Project N.

3csga.
EXP_PROC - Behavioral (EXP_PR

Set RTL/Tech Viewer Startup Mode =

Select how the RTL/ Tech Viewer behaves when it is initially invoked
Startup made
Start with the Explorer Wizard

s mode, the Explorer Wizard is the initial screen, and allows
‘seliect the elements that you want to se2 on the initial
schematic

Ruring: View RIL Schematc
” Start with schematic of the top-level block

this mode, the Explorer Wizard is bypassed and an intial
schematc is created vath only the top-level block displayed. You can
then use the logic expansion capabilities of the Viewer to start
expanding from the top-level black

k51
View RTL Schematic

You can alsa change the startup mode by selecting Edit->Freferences under
the RTL/Tech Viewer page

] Show this dialog on startup

Desion Sunmary (out of date)

| Corsole |© Evors [0 Weres |1 e i e

#RTL View for given testbench as sho in below.

ISE Project Navigator (P.20131013) - CAANURADHA\VLSI_EXP\VLSI_EXP.xise - [EXP_PROC (RTL2)
Window Layout Help

® 2 insienes

] | Hierarchy

%, £XP PROC - Behavionl (EP_PR

n soasmes Rurring
| Processes: EXP_PROC - Behaviaral
r Design Summary Reports
It
Use

— |5 82 Synthesie - X
) ViewRTL Schematic
]

it | 93 Deson . 1] P _PROC.vhd Design Summary (ot of date)] TESTBENGH. vhd
re by Category
Properties: (Ho Selection)
Instances pins s Value
& BXP_PROC

28 Fidin Fles Realts

ISE Project Navigator (.20131013) - CAANURADHAWLSI_EXPAVLS|_EXP.xise - [EXP_PROC (RTL2)]
d Source s Window Layout Help
x *PRR AR
nO8x

and2

Implement
Generate Pragramming File

Stwt | ™3 Desgr B Lrmies| @ EXP_PROC.hd Design Summary fout of date) TESTBENCH vhd
few by Cotegory
Design Gbjects of Top Level Block
Pins Signals Mame

5 & EXP_PROC & & EXP_PROC Verilog Model
VHOL Model

Lnd

VHDL

12361280

Dumping process:
Assign pin numbers to input and output ports.

EDD SN AR
1000

I Ga b W2

WXL OD

n this oo

entity UPCOUNTER is

Fore [elk: T
a : inout vECT
end UPCOUNTER:

in

architecturs Dabaviorsl of UPCOUNTER is

FROCESS (aik, qi
begin

Af{elk="1' and clk®event)then

o EH Sy 15T
[R)D e Sprihass Fago
>

This 18 a Lite version of ISE Simulacor.
Simulator is doing SIFOULL initializacion process.
Finished OLrouit INATIAlITATiON process.

[Conscle | @MEwons | gy Wawwws | [ToShel | i@ FrdinFies | [SimConecle- &

£ Xilinx PACE - D:Mab\halfadd\halfadder.ucf
File Edit Wiew 10Bs Aroas Took \Window Help

Do @ o LW ERS | &dlr
Design Browser

UO R - |

= Design Object List
[_[170 M o o [Bark] 170 Sta |

- ISE - D\l

22 Xithox B5E - WRLOUMPCOU, he - (WWCOUNTER, wbd].
"9 Phe £ View Promct Sosce Process Window el
DAES &

PPEXPE B A-2B800
2 . 2 0 e - RS S
Souces % F WP COUWPCOUNTIRL vet
Souces lor | Syribans/vplenentsh v
Sjuecou
5 0w 2S00e 41320

» [QSLUPCOUNTER vqu;

< 3
3 Sousces gy Sexpnho,) Livanes
Savensus ! X
Processes for UPCOUNTER - Behe &
[0 ASdExeteg Stuace
3 Crmste New Souce
L View Desion Sumeary
WY DesignUnies
W User Combarts
B Croste Towng Comams
() Asign Package Pra
(3] Croste Avwa Conatar
(8] € Conatoarts (Tent
o LD Syrenae ST
(W) Viwwr Syritmsis Ropo o
€ >

1000

B (3 downeo 0) t="11117):

L

PN N e) [ejmi) § N §=) |

|- |0 ¥| i Device Architecture for xc3s500e-4-fg320

Pl S

vl w

R R

Select 10 Bus Dektes

(5 XST Defauk <>

" XST Opsonad (}

" Syrolty Veslog Defack (|

" Syrolly VHOL / Exemglar Dalt ||

I~ Dt show s ko aon
fcan be set Beough peefesences dakog)

¥CPocenes [S Hisvarchy -

%! This 13 a Lite veraio
Simulator is doimg ©

Finished circuit initislization process.
.

<
_E‘u(a-dn Qfrors | f\ Wanngs | @ TciShat | (g4 Find i Fles

"Vl stant) ot - Meroselt Werd

Select JTAG clock in the startup options of process properties by right clicking on
‘Generate programming file.

Edt Vew Fromct Source Frocess Windoe
D*ED L

L

ALRB DDA 0GR WeWed @A OO0

- R O T

Somaces

Stabced lon | Siiitin Aplnariah ¥
#urcou |

S O wehte-ig1zn

. o =
¥ [SLFLUPCOUNTER - B entity UPCOUNTER is

Fore [clk:
€ *| and UPCOUNTER:
3 Soumces | o Sraptha| [T Linaies

Procesces *
Processes for UPCOUNTER - b = |
(i tasion Package Fra
(] Crmste fess Constar
(8] Ed Cortsaris [Tat
S B Swmese - 5T
[W) Sprthasic Flapo
[Wiew RTL Schematic
(B view Techrobogy 5ol
02 Chack Spmim
F) Geresie Posl Syrthe
D wplemerd resgn
83 Germnale Progrmmng Fi v |
€ »
WL Proceiien

begin
PROCESS (21K, q)
begi
Afoli="1’
g) then
q <= 3

alse

q <= q=11

and 1f;

end if;

end process;

ond Behavicrals

] Sem Hemarchy | | oy | o TERL vt

®| This im & Lite wersiom of ISE Simulator.

i

% start

Finished ciEcult initiallEacion process.
¥

L]

B Console | @ Emons | g Waregs | [E) TciShel | (g4 Find i Fios

3 Doc1 - Meroscht werd

and oLk’ event)then

Category

Cerfiguastion Opsiors

Flaadback Opsicns
Property Hame Wakem
FPGA SiakUp Clock ATAG Clock

bl inteersal [1re Pips o

Progasty daplay bevel | Slarcdard % [p.f_..l
] (]

w

arohitesture Debaviersl of UPCOWNTER i

[Cancel rook | o |

L Design Sunmay | [Eatw | [Semistion

Simulater i doing ciEcult initialization process.

) Sim Conucle - &
Ln 47 Cel i3

EXPERIMENT -1
REALIZATION OF LOGIC GATES

AIM: To design and simulate logic gates using VHDL

SOFTWARE REOQOIURED:
1. Personal computer
2. ISE Xilinx software

HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs
and one output. At any given moment, every terminal is in one of the two binary conditions low
(0) or high (1), represented by different voltage levels. The logic state of a terminal can, and
generally does, change often, as the circuit processes data. In most logic gates, the low state is
approximately zero volts (0 V), while the high state is approximately five volts positive (+5 V).
There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

The AND gate acts in the same way as the logical "and" operator. The output is "true” when
both inputs are "true.” Otherwise, the output is "false."”

The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive
"or." The output is "true" if either or both of the inputs are “true."” If both inputs are "false,” then
the output is "false."

A logical inverter, sometimes called a NOT gate to differentiate it from other types of electronic
inverter devices, has only one input. It reverses the logic state.

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the manner of the
logical operation "and" followed by negation. The output is "false” if both inputs are “true.”
Otherwise, the output is "true.”

The NOR gate is a combination OR gate followed by an inverter. Its output is "true"” if both inputs
are "false." Otherwise, the output is "false."

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or.” The output is "true"
if either, but not both, of the inputs are "true.” The output is "false" if both inputs are "false" or if both
inputs are "true." Another way of looking at this circuit is to observe that the output is 1 if the inputs
are different, but O if the inputs are the same.

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter. Its output
is "true" if the inputs are the same, and "false" if the inputs are different.

The following figure/table shows the circuit symbols and logic combinations of different logic
gates.

Graphic Algebraic
symbol function

S ——

Inverter

Exclusive-OR
(XOR)

Exclusive-NOR
or
equivalence

PROGRAM IN VHDL:
AND GATE:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity AND_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIOC);
end AND_LOGIC;
architecture Dataflow of AND_LOGIC is
begin

C<= A AND B;
end Dataflow;
BEHAVIORAL.:
library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
entity AND_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIC);
end AND_LOGIC;
architecture Behavioral of AND_LOGIC is
begin
process (A,B)
begin

if A="1"and B="1" then C<="1";
else C<='0";
end if;
end process;
end Behavioral;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY AND_LOGIC_TB IS
END AND_LOGIC_TB;
ARCHITECTURE behavior OF AND_LOGIC _TB IS
COMPONENT AND_LOGIC
PORT(
A IN std_logic;
B : IN std_logic;
C: OUT std_logic
);
END COMPONENT;
signal A : std_logic :='0";
signal B : std_logic :='0";
signal C : std_logic;
BEGIN
uut: AND_LOGIC PORT MAP (
A=>A
B => B,
C=>C
);
stim_proc: process
begin
A<='0";B<="0";WAIT FOR 50 NS;
A<='0";B<="1";WAIT FOR 50 NS;

A<="1"B<='0";WAIT FOR 50 NS;
A<="1"B<="1"WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

OR GATE:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity OR_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIC);
end OR_LOGIC;
architecture Dataflow of OR_LOGIC is
begin
C<=AORB;
end Dataflow;
BEHAVIORAL:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity OR_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIC);
end OR_LOGIC;
architecture Behavioral of OR_LOGIC is
begin
process (A,B)
begin

if A='0"'and B='0" then C<='0";
else C<="1";
end if;

end process;
end Behavioral;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY OR_LOGIC TB IS
END OR_LOGIC_TB;
ARCHITECTURE behavior OF OR_LOGIC TB IS
COMPONENT OR_LOGIC
PORT (
A: IN std_logic;
B: IN std_logic;
C: OUT std_logic);
END COMPONENT;
signal A : std_logic :='0";
signal B : std_logic :="'0";
signal C : std_logic;
BEGIN
uut: OR_LOGIC PORT MAP (
A=>A,
B => B,
cC=>C)

stim_proc: process
begin

A<='0"; B<='0"; WAIT FOR 50 NS;
A<='0"; B<="1"; WAIT FOR 50 NS;
A<='1"; B<='0"; WAIT FOR 50 NS;
A<='1"; B<="1"; WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

NOT GATE:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
entity NOT_LOGIC is
Port (A:in STD_LOGIC;
B :out STD_LOGIC);
end NOT_LOGIC,;
architecture Dataflow of NOT_LOGIC is
begin
B<=NOT A ;
end Dataflow;
BEHAVIORAL.:
library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
entity NOT_LOGIC is
Port (A:in STD_LOGIC;
B :out STD_LOGIC);
end NOT_LOGIC,;
architecture Behavioral of NOT_LOGIC is
begin
process (A)
begin
if A="1"then B<='0";
else B<="1";
end if;

end process;
end Behavioral,

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic 1164.ALL;
ENTITY NOT_LOGIC_TB IS
END NOT_LOGIC_TB;
ARCHITECTURE behavior OF NOT_LOGIC_TB IS
COMPONENT NOT_LOGIC
PORT(
A IN std_logic;
B : OUT std_logic
EN)D COMPONENT;
signal A : std_logic :='0";
signal B : std_logic;
BEGIN
uut: NOT_LOGIC PORT MAP (
A=>A
B=>B
);

stim_proc: process
begin
A<="0"WAIT FOR 50 NS;
A<="1";WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

NAND GATE:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity NAND_LOGIC is
Port (A: in STD_LOGIC,;
B: in STD_LOGIC;
C:out STD_LOGIC);
end NAND_LOGIC,;
architecture Dataflow of NAND_LOGIC is
begin
C<= ANAND B;
end Dataflow;
BEHAVIORAL:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity NAND_LOGIC is
Port (A: in STD_LOGIC,;
B: in STD_LOGIC;
C:out STD_LOGIC);
end NAND_LOGIC,;
architecture Behavioral of NAND_LOGIC is
begin
process (A,B)
begin
if A="1' AND B="1' then C<='0";
else C<="1";

end if;
end process;
end Behavioral;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY NAND_LOGIC TB IS
END NAND_LOGIC _TB;
ARCHITECTURE behavior OF NAND _LOGIC TBIS
COMPONENT NAND_LOGIC
PORT(
A IN std_logic;
B : IN std_logic;
C: OUT std_logic
);
END COMPONENT;
signal A : std_logic :='0";
signal B : std_logic :='0";
signal C : std_logic;
BEGIN
uut: NAND_LOGIC PORT MAP (
A=>A,
B => B,
C=>C
);
stim_proc: process
begin

A<='0";B<='0";WAIT FOR 50 NS;
A<='0";B<="1";WAIT FOR 50 NS;
A<="1";B<='0";WAIT FOR 50 NS;
A<="1";B<="1";WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

NOR GATE:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
entity NOR_LOGIC is
Port (A:in STD_LOGIC;
B:in STD _LOGIC;
C:out STD_LOGIC);
End NOR_LOGIC,;
architecture Dataflow of NOR_LOGIC is
begin
C<=ANORB;
end Dataflow;
BEHAVIORAL.:
library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
entity NOR_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIC);
end NOR_LOGIC;
architecture Behavioral of NOR_LOGIC is

begin
process (A,B)
begin
if A='0' AND B='0" then C<="1";
else C<='0";
end if;

end process;
end Behavioral,

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic 1164.ALL;
ENTITY NOR_LOGIC _TBIS
END NOR_LOGIC _TB;
ARCHITECTURE behavior OF NOR_LOGIC _TB IS
COMPONENT NOR_LOGIC
PORT(
A IN std_logic;
B : IN std_logic;
C: OUT std_logic
);
END COMPONENT;
signal A : std_logic :='0";
signal B : std_logic :='0";
signal C : std_logic;

BEGIN
uut: NOR_LOGIC PORT MAP (
A=>A
B => B,
C=>C
);
stim_proc: process
begin
A<='0";B<='0";WAIT FOR 50 NS;
A<='0";B<="1;WAIT FOR 50 NS;
A<="1";B<="0";WAIT FOR 50 NS;
A<="1";B<="1;WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

XOR GATE:

DATAFLOW:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity XOR_LOGIC is

Port (A:in STD_LOGIC;

B:in STD_LOGIC;
C:out STD_LOGIC);

end XOR_LOGIC;

architecture Dataflow of XOR_LOGIC is

begin

C<= A XORB;

end Dataflow;

BEHAVIORAL.:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity XOR_LOGIC is

Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIOC);
end XOR_LOGIC;
architecture Behavioral of XOR_LOGIC is
begin
process (A,B)
begin
if A=B then C<='0";
else C<="1";
end if;
end process;
end Behavioral;
VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY XOR_LOGIC TBIS
END XOR_LOGIC _TB;
ARCHITECTURE behavior OF XOR_LOGIC TB IS
COMPONENT XOR_LOGIC
PORT(
A IN std_logic;
B : IN std_logic;
C: OUT std_logic
);
END COMPONENT;
signal A : std_logic :='0";
signal B : std_logic :='0";
signal C : std_logic;
BEGIN
uut: XOR_LOGIC PORT MAP (
A=>A
B => B,
C=>C
);
stim_proc: process
begin
A<='0";B<="'0";WAIT FOR 50 NS;
A<='0";B<="1;WAIT FOR 50 NS;
A<="1";B<="0";WAIT FOR 50 NS;
A<="1";B<="1;WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

XNOR GATE:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity XNOR_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIC);
end XNOR_LOGIC;
architecture Dataflow of XNOR_LOGIC is
begin
C<= A XNOR B;
end Dataflow;
BEHAVIORAL.:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity XNOR_LOGIC is
Port (A:in STD_LOGIC;
B:in STD_LOGIC;
C:out STD_LOGIC);
end XNOR_LOGIC;
architecture Behavioral of XNOR_LOGIC is
begin

process (A,B)
begin
if A=B then C<="1",
else C<='0";
end if;

end process;
end Behavioral;

200 ng

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY XNOR_LOGIC_TB IS
END XNOR_LOGIC_TB;
ARCHITECTURE behavior OF XNOR_LOGIC _TB IS COMPONENT XNOR_LOGIC
PORT(
A IN std_logic;
B : IN std_logic;
C: OUT std_logic
);
END COMPONENT;
signal A : std_logic :='0";
signal B : std_logic :="'0";
signal C : std_logic;
BEGIN
uut: XNOR_LOGIC PORT MAP (
A=>A,
B => B,
C=>C
);
stim_proc: process
begin

A<='0";B<="0";WAIT FOR 50 NS;
A<='0";B<="1";WAIT FOR 50 NS;
A<="1";B<='0";WAIT FOR 50 NS;
A<="1";B<="1";WAIT FOR 50 NS;
end process;
END;

OUTPUT WAVEFORMS:

3=~ PRrOO BB .

DEVICE UTILIZATION SUMMARY :

Number of Slices: loutof 4656 0%
Number of 4 input LUTS: loutof 9312 0%
Number of 10s: 3

Number of bonded I0Bs: 3outof 232 1%

SYNTHESIS REPORT:

RTL Top Level Output File Name : ALL_LOGIC_GATES.ngr
Top Level Output File Name :ALL_LOGIC_GATES
Output Format :NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics
#10s

Cell Usage:
BELS

LUT2
10 Buffers
IBUF
OBUF

RESULT:

Thus the VHDL code for half adder is verified, synthesis report is generated and the design is
implemented using FPGA.

VIVA QUESTIONS:

1. Implement the following function using VHDL coding. (Try to minimize if you can).
F(A,B,C,D)=(A+B+C) . (A+B'+D’). (B+C+D’). (A+B+C+D)
What will be the no. of rows in the truth table of N variables?

What are the advantages of VHDL?

Design Ex-OR gate using behavioral model?

Implement the following function using VHDL code f=AB+CD.
What are the differences between half adder and full adder?
What are the advantages of minimizing the logical expressions?
What does a combinational circuit mean?

Implement the half adder using VHDL code?

10. Implement the full adder using two half adders and write VHDL program in structural model?

EXPERIMENT -2
3 x 8 DECODER - 1C74138

AIM: To design and simulate 3:8 Decoder - 74138 using VHDL.

SOFTWARE REOQOIURED:
1. Personal computer
2. ISE Xilinx software

HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

In digital electronics, a decoder can take the form of a multiple-input, multiple- output logic
circuit that converts coded inputs into coded outputs, where the input and output codes are different
e.g. n-to-2n , binary-coded decimal decoders. Decoding is necessary in applications such as data
multiplexing, 7 segment display and memory address decoding.

It uses all AND gates, and therefore, the outputs are active- high. For active- low outputs,
NAND gates are used. It has 3 input lines and 8 output lines. It is also called as binary to octal decoder
it takes a 3-bit binary input code and activates one of the 8(octal) outputs corresponding to that code.

PIN DIAGRAM:

7415138

YO0

G1

G2A
G2B

A
B
C

& |

ThILLT T

TRUTH TABLE:

53
e
»
c
-2 O0000X X X Oa’
O
S
o
c
—
7

=
-

=

QK N QS G G W N 4 OO
=2 =200=2=200X X X|®
_;_x..x_;.._LO-_a_;_;'<
_L_n_;_n_s_;_;o_;_;_n'<

COO0OO0O0O0O0OX =X r)\>>|
COO0OO0CO0OO0O0O=-X X

SO0, 0_20OX X X|>
el 2 b 2
DO Adadadaaaal<
...m_;o._x_a..s_n_;_a_a...\;(
ST QPRI ot N ST Gl SN R WPt ™
S e O b A
o sl o i) s -l e o e

PROGRAM IN VHDL:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity IC74138_3X8dec_DF is
Port (G,GA,GB :in STD_LOGIC;
AB,C:in STD_LOGIC;
Y :out STD_LOGIC _VECTOR (0to 7));
end 1C74138_3X8dec_DF;
architecture dataflow of 1C74138_3X8dec_DF is
signal X:std_logic_vector (0 to 5);
begin
X<=G&GA&GB&A&B&C;
with X select
Y<="01111111" when "100000",
"10111111" when "100001",
"11011111" when "100010",
"11101111" when "100011",
"11110111" when "100100",
"11111011" when "100101",
"11111101" when "100110",
"11111110" when "100111",
"11111111" when others;

end dataflow;

BEHAVIORAL.:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity IC74138_3X8dec_BH is
Port (G,GA,GB : in STD_LOGIC;
AB,C:in STD_LOGIC;
Y :out STD_LOGIC_VECTOR (0to 7));
end IC74138_3X8dec_BH;
architecture Behavioral of 1C74138 3X8dec BH is
signal X:std_logic_vector(2 downto 0);
begin
process (G,GA,GB,A,B,C,X)
begin

X<=A&B&C;
if (G and (not GA) and (not GB))="1" then
case X is
when "000"=>Y<="01111111";
when "001"=>Y<="10111111";
when "010"=>Y<="11011111";
when "011"=>Y<="11101111";
when "100"=>Y<="11110111";

when "101"=>Y<="11111011";
when "110"=>Y<="11111101";
when "111"=>Y<="11111110";
when others=>Y<="11111111";
end case;
else Y<="11111111";
end if;
end process;
end Behavioral;

STRUCTURAL.:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity 1IC74138_3X8dec_ST is
Port (G,GA,GB :in STD_LOGIC;
AB,C:in STD LOGIC;
Y :out STD_LOGIC _VECTOR (0to 7));
end 1C74138_3X8dec_ST;
architecture Structural of 1C74138_3X8dec_ST s
component not11
port(nl:in std_logic;
n0:out std_logic);
end component;
component and31
port(al,a2,a3:in std_logic;
a0:out std_logic);
end component;
component nand41
port(nal,na2,na3,na4:in std_logic;
na0:out std_logic);
end component;
signal Abar,Bbar,Cbar,GAbar,GBbar,E: std_logic;
begin
L1:notll port map(A,Abar);
L2:notl11 port map(B,Bbar);
L3:notl11 port map(C,Char);
L4:notll port map(GA,GAbar);
L5:not11 port map(GB,GBbar);
L6:and31 port map(G,GAbar,GBbar,E);
L7:nand41 port map(E,Abar,Bbar,Char,Y(0));
L8:nand41 port map(E,Abar,Bbar,C,Y(1));
L9:nand41 port map(E,Abar,B,Char,Y(2));
L10:nand41 port map(E,Abar,B,C,Y(3));
L11:nand41 port map(E,A,Bbar,Cbar,Y(4));
L12:nand41 port map(E,A,Bbar,C,Y(5));
L13:nand41 port map(E,A,B,Char,Y(6));
L14:nand41 port map(E,A,B,C,Y(7));
end Structural;

SUB PROGRAMS:

NOT11:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity notll is
port(nl:in std_logic;
n0:out std_logic);

end notl1;
architecture dataflow of notll is
begin
n0<= not nl;
end dataflow;
AND31:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity and31 is
Port (al,a2,a3:in STD_LOGIC;
a0 :out STD_LOGIC);
end and31;
architecture dataflow of and31 is
begin
a0<=al and a2 and a3;
end dataflow;
NANDA41:
library IEEE;
use IEEE.STD _LOGIC 1164.ALL,;
entity nand41l is
port(nal,na2,na3,na4:in std_logic;
na0:out std_logic);
end nand41;
architecture dataflow of nand41 is
begin

na0<= not(nal and na2 and na3 and na4);
end dataflow;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY IC74138_3X8dec_TB IS
END 1C74138_3X8dec_TB;
ARCHITECTURE behavior OF 1C74138 3X8dec_TB IS
COMPONENT IC74138_3X8dec
PORT(
G : IN std_logic;
GA : IN std_logic;

GB : IN std_logic;
A IN std_logic;
B : IN std_logic;
C:IN std_logic;
Y : OUT std_logic_vector(0to 7)
);
END COMPONENT;
signal G : std_logic :='0";
signal GA : std_logic :='0";
signal GB : std_logic :='0";
signal A : std_logic :='0";
signal B : std_logic :="'0";
signal C : std_logic :="'0";
signal Y : std_logic_vector(0 to 7);
BEGIN
uut: 1C74138_3X8dec PORT MAP (
G=>G,
GA => GA,
GB => GB,
A=>A,
B => B,
C=>C,
Y=>Y
);
stim_proc: process
begin
G<="1"GA<='0"GB<="0";A<='0";B<="'0";C<="0"; wait for 50 ns;
G<="1"GA<='0";GB<="0";A<='0";B<="0";C<="1"; wait for 50 ns;
G<="1""GA<='0"GB<="0";A<='0";B<="1";,C<="0"; wait for 50 ns;
G<="1"GA<='0";GB<='0";A<='0";B<="1",C<="1"; wait for 50 ns;
G<="1",GA<='0";GB<='0";A<="1";B<='0";C<="0"; wait for 50 ns;
G<="1"GA<='0";GB<="0";A<="1";B<="0";C<="1"; wait for 50 ns;
G<="1"GA<='0";GB<="0";A<="1";B<="1";,C<="0"; wait for 50 ns;
G<="1"GA<='0";GB<='0";A<="1"B<="1",C<="1"; wait for 50 ns;
G<='0";GA<='0";GB<="0";A<="1";B<="0";C<="0"; wait for 50 ns;
G<="1"GA<="1"GB<='0";A<="1";B<="1";,C<="0"; wait for 50 ns;
G<="1"GA<='0";GB<="1";A<="1";B<="0";C<="1"; wait for 50 ns;
end process;
END;

OUTPUT WAVEFORMS:

FO@| ' E® W

01111111

_@L-J'l

IC74138_3X8dec_DF:1

XST_GND

Mram_Y1

|C74138_3X8dec_DF

IC74138_3X8dec_DF

INTERNAL DIAGRAM OF 3X8 DECODER:

DEVICE UTILIZATION SUMMARY':

Number of Slices: 5out of 4656 0%
Number of 4 input LUTS: 9outof 9312 0%
Number of 10s: 14

Number of bonded 10Bs: 14 outof 232 6%

SYNTHESIS REPORT:

RTL Top Level Output File Name : 1C74138 3X8dec.ngr
Top Level Output File Name : 1IC74138_3X8dec
Output Format :NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics
10s

Cell Usage:
BELS

LUT3
LUT4
10 Buffers
IBUF
OBUF

RESULT:

Thus the VHDL code for 3x8 Decoder 74138 is verified, synthesis report is generated and the
design is implemented using FPGA.

VIVA QUESTIONS:

. Write the behavioural code for the IC 74x138.
. Write the VHDL code for the IC 74x138 using CASE statement.
. Write the VHDL code for the IC 74x138 using WITH statement.
. Write the VHDL code for the IC 74x138 using WHEN--ELSE statement.
. Write the structural program for IC 74x138.
. What does priority encoder mean?
How many decoders are needed to construct 4X16 decoder?
. What is the difference between decoder and encoder?
9. Write the syntax for exit statement?
10. Explain briefly about next statement?
11. How to specify the delay in VHDL program?

12. Write the syntax for component declaration.

EXPERIMENT -3
8 X1 MULTIPLEXER-74151 AND

1 X4 DEMULTIPLEXER-74155

AlIM: To design and simulate MUX & DEMUX using VHDL.

SOFTWARE REOIURED:
1. Personal computer
2. ISE Xilinx software

HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

Multiplexing is defined as the process of feeding several independent signals to a common
load, one at a time. The device or switching circuitry used to select and connect one of these several

signals to the load at any one time is known as a multiplexer.

The reverse function of multiplexing, known as de-multiplexing, pertains to the process of
feeding several independent loads with signals coming from a common signal source, one at a time.

A device used for de-multiplexing is known as de- multiplexer.

Multiplexing and de-multiplexing, therefore, allow the efficient use of common circuits to feed
a common load with signals from several signal sources, and to feed several loads form a single,

common signal source, respectively.

PIN DIAGRAM:

7 4 3 2 1 15 14 13 12
En DO D1 D2 D3 D4 DS D6 D7
SO
4151-8 ip MUX
s1 74151 Vp MUX
S2

X >

(il S

8 X 1 MULTIPLEXER

B

1G
1C

26
2C

1Y0
1Y1
1Y2
1Y3
2Y0
2Y1
2Y2
2Y3

2x4 Dual - DE MULTIPLEXER

TRUTH TABLE:

Crutput
%

L0y

I{1)

I(2)

8 X1 MULTIPLEXER

2x4 Dual - DE MULTIPLEXER

PROGRAM IN VHDL:

8 X1 MULTIPLEXER:

DATAFLOW:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity IC74151 8X1MUX_DF is

Port (S:in STD_LOGIC_VECTOR (2 downto 0);

D:in STD_LOGIC_VECTOR (0to 7);
Y :inout STD_LOGIC;
YBar :out STD_LOGIC,;
ENBar : in STD_LOGIC);

end IC74151 8X1MUX_DF;

architecture Dataflow of IC74151 8X1MUX_DF is

signal X:std_logic;
begin
with S select
X<=D(0) when "000",
D(1) when "001",
D(2) when "010",
D(3) when "011",
D(4) when "100",
D(5) when "101",
D(6) when "110",
D(7) when others;
Y<=X when ENBar="0" else '0’;
YBar<=not Y,
end Dataflow;

BEHAVIORAL.:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

entity IC74151 8X1MUX_BF is

Port (S:in STD_LOGIC_VECTOR (2 downto 0);

D:in STD_LOGIC VECTOR (0to 7);
Y :inout STD LOGIC;
YBar : out STD_LOGIC,;
ENBar :in STD_LOGIC);

end IC74151 8X1MUX_BF;

architecture Behavioral of 1C74151 8X1MUX_BF is

begin
PROCESS (S,D,ENBar,Y)
BEGIN

IF ENBar="0' THEN

CASE S IS
WHEN "000"=>Y<=D(0);
WHEN "001"=>Y<=D(1);
WHEN "010"=>Y<=D(2);
WHEN "011"=>Y<=D(3);
WHEN "100"=>Y<=D(4);
WHEN "101"=>Y<=D(5);
WHEN "110"=>Y<=D(6);
WHEN OTHERS=>Y<=D(7);
END CASE;
ELSE Y<='0"
END IF;
IF Y="0' THEN YBar<="1"
ELSE YBar<='0"
END IF;
END PROCESS;
end Behavioral;

STRUCTURAL.:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity IC74151 8X1MUX_ST is
Port (S:in STD_LOGIC_VECTOR (2 downto 0);

D:in STD_LOGIC_VECTOR (0to 7);

ENBar :in STD LOGIC

Y :inout STD_LOGIC;

YBar :out STD_LOGIC);
end 1C74151 8X1MUX ST,
architecture Structural of IC74151_8X1MUX_ST is
component notll
port (nl: in std_logic;

n0: out std_logic);
end component;
component and51
port (al,a2,a3,a4,a5: in std_logic;
a0: out std_logic);
end component;
component or81
port (r1,r2,r3,r4,r5,r6,r7,r8: in std_logic;
r0: out std_logic);

end component;
signal S2,S1,S0,EN:std_logic;
signal R:std_logic_vector(0 to 7);
begin
L1:not1l port map (ENBar,EN);
L2:not11 port map (S(2),S2);
L3:notll port map (S(1),S1);
L4: notll port map (S(0),S0);
L5:and51 port map (EN,D(0),S2,51,S0,R(0));
L6:and51 port map (EN,D(1),52,51,5(0),R(2));
L7:and51 port map (EN,D(2),52,5(1),S0,R(2));
L8:and51 port map (EN,D(3),52,5(1),S(0),R(3));
L9:and51 port map (EN,D(4),5(2),S1,S0,R(4));
L10:and51 port map (EN,D(5),5(2),51,5S(0),R(5));
L11:and51 port map (EN,D(6),5(2),5(1),S0,R(6));
L12:and51 port map (EN,D(7),5(2),S(1),S(0),R(7));
L13:0r81 port map (R(0),R(1),R(2),R(3),R(4),R(5),R(6),R(7),Y);
L14:notl11 port map (Y,YBar);
end Structural;

SUB PROGRAMS:

NOT11:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity notll is
port (nl: in std_logic;
n0: out std_logic);
end notl1;
architecture dataflow of not11 is
begin
n0<= not nl;
end dataflow;

AND>51:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity and51 is

port (al,a2,a3,a4,a5: in std_logic;
a0: out std_logic);
end and51;
architecture dataflow of and51 is
begin
a0<=al and a2 and a3 and a4 and a5;
end dataflow;

OR81.:
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity or81 is
port (r1,r2,r3,r4,r5,r6,r7,r8: in std_logic;
r0: out std_logic);
end or81;
architecture dataflow of or81 is
begin
rO<=(rl orr2orr3orr4dorr5orr6orr7orrs);
end dataflow;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY IC74151 8X1MUX TB IS
END IC74151 8X1MUX TB;
ARCHITECTURE behavior OF 1C74151 8X1MUX_TB IS
COMPONENT IC74151_8X1MUX
PORT(
S :IN std_logic_vector(2 downto 0);
D : IN std_logic_vector(0 to 7);
Y : INOUT std_logic;
YBar : OUT std_logic;
ENBar : IN std_logic
);
END COMPONENT;
signal S : std_logic_vector(2 downto 0) := (others =>'0");
signal D : std_logic_vector(0 to 7) := (others =>'0);
signal ENBar : std_logic :='0";
signal Y : std_logic;
signal YBar : std_logic;
BEGIN
uut: 1IC74151_8X1IMUX PORT MAP (
S=>§,
D =>D,
Y=Y,
YBar => YBar,
ENBar => ENBar
);
stim_proc: process
begin
ENBar<='0";D<="00011011";S<="000"; WAIT FOR 50 NS;
ENBar<='0";D<="00011011";S<="001"; WAIT FOR 50 NS;
ENBar<='0";D<="01011011";S<="010"; WAIT FOR 50 NS;
ENBar<='0";D<="00011011";S<="011"; WAIT FOR 50 NS;
ENBar<='0";D<="11011011";S<="100"; WAIT FOR 50 NS;

ENBar<='0";D<="00011001";S<="101"; WAIT FOR 50 NS;
ENBar<='0";D<="01111010";S<="110"; WAIT FOR 50 NS;
ENBar<='0";D<="01111010";S<="111"; WAIT FOR 50 NS;
ENBar<="1";D<="01111010";S<="110"; WAIT FOR 50 NS;
ENBar<="1";D<="00111011";S<="010"; WAIT FOR 50 NS;
ENBar<='1";D<="00011010";S<="100"; WAIT FOR 50 NS;
end process;
END;

1x4 DE MULTIPLEXER:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity IC74155_1X4DeMUX_DF is
port (D,EN : in std_logic;

S :instd_logic_vector(1l downto 0);

Y :outstd logic_vector(0 to 3));
End 1C74155 1X4DeMUX_DF,;
architecture Dataflow of 1C74155 1X4DeMUX_DF is
begin
Y (0)<= D and (not EN) and (not S(1)) and (not S(0));
Y (1)<= D and (not EN) and (not S(1)) and S(0);
Y (2)<= D and (not EN) and S(1) and (not S(0));
Y(3)<= D and (not EN) and S(1) and S(0);
end Dataflow;

BEHAVIORAL.:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity IC74155_1X4DeMUX_BF is
port (D,EN : in std_logic;
S :instd_logic_vector(1l downto 0);
Y :outstd logic_vector(0 to 3));
end 1IC74155_1X4DeMUX_BF;
architecture Behavioral of IC74155_1X4DeMUX_BF is
begin
process(D,EN,S)
begin

Y (0)<= D and (not EN) and (not S(1)) and (not S(0));
Y (1)<= D and (not EN) and (not S(1)) and S(0);
Y (2)<= D and (not EN) and S(1) and (not S(0));
Y (3)<= D and (not EN) and S(1) and S(0);
end process;
end Behavioral,

STRUCTURAL.:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity IC74155_1X4DeMUX_ST is
port (D,EN : in std_logic;

S :instd_logic_vector(1 downto 0);
Y :outstd logic vector(0 to 3));

end 1C74155 1X4DeMUX_ST;
architecture Structural of IC74155_1X4DeMUX_ST is
component NOT11

port (n1 : instd_logic;

n0 : out std_logic);

end component;
component AND41

port (al,a2,a3,a4 : in std_logic;

a0 : out std_logic);

end component;
signal s1,s0,E: std_logic;
begin
L1:NOT11 port map(EN,E);
L2:NOT11 port map(S(1),s1);
L3:NOT11 port map(S(0),s0);
L4:ANDA41 port map(E,D,s1,s0,Y(0));
L5:AND41 port map(E,D,s1,S(0),Y(1));
L6:AND41 port map(E,D,S(1),s0,Y(2));
L7:ANDA41 port map(E,D,S(1),5(0),Y(3));
end Structural;

SUB PROGRAMS:

NOT11:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
entity NOT11 is
Port (nl:in STD_LOGIC;
n0 : out STD_LOGIC);
end NOT11,
architecture Dataflow of NOT11 is
begin
n0<=not nl;
end Dataflow;
ANDA41:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity AND41 is
port (al,a2,a3,a4 : in std_logic;
a0 : out std_logic);

end ANDA41;

architecture Dataflow of ANDA41 is
begin

a0<=al and a2 and a3 and a4;

end Dataflow;

VHDL TEST BENCH:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL,;

ENTITY IC74155_1X4DeMUX_TB IS

END IC74155_1X4DeMUX_TB,;

ARCHITECTURE behavior OF IC74155_1X4DeMUX_TB IS

COMPONENT IC74155 1X4DeMUX_DF
PORT(
D :IN std_logic;
EN : IN std_logic;
S :IN std_logic_vector(1 downto 0);
Y : OUT std_logic_vector(0 to 3));
END COMPONENT;
signal D : std_logic :='0";
signal EN : std_logic :="'0";
signal S : std_logic_vector(1 downto 0) := (others =>'0");
signal Y : std_logic_vector(0 to 3);
BEGIN
uut: IC74155_1X4DeMUX_DF PORT MAP (
D=>D,
EN => EN,
S=>§5,
Y=>Y),
stim_proc: process
begin
EN<='0"D<="'0";S<="00"; wait for 50 ns;
EN<='0"D<="1";S<="00"; wait for 50 ns;
EN<='0"D<="'0";S<="01"; wait for 50 ns;
EN<='0"D<="1";S<="01"; wait for 50 ns;
EN<='0";D<='0";S<="10"; wait for 50 ns;
EN<='0";D<="1"S<="10"; wait for 50 ns;
EN<='0";D<="0";S<="11"; wait for 50 ns;
EN<='0";D<="1"S<="11"; wait for 50 ns;
EN<="1";D<="0";S<="00"; wait for 50 ns;
EN<="1"D<="1"S<="01"; wait for 50 ns;
EN<="1";D<='0";S<="10"; wait for 50 ns;
EN<="1"D<="1"S<="11"; wait for 50 ns;
end process;
END;

8 X1 MULTIPLEXER:

OUTPUT WAVEFORMS:

—
]

___I
-1 |]

BFO@|wE %%

=

I |

-H—'FZ ¥

_— — _.
: - T] --.--.
B --. ‘

RTL SCHEMATIC:

C74151_8X1MUX_DF
AN

D(0:7) YBar

S(2:0)

ENBar

\ 4
IC74151_8XIMUX_DF

IC74151_8X1MUX_DF:1

g lolg ol ool &
g 8 & & & & |§ [§ &

g |8 g |§ @ @ (7 @ E
/- S A O - < T A - i

Mmux_X1 Mmux_Y1

Resull

Mmux_Y1

Mmux_X1

XST_GND

inv

YBari

IC74151_8X1MUX_DF

INTERNAL DIAGRAM OF 8X1 MUX:

1x4 DE MULTIPLEXER:

OUTPUT WAVEFORMS:

RTL SCHEMATIC:

D EN AND 101 | D SH] AND 2 of

D_S[1] AND 8 of

A

C74155_1X4DeMUX _DF

1C74155_1X4DeMUX_DF

INTERNAL DIAGRAM OF 1X4 DeMUX:

EN_IBUF

w_3_ O BUF

1CTA155 1XADeMUX _ DF

8 X1 MULTIPLEXER:

DEVICE UTILIZATION SUMMARY:

Number of Slices:
Number of 4 input LUTS:
Number of 10s:

Number of bonded 10Bs:

SYNTHESIS REPORT:
RTL Top Level Output File Name

Top Level Output File Name

Output Format
Optimization Goal

Keep Hierarchy

Design Statistics
10s

4 out of 4656 0%
7outof 9312 0%
14

14 outof 232 6%

: 1C74151_8X1MUX.ngr
: 1C74151_8X1MUX
:NGC

: Speed

:No

Cell Usage:
BELS
INV
LUT3
LUT4
MUXF5
10 Buffers
IBUF
OBUF

1x4 DE MULTIPLEXER:

DEVICE UTILIZATION SUMMARY :

Number of Slices: 2outof 4656 0%
Number of 4 input LUTS: 4outof 9312 0%
Number of 10s: 8

Number of bonded I0Bs: 8outof 232 3%

SYNTHESIS REPORT:

RTL Top Level Output File Name : I1C74155 1X4DeMUX.ngr
Top Level Output File Name - 1IC74155_1X4DeMUX
Output Format :NGC

Optimization Goal : Speed
Keep Hierarchy : No
Design Statistics

#10s

Cell Usage :

BELS

LUT4

10 Buffers

IBUF

OBUF

RESULT:

Thus the VHDL code for 8 X 1 MULTIPLEXER-74151 AND 2 X 4 DEMULTIPLEXER-74155 is
verified, synthesis report is generated and the design is implemented using FPGA

VIVA QUESTIONS:

© © N o g kB~ w Db PF

e S T
w N B O

Write the behavioural code for the IC 74x151.

Write the VHDL code for the IC 74x151 using IF statement.

Write the VHDL code for the 1C 74x151 using WITH statement.

Write the VHDL code for the 1C 74x151 using WHEN--ELSE statement.
Write the structural program for 1C 74x151.

What is meant by multiplexer?

What does demultiplexer mean?

How many 8X1 multiplexers are needed to construct 16X1 multiplexer?

Compare decoder with demultiplexer?

. Design a full adder using 8X1 multiplexer?

. What are the two kinds of subprograms?

. What are the difference between function and procedure?

. Explain briefly about subprogram overloading?

EXPERIMENT -4
4-BIT COMPARATOR-7485

AIM: To design and simulate 4-BIT COMPARATOR using VHDL.

SOFTWARE REOIURED:
1. Personal computer
2. ISE Xilinx software
HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

A comparator is a special combinational circuit designed primarily to compare the relative
magnitudes of two binary numbers. If a comparator receives two n-bit numbers A and B as inputs
and the outputs are A>B, A=B, A<B. Depending upon the relative magnitudes of the two numbers,
one of the outputs will be high.

IC7485 is a bit comparator. It can be used to compare two 4-bit binary words. These ICs, can
cascade to compare words of almost any length.

PIN DIAGRAM:

16 151413 12 11 10

7485
4- Bit Magnitude Comparator

TRUTH TABLE:

Input Numbers Cascading Inputs Outputs
AB, AB, AB, [Yasm
A>B, X X
A,<B, X x
A,=B, A,>B,
A,=B,
A=B,
Ay=B,

<

ol ol e N v o g] e] ke X
<

m
=
8 o bt] ol gl pud ot e ol gl]

'A(E lea

[

VX X
o

A

-
.

VXXX XXX

o
W
POOOD OO

-
)

'L LLA 7

[
A

(A |

o
5
B R EN -
g
()

W
o)

W W W

w
[+

w
-
[+

"

PIP2PP
DOOD0m
PPPP2222>
POONOOD®

[+]
TrXrFrIXXXXXXXXE
TrXIrXXXXXXXX
i o N e 1l O AR ¥ L S
it sl el) e =i ppian o8 ko] s ol

LD L ||

»]

Cascade Present input
inputs condition

B [A=B

e
oo

AGIBOUT

AEQBOUT

ALTBOUT

AGTBIN=1

AFEQBIN=1

A= o |

ALTBIN=1

PROGRAM IN VHDL:

DATAFLOW:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

entity IC7485_Comparator_DF is

Port (A:in STD_LOGIC_VECTOR (0to 3);

B:in STD_LOGIC VECTOR (0to 3);
AgtB :out STD_LOGIC,;
AegB : out STD_LOGIC;
AltB : out STD_LOGIC);

end IC7485_Comparator_DF;

architecture Dataflow of IC7485_Comparator_DF is

begin
AgtB<="1'when A>B else '0';
AeqB<="1"when A=B else '0’;
AltB<="1" when A<B else '0’;

end Dataflow;

BEHAVIORAL:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity IC7485_Comparator_BH is
Port (A:in STD_LOGIC_VECTOR (0 to 3);
B:in STD_LOGIC_VECTOR (0to 3);
AgtB :out STD_LOGIC;
AegB : out STD_LOGIC;
AltB : out STD_LOGIC);
end IC7485_Comparator_BH;
architecture Behavioral of IC7485_Comparator_BH is
begin
process (A,B)
begin
if A>B THEN AgtB<="1"
else AgtB<='0";
end if;
if A=B THEN AeqB<='1";

else AeqB<="0";
end if;
if A<B THEN AltB<="1";
else AltB<="0";
end if;
end process;
end Behavioral;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY 1C7485_Comparator_TB IS
END IC7485_Comparator_TB,;
ARCHITECTURE behavior OF IC7485_Comparator_TB IS
COMPONENT 1C7485_Comparator
PORT(
A IN std_logic_vector(0 to 3);
B : IN std_logic_vector(0 to 3);
AgtB : OUT std_logic;
AegB : OUT std_logic;
AltB : OUT std_logic
);
END COMPONENT;
signal A : std_logic_vector(0 to 3) := (others =>'0");
signal B : std_logic_vector(0 to 3) := (others =>'0";
signal AgtB : std_logic;
signal AegB : std_logic;
signal AltB : std_logic;
BEGIN
uut: IC7485_Comparator PORT MAP (
A=>A
B => B,
AgtB => AgtB,
AeqB => AeqgB,
AltB => AltB
);
stim_proc: process
begin

A<="0000";B<="0000"; wait for 50 ns;
A<="0101";B<="0010"; wait for 50 ns;
A<="0011";B<="0110"; wait for 50 ns;
A<="1001";B<="1001"; wait for 50 ns;
A<="1100";B<="0110"; wait for 50 ns;
A<="0110";B<="1000"; wait for 50 ns;
A<="0110";B<="0110"; wait for 50 ns;
A<="1100";B<="0110"; wait for 50 ns;

A<="0011":B<="1000"; wait for 50 ns;
end process;

END;

OUTPUT WAVEFORMS:

-“-f- [l
o
1 1=
1 B 0
v
1 [0
1
1§ @
1§ &
.:;3 agth
@ aeab
@ altb

RTL SCHEMATIC:

Mcompar_AgtB1

Mcompar_AIB1

C7485 Comparator D

Mcompar_AltB1

IC7485_Comparator_DF

I |
—

1000
ﬁ

s

INTERNAL DIAGRAM OF COMPARATOR:

DEVICE UTILIZATION SUMMARY::

Number of Slices: 5outof 4656 0%
Number of 4 input LUTS: 9outof 9312 0%
Number of 10s: 11

Number of bonded 10Bs: 11outof 232 4%
SYNTHESIS REPORT:

RTL Top Level Output File Name : 1C7485_Comparator.ngr
Top Level Output File Name : 1C7485_Comparator
Output Format :NGC

Optimization Goal . Speed

Keep Hierarchy - No

Design Statistics
#10s

Cell Usage:
BELS

LUT2
LUT4
MUXF5
10 Buffers
IBUF

OBUF

RESULT:
Thus the VHDL code for 4-BIT COMPARATOR is verified, synthesis report is generated and
the design is implemented using FPGA.

VIVA QUESTIONS:

Write the dataflow model for the IC 74x85.

Write the VHDL code for the IC 74x85 using CASE statement.

Write the VHDL code for the IC 74x85 using WITH statement.

Write the VHDL code for the 1C 74x85 using WHEN--ELSE statement.
Write the structural program for IC 74x85.

How many 4-bit comparators are needed to construct 12-bit comparator?
What does a digital comparator mean?

Design a 2-bit comparator using gates?

Explain the phases of a simulation?

Explain briefly about wait statement?

1.
2.
3.
4.
5.
6.
7.
8.
9.

-
©

EXPERIMENT -5
D Flip-Flop-7474

AlIM: To design and simulate D Flip-Flop-7474 using VHDL

SOFTWARE REOIURED:
1. Personal computer
2. ISE Xilinx software

HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

The D-flip flop has only a single data input .The data input is connected to the S input of an RS
flip flop, while the inverse of D is connected to the R input. This prevents that the input combination
ever occurs. To allow the flip flop to be in a holding state, a D-flip flop has a second input called
“Enable.” The Enable-input is AND with the D-input, such that when Enable=0, the R & S of the RS-
flip flop are 0 and the state is held. When the Enable-input is 1, the S input of the RS flip flop equals
the D input and R is the inverse of D determines the value of the output Q when Enable is 1. When
Enable returns to 0, the most recent input D is “remembered.”

PIN DIAGRAM:

Pin Assignments for DIP, SOIC, SOP and TSSOP
Vee CLR2 D2 Cix2 PR2 0z 02

14 12 " 9 8

CIRCUIT DIAGRAM:

Input Data (D) O—

_OQ

Clock (Clk) O~

——0 QorQ

Y

Gated SR Flip flop

D-type Flip flop Circuit

TRUTH TABLE:

PROGRAM IN VHDL.:

BEHAVIORAL.:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity IC7474_DFF_BH is

Port (D :in STD_LOGIC;

clk:in STD_LOGIC,;
Pre:in STD_LOGIC;
Clr:in STD_LOGIC;
Q :inout STD_LOGIC;
Qbar : out STD_LOGIC);

end IC7474_DFF_BH;

architecture Behavioral of IC7474_DFF_BH is

begin

process(D,Clk,Pre,Clr,Q)

begin
if Pre="0"then Q<="1",
else if Clr="0"then Q<='0";
else if (Clk'event and Clk="1") then Q<= D;
else
Q<=Q;
end if;
end if;
end if;

Qbar<=not Q;
end process;
end Behavioral;

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY IC7474_DFF_TB IS
END IC7474_DFF_TB;
ARCHITECTURE behavior OF IC7474_DFF_TB IS
COMPONENT IC7474_DFF_BH
PORT(
D :IN std_logic;
clk : IN std_logic;
Pre : IN std_logic;
Clr: IN std_logic;
Q : INOUT std_logic;
Qbar : OUT std_logic
);
END COMPONENT;
signal D : std_logic := "0
signal clk : std_logic :='0";
signal Pre : std_logic :='0";
signal Clr : std_logic :="0",
signal Q : std_logic;
signal Qbar : std_logic;
BEGIN
uut: 1IC7474_DFF_BH PORT MAP (
D =>D,
clk => clk,
Pre => Pre,
Clr=>Clr,
Q=>Q,
Qbar => Qbar
);

stim_proc: process

Pre<='0"Clr<="0":Clk<='0":D<="0"wait for 50 ns:
Pre<="1';Clr<=0"Clk<="1",D<="1"wait for 50 ns;
Pre<="1"Clr<="1";Clk<='0";D<='0";wait for 50 ns;
Pre<='1"Clr<="1"Clk<='0":D<="1"wait for 50 ns;
Pre<="1"Clr<="1"Clk<="1"D<="0"wait for 50 ns;
Pre<="1',Clr<='1",Clk<="1';D<="1"wait for 50 ns;
end process;
END;

OUTPUT WAVEFORMS:

RTL SCHEMATIC:

|C7474_DFF_BH:1

101

IC7474_DFF_BH

IC7474_DFF_BH

INTERNAL DIAGRAM OF D FLIPFLOP:

1C7474_DFF_BH:1

Cr_Pre_AND_2_o1

BUFGP

Fre_IBUF_BUF
clk_BUFGP

IC74a74_DFF_BH

DEVICE UTILIZATION SUMMARY:

Number of Slices: 2outof 4656 0%
Number of 4 input LUTS: 3outof 9312 0%
Number of 10s: 6

Number of bonded 10Bs: 6outof 232 2%
I0B Flip Flops: 2

Number of GCLKSs: loutof 24 4%

SYNTHESIS REPORT:
RTL Top Level Output File Name: IC7474_DFF.ngr
Top Level Output File Name - 1C7474 _DFF
Output Format :NGC
Optimization Goal : Speed
Keep Hierarchy :No

Design Statistics
#10s

Cell Usage:

BELS

INV

LUT2

Flip Flops/Latches
FDCP

Clock Buffers
BUFGP

10 Buffers

IBUF

OBUF

RESULT:

Thus the VHDL code for D Flip-Flop is verified, synthesis report is generated and the design
is implemented using FPGA.

VIVA QUESTIONS:
1. Write the behavioral code for the IC 74x74.
Write the dataflow code for the IC 74x74.
What is the difference between sequential and combinational circuit?
What is a flip-flop?
Explain the functions of preset and clear inputs in flip-flop?
What is meant by a clocked flip-flop?
What is meant by excitation table?
What is the difference between flip-flop and latch?
What are the various methods used for triggering flip-flops?
10 Explain level triggered flip-flop?
11. Write the behavioral code for IC 74X74.

©ooNOR WD

12. Write the syntax of IF statement?

EXPERIMENT -6
ALU

AlIM: To design and simulate 16 bit ALU

SOFTWARE REQIURED:

1. Personal computer
2. ISE Xilinx software

HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

Arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic
operations. It represents the fundamental building block of the central processing unit (CPU) of a
computer. Modern CPUs contain very powerful and complex ALUSs. In addition to ALUs, modern
CPUs contain a control unit (CU).

Most of the operations of a CPU are performed by one or more ALUs, which load data from
input registers. A register is a small amount of storage available as part of a CPU. The control unit
tells the ALU what operation to perform on that data, and the ALU stores the result in an output
register. The control unit moves the data between these registers, the ALU, and memory.

Integer Integer
Operand Operand

A NS

Status
Y

Integer
Result

PIN DIAGRAM:

TRUTH TABLE:

Selection] Arithmetic/logic

S2 81 80 function
Clear

B minus A

A minus B

A plus B
A® B
A+ B

AB
Preset

PROGRAM IN VHDL:

DATAFLOW:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;
entity ALU_74381IC_DF is
Port (S:in STD_LOGIC_VECTOR (2 downto 0);
AB:in STD_LOGIC_VECTOR (3 downto 0);
F:out STD _LOGIC_VECTOR (3 downto 0);
Cin: in std_logic);
end ALU_74381IC_DF;
architecture Dataflow of ALU_74381IC_DF is
begin
with S select
F<="0000" when "000",
B-A-1+Cin when "001",
A-B-1+Cin when "010",

A+B+Cin when "011",

A xor B when "100",

A or B when "101",

A and B when "110",

"1111" when others;
end Dataflow;

BEHAVIORAL.:

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_unsigned.ALL;

entity ALU_743811C_BH is

Port (S:in STD_LOGIC_VECTOR (2 downto 0);
AB:in STD _LOGIC VECTOR (3 downto 0);
F:out STD_LOGIC_VECTOR (3 downto 0);
Cin: in std_logic);
end ALU_74381IC_BH;

architecture Behavioral of ALU_74381IC_BH is
begin
process (S,A,B,Cin)
begin
case S is
when "000"=>F<="0000";
when "001"=>F<=B-A-1+Cin;
when "010"=>F<=A-B-1+Cin;
when "011"=>F<=A+B+Cin;
when "100"=>F<=A xor B;
when "101"=>F<=A or B;
when "110"=>F<=A and B;
when others=>F<="1111";
end case;

end process;
end Behavioral,

VHDL TEST BENCH:
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ALU_74381IC_TB IS
END ALU_74381IC_TB;
ARCHITECTURE behavior OF ALU_74381IC_TB IS
COMPONENT ALU_74381IC
PORT(
S :IN std_logic_vector(2 downto 0);
A IN std_logic_vector(3 downto 0);
B : IN std_logic_vector(3 downto 0);
F: OUT std_logic_vector(3 downto 0);

Cin: IN std_logic
);
END COMPONENT;
signal S : std_logic_vector(2 downto 0) := (others =>'0");
signal A : std_logic_vector(3 downto 0) := (others =>'0");
signal B : std_logic_vector(3 downto 0) := (others =>"'0");
signal Cin : std_logic :='0";
signal F : std_logic_vector(3 downto 0);
BEGIN
uut: ALU_743811C PORT MAP (
S=>§5,
A=> A,
B=>8B,
F=>F
Cin =>Cin
);
stim_proc: process
begin
S<="000";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="001";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="010";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="011";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="100";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="101";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="110";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
S<="111";A<="1100";B<="1011";Cin<="1";wait for 50 ns;
end process;
END;

OUTPUT WAVEFORMS:

RTL SCHEMATIC:

ALU 74381IC DE ALU_ 74381IC_DF1
4 i Mmux_F3_B1

Data0(3.0 Resull(3:0)
Data1(3:0

Sel(0)

Mmux_F3 B1
ALU 743811C_DF ALU 743811C_DF

INTERNAL DIAGRAM OF DECADECOUNTER:

DEVICE UTILIZATION SUMMARY:

Number of Slices: 13 out of 4656 0%
Number of 4 input LUTS: 23 outof 9312 0%
Number of 10s: 16
Number of bonded IOBs: 16 outof 232 6%

SYNTHESIS REPORT:

RTL Top Level Output File Name : ALU_743811C.ngr
Top Level Output File Name - ALU_74381IC
Output Format :NGC
Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics
#10s

Cell Usage:

BELS

LUT3
LUT4
MULT_AND
MUXCY
MUXF5

10 Buffers
IBUF

#
#
#
#
XORCY
#
#
OBUF

RESULT:

Thus the VHDL code for ALU is verified, synthesis report is generated and the design is
implemented using FPGA

VIVA QUESTIONS:
1. Write the behavioral code for the IC 74x74.
Write the dataflow code for the IC 74x74.
What is the difference between sequential and combinational circuit?
What is a flip-flop?
Explain the functions of preset and clear inputs in flip-flop?
What is meant by a clocked flip-flop?
What is meant by excitation table?
What is the difference between flip-flop and latch?
What are the various methods used for triggering flip-flops?
10 Explain level triggered flip-flop?
11. Write the behavioral code for IC 74X74.
12. Write the syntax of IF statement?

© oo N~ LD

VLSI & ES LAB BLINKING LED’S AND PUSH BUTTON INTERFACE USING TM4CGH6PM

EXPERIMENT -7

BLINKING LED’S AND PUSH BUTTON INTERFACE USING
TM4CGH6PM

AIM:

To Write a C program for configuration of GPIO ports for Input and output operation (blinking
LEDs, push buttons interface) using TM4C123GXL Launch Pad.
a) Modify the code to make the red LED of EK-TM4C123GXL Launchpad blink.
b) Modify the code to make the green and red LEDs blink: I. Together II. Alternately
c) Alter the code to turn the LED ON when the button is pressed and OFF when it is released.
d) Modify the delay with which the LED blinks.
e) Alter the code to make the green LED stay ON for around 1 second every time the button is pressed.
f) Alter the code to turn the red LED ON when the button is pressed and the green LED ON when the
button is released.

APPARATUS:

1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GXL Launch Pad

PROCEDURE:

1. Connect the TM4C123GXL to the PC using the USB cable supplied.
2. Build, program and debug the code into the Launch Pad using CCS to view the
status of the green LED.

BLOCK DIAGRAM:

EK-TM4C123GXL LaunchPad EK-TM4C123GXL LaunchPad

TM4C123GH6PM TM4C123GHG6PM

CPU CcPU

Dept of ECE

VLSI & ES LAB BLINKING LED’S AND PUSH BUTTON INTERFACE USING TM4CGH6PM

Launch Pad Schematics for GPIO Connected to LEDs

PFO
PF1
PF2
PF3
PF4

LM4F120

USR_SW2
LED R

GPIO Pin Functions and USB Device Connected

GPIO Pin Pin Function USB Device

PF4 GPIO SW1

PFO GPIO SW2

PF1 GPIO RGB LED (Red)
PF2 GPIO RGB LED (Blue)

PF3 GPIO RGB LED (Green)

PROGRAM :

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_types.h"

#include "inc/hw_memmap.h"

#include "driverlib/sysctl.h"

#include "driverlib/pin_map.h"

#include "driverlib/debug.h"

#include "driverlib/gpio.h"

int main(void)

{

SysCtlClockSet(SYSCTL _SYSDIV_5|SYSCTL _USE PLL|ISYSCTL XTAL 16MHZ|
SYSCTL_OSC_MAIN);

SysCtlPeripheralEnable(SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF BASE,GPIO PIN 1|GPIO_PIN 2|GPIO PIN 3);
while(1){

GPIOPinWrite(GPIO_PORTF BASE,GPIO_PIN 1|GPIO PIN 2|GPIO_PIN 3, 0x08);
SysCtlDelay(20000000);

GPIOPinWrite(GPIO_PORTF BASE,GPIO _PIN 1|GPIO_PIN 2|GPIO_PIN 3, 0x00);
SysCtlDelay(20000000);

}
b

Dept of ECE

VLSI & ES LAB BLINKING LED’S AND PUSH BUTTON INTERFACE USING TM4CGH6PM

FLOW CHART:

D
:

Set clock Frequency

l

Enable GPIO F

l

Configure GPIO pin 3
as output

l

Toggle PF3

l

VIVA:

1. What is TM4C123GH6PM?

2. How many GPIO pins are there in TM4C123GH6PM?

3. What is the maximum clock frequency of TM4C123GH6PM?

4. What is the basic function of GPIO control?

5. What are the various development tools in the TIVA C series programming?

Dept of ECE

VLSI & ES LAB TIMER BASED INTERRUPT PROGRAMMING USING TM4C123GXL

EXPERIMENT -8

TIMER BASED INTERRUPT PROGRAMMING USING
TM4C123GXL

AIM:

To write a C program for EK-TM4C123GXL Launchpad and associated Timer ISR to toggle
onboard LED using interrupt programming technique.
a) Modify the code for a different timer toggling frequency.
b) Write the code to turn on interrupt globally.

APPARATUS:

1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GXL Launch Pad

PROCEDURE:

1. Connect the EK-TM4C123GXL to the PC using the USB cable supplied.
2. Build, program and debug the code into the EK-TM4C123GXL using CCS to
View the status of the green LED.

BLOCK DIAGRAM:

EK-TM4C123GXL
TMA4C123GH6PM

CPU

Dept of. ECE

VLSI & ES LAB TIMER BASED INTERRUPT PROGRAMMING USING TM4C123GXL

Launch Pad Schematics for GPIO Connected to LEDs

GPIO Pin Pin Function USE Device

PF4 GPIO SWi1

PFO GPIO SW2

PF1 GPIO RGB LED (Red)

PF2 GPIO RGE LED (Blue)

PF3 GPIO RGB LED (Green)

GPIO Pin Functions and USB Device Connected

PFO
PF1
PF2
PF3
PF4

LM4F120

L OB usr swe
0.4 Y LED R
LED B
LED G
USR_SW1

FLOW DIAGRAM:

START

Initialize temporary
variables Timer

¢ Interrupt

occurred?

Set clock frequency

.

Configure GPIO pin 3
as output ¢

Clear Timer Interrupt

i Read the current status

of GPIO pin
Configure the Timer L

¢ Write back the opposite
Enable the Timer state of the GPIO pin
Interrupt *

®

Dept of. ECE

VLSI & ES LAB TIMER BASED INTERRUPT PROGRAMMING USING TM4C123GXL

Calculation of timer period ui32Period
The timer counts for every clock cycle of system frequency.
The number of timer counts required to obtain a given frequency is calculated by
Number of clock cycles = System Clock Frequency / Desired Frequency
In the program, to toggle the GPIO at 10Hz and 50% duty cycle,
ui32Period = Number of clock cycles * Duty cycle = (40 MHz /10 Hz) / 2 =2 * 10° counts_
PROGRAM:
#include <stdint.h>
#include <stdbool.h>
#include "inc/tm4c123gh6pm.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/interrupt.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"
int main(void)
{
uint32 t ui32Period;
SysCtlClockSet(SYSCTL SYSDIV_5|SYSCTL _USE PLLISYSCTL XTAL 16MHZ|
SYSCTL_OSC_MAIN);
SysCtlPeripheralEnable(SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput(GPIO_PORTF BASE, GPIO PIN 1|GPIO_PIN 2|GPIO_PIN 3);
SysCtlPeripheralEnable(SYSCTL PERIPH TIMERO);
TimerConfigure(TIMERO BASE, TIMER CFG_PERIODIC);
ui32Period = (SysCtlClockGet() / 10) / 2;
TimerLoadSet(TIMERO BASE, TIMER A, ui32Period -1);
IntEnable(INT TIMEROA);
TimerIntEnable(TIMERO BASE, TIMER TIMA TIMEOUT);
IntMasterEnable();
b
TimerEnable(TIMERO BASE, TIMER _A);
while(1) { }
void TimerOIntHandler(void)
{ // Clear the timer interrupt
TimerIntClear(TIMERO BASE, TIMER TIMA TIMEOUT);
// Read the current state of the GPIO pin and write back the opposite state
if(GPIOPinRead(GPIO_PORTF BASE, GPIO PIN 2))
{ GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN 1|GPIO PIN 2|GPIO_PIN 3, 0);
b
else
{ GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN 2, 4);

b
b

Dept of. ECE

VLSI & ES LAB TIMER BASED INTERRUPT PROGRAMMING USING TM4C123GXL

RESULT:

VIVA:
1. What is watchdog timer?
2. What is an interrupt?

3. What are the various hardware and software type of interrupts in detail?
3. What is pooling?
4. What is predefined interrupts?

Dept of. ECE

VLSI & ES LAB HIBERNATION MODULE FOR TM4C123GH6PM MICROCONTROLLER

EXPERIMENT -9

HIBERNATION MODULE FOR TM4C123GH6PM
MICROCONTROLLER

To configure hibernation module of the TM4C123GH6PM microcontroller to place the device
in low power state and then to wake up the device on RTC (Real- Time Clock) Interrupt.

APPARATUS:

1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GH6PM Launch Pad

PROCEDURE:

. Connect the EK-TM4C123GXL to the PC using the USB cable supplied.
. Build, program and debug the code to view the status of the green LED.
. After 4 seconds, the green LED will switch off, indicating that the
TM4C123GH6PM device has gone into hibernation.
. Observe the status of the LED. After 5 seconds (RTC wake up time set in the code), the LED turns
ON, indicating the RTC has woken the processor.
. Also you can press and hold the SW2 button located at the lower right corner of the
EKTM4C123GXL to wake up the processor at any time.
. On wake up the green LED will turn ON again.

BLOCK DIAGRAM:

EK-TM4C123GXL
TMA4C123GH6PM

CPU

Dept of. ECE

VLSI & ES LAB HIBERNATION MODULE FOR TM4C123GH6PM MICROCONTROLLER

FLOW CHART:

%\D

Configure the RTC
wakeup parameters

Set clock freguency

h 4

Tum on the RTC and

set the wakepup ime
for S sec

b
Configure GPIO pin 3
as output

h 4
Add the wakeup pin to
the RTC

h 4
Write a High on to GPF1O <

pin Write Low on to GPIO
pin

h

Enable the hibemation .
module Enable hibernation

module

«
Setthe clock to the

hibernation module ()

h

Enable GPIO pin state
during hibemation

h

4 sec delay to observe
the LED

S

PROGRAM :

#include <stdint.h>

#include <stdbool.h>

#include "utils/ustdlib.h"
#include "inc/hw_types.h"
#include "inc/hw_memmap.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h"
#include "driverlib/debug.h"
#include "driverlib/hibernate.h"
#include "driverlib/gpio.h"

int main(void)

{

SysCtlClockSet(SYSCTL _SYSDIV_5|SYSCTL USE PLLISYSCTL XTAL 16MHZ|

Dept of. ECE

VLSI & ES LAB HIBERNATION MODULE FOR TM4C123GH6PM MICROCONTROLLER

SYSCTL_OSC_MAIN);

SysCtlPeripheralEnable(SYSCTL PERIPH GPIOF);
GPIOPinTypeGPIOOutput(GPIO PORTF BASE, GPIO PIN 1|GPIO_PIN 2|GPIO_PIN 3);
GPIOPinWrite(GPIO_PORTF BASE,GPIO_PIN 1|GPIO_PIN 2|GPIO _PIN 3, 0x08);
SysCtlPeripheralEnable(SYSCTL PERIPH HIBERNATE);
HibernateEnableExpClk(SysCtlClockGet());

HibernateGPIORetentionEnable();

SysCtlDelay(64000000);

HibernateRTCSet(0);

HibernateRTCEnable();

HibernateRTCMatchSet(0,5);

HibernateWakeSet(HIBERNATE WAKE PIN | HIBERNATE WAKE RTC);
GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN 3, 0x00);

HibernateRequest();

while(1){}

}

VIVA:
1. What is the Hibernation Module on Tiva Microcontrollers?
2. What is RTC?

3. What are the two mechanisms of Hibernation Module for power control?
4. What are the power modes of TM4C123GH6PM?
5. How Hibernation module power source is determined dynamically?

Dept of. ECE

VLSI & ES LAB IN-BUILD ADC OF TM4C123GH6PM & POTENTIOMETER WITH TM4C123GXL

EXPERIMENT - 10

IN-BUILD ADC OF TM4C123GH6PM & POTENTIOMETER WITH
TM4C123GXL

AIM:

To configure in build ADC of TM4C123GH6PM microcontroller and interface potentiometer with
EK-TM4C123GXL Launchpad to observe corresponding 12-bit digital value.

APPARATUS:
1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GH6PM Launch Pad

PROCEDURE:

1. Connect one lead of the potentiometer (Vece) to +3.3V DC Supply Voltage (J1 connector Pinl).

2. Connect the other lead of the potentiometer to the GND pin (J3 connector, Pin 2).

3. Connect the center lead of the potentiometer to pin PE3 which is the Analog Channel ANO (J3
connector, Pin 9).

4. The Millimeter can be probed at the center lead of the potentiometer to observe the analog voltage

input.
5. This configuration varies the Analog Voltage from OV to 3.3V depending on the wiper position on
PE3 which is the ANO or Analog Input 0 of the TM4C123GH6PM.

6. The current configuration connects the VREFP of ADC to VDDA which is 3.3V and VREFP to
GND which is OV.

7. Build, program and debug the code.

8. Vary the position of the potentiometer wiper and observe the corresponding digital output stored in
the register ui3on the CCS window.

BLOCK DIAGRAM:

Potentiometer

Dept of. ECE

VLSI & ES LAB IN-BUILD ADC OF TM4C123GH6PM & POTENTIOMETER WITH TM4C123GXL

TMA4C123GH6PM

CPU

Potentiometer

Design Calculations

For a 12-bit ADC, the range of the conversion values is from 0 to 4095 (0 to Oxfff in Binary).

With the Conversion voltage span and the bit range we can calculate the following

Resolution = 3.3V/ 4096 = 3300mV / 4096 = 0.8mV

The resolution is the change in voltage per unit change in ADC code

For example, if the digital code is equivalent to 1000 in decimal,

The equivalent analog voltage for 1000 = Resolution * decimal equivalent of the digital code = 0.8mV
*1000 =800 mV = 0.8V

PROGRAM :
#include<stdint.h>
#include<stdbool.h>
#include"inc/hw_memmap.h"
#include"driverlib/gpio.h"
#include"inc/hw_types.h"
#include"driverlib/debug.h"
#include"driverlib/sysctl.h"
#include"driverlib/adc.h"
// TO STORE THE VALUE IN VARIABLE ui32ADC0OValue FOR EVERY SAMPLING
uint32_ tui32ADCOValue[1];
intmain(void)
{
SysCtlClockSet(SYSCTL _SYSDIV_5|SYSCTL USE PLLISYSCTL OSC MAIN
SYSCTL XTAL 16MHZ);// SYSTEM CLOCK AT 40MHZ
SysCtlPeripheralEnable(SYSCTL PERIPH ADCO0); / ENABLE ADCO MODULE
SysCtlPeripheralEnable(SYSCTL PERIPH GPIOE);
MODULE // ENABLE GPIO for ADCO
GPIOPinTypeADC(GPIO_PORTE BASE,GPIO PIN 3);// ENABLE ANO OF ADCO

Dept of. ECE

VLSI & ES LAB IN-BUILD ADC OF TM4C123GH6PM & POTENTIOMETER WITH TM4C123GXL

MODULE

/I ADCO MODULE, TRIGGER IS PROCESSOR EVENT, SEQUENCER 0 IS
CONFIGURED ADCSequenceConfigure(ADCO BASE, 1, ADC_TRIGGER PROCESSOR, 0);
/I ADCO MODULE, SEQUENCER 0, FOR 1 SAMPLING, INPUT IS FROM CHANNEL 0
PE3 ADCSequenceStepConfigure(ADCO BASE, 1, 0, ADC_CTL CHO);

// ENABLE THE SEQUENCE 1 FOR ADCO

ADCSequenceEnable(ADCO _BASE, 1);

while(1) {

// CLEAR INTERRUPT FLAG FOR ADCO, SEQUENCER 1

ADCIntClear(ADCO_BASE, 1);

// TRIGGER IS GIVEN FOR ADC 0 MODULE, SEQUENCER 1
ADCProcessorTrigger(ADCO_BASE, 1);

// STORE THE CONVERTED VALUE FOR ALL DIFFERENT SAMPLING IN ARRAY
/i32ADCOValue

ADCSequenceDataGet(ADCO BASE, 1, ui32ADCO0Value); }

}

FLOW CHART:

C D
Il

Initialize temporary
variables

!

Set clock frequency

i

Enable GPIO E

.

Configure GPIO Pin 3
as ADC

Il

Configure ADC
Sequence

|
+

Set ADC Input Channel

Is
ADC Interrupt
occurred?

Clear ADC Interrupt

Il

Enable Processor Store the ADC value in
Trigger a variable

Dept of. ECE

VLSI & ES LAB IN-BUILD ADC OF TM4C123GH6PM & POTENTIOMETER WITH TM4C123GXL

RESULT:

VIVA:

1. What is ADC?

2. What is potentiometer?

3. What is Successive Approximation Register (SAR) architecture?
4. What are the TM4C123GH6PM ADC module features?

5. What is the use of Digital Comparator Unit in ADC module?

Dept of. ECE

VLSI & ES LAB PWM AND ADC MODULES OF TM4C123GH6PM MICROCONTROLLER

EXPERIMENT - 11

PWM AND ADC MODULES OF TM4C123GH6PM
MICROCONTROLLER

AIM:

To Configure the PWM and ADC Modules of TM4C123GH6PM Microcontroller for control the
speed of DC Motor with Potentiometer Output.

APPARATUS:

1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GH6PM Launch Pad

PROCEDURE:

. Position DIP IC ULN2003A on a Breadboard.
. Connect one terminal of the DC motor to the Common pin (IC Pin 9) of ULN2003.
. Connect the junction of the above 2 terminals to the VBUS (5V Power from USB)
(Available at J3 Connector Pin 1).
. Connect the other terminal of the DC motor to the Drive Pin (IC Pin 16) of ULN 2003.
. Connect J3 Connector Pin 2 (GND) to the Ground Pin (IC Pin 8) of ULN2003.
. Connect the PWM Output PDO (J3 connector Pin 3) to Input Signal (IC Pin 1) of ULN2003.
. Connect one lead of the Potentiometer to the +3.3V Supply Voltage (J1 connector, Pin 1).
. Connect other lead of the Potentiometer to the GND Pin of ULN2003 (IC Pin 8).
. Connect the center lead of the Potentiometer (variable analog output) to PE3 (J3 Connector Pin 9)
which is the ANO or Analog Input 0 of the Tiva TM4C123GH6PM.
10. Build, program and debug the code.
11. Vary the position of the potentiometer wiper and observe the corresponding digital output on the
CCS window.

12. Also, observe the PWM waveform at J3 connector pin 3 using an oscilloscope.
13. Observe the motion of the DC motor connected to the PWM output.

Dept of. ECE

PWM AND ADC MODULES OF TM4C123GH6PM MICROCONTROLLER

VLSI & ES LAB

BLOCK DIAGRAM:

EK-TM4C123GXL
TMA4C123GH6PM

CPU

Potentiometer

10KQ
Potentiometer

Analog Output for PWM Signal

-

Narrow
Pulse Width
High
Average
Voltage

PWM Output

Low
Average
Voltage

—
Time

Dept of. ECE

VLSI & ES LAB PWM AND ADC MODULES OF TM4C123GH6PM MICROCONTROLLER

Design Calculations

- The calculations for the configuration of ADC and PWM are as given below.

- This configuration varies the Analog Voltage from 0V to 3.3V depending on the wiper position on
PE3 which is the ANO or Analog Input 0 of the microcontroller.

- The current configuration connects the VREFP of ADC to VDDA which is 3.3V and VREFP to
GND which is OV.

- The range of the conversion values is from 0 to 4095 which is 0 to Oxfff in Binary since it is a 12- bit
ADC.

- With the Conversion voltage span and the bit range we can calculate the following

* Resolution = 3.3V/ 4096 = 3300mV / 4096 = 0.8mV

* Voltage per ADC code = 3.3V /4096

« If Digital Code = 1000 in decimal, multiply this value by resolution

* Equivalent Voltage for 1000 = 0.8mV *1000 = 800 mV = 0.8V

- Varying the Potentiometer changes the Digital Value between 0 and 4095.

- The PWM period is set to 4095 to match the resolution of the 12-bit ADC.

- The ADC value is read and directly passed onto the duty cycle configuration of the PWM register.
It is also possible to have other values, but necessary scaling has to be done.

Calculation for PWM

* System Clock = 40MHz

* PWM Clock = System Clock /64 = 625kHz

* PWM Period = 4095

* PWM frequency = PWM Clock / PWM Period = 152.63Hz

- The PWM can be varied as the ADC varies with a 12-bit resolution, and the PWM frequency is
152.63Hz.

PROGRAM :

#include<stdint.h>
#include<stdbool.h>
#include"inc/hw_memmap.h"
#include"inc/hw_types.h"
#include"driverlib/debug.h"
#include"driverlib/sysctl.h"
#include"driverlib/adc.h"
#include"inc/hw_types.h"
#include"driverlib/gpio.h"
#include"driverlib/pwm.h"
#include"driverlib/pin_map.h"
#include"inc/hw_gpio.h"
#include"driverlib/rom.h"
uint32_ tui32ADCOValue[1];
// TO STORE THE VALUE IN VARIABLE ui32ADCO0Value FOR EVERY SAMPLING
intmain(void)

Dept of. ECE

VLSI & ES LAB PWM AND ADC MODULES OF TM4C123GH6PM MICROCONTROLLER

{
SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL USE_PLL|SYSCTL_OSC_MAIN|

SYSCTL XTAL 16MHZ);// SET SYSTEM CLOCK AT 40MHZ
SysCtIPWMClockSet(SYSCTL PWMDIV_64); /SET PWM CLOCK AT SYSTEM CLOCK
DIVIDED BY 64

SysCtlPeripheralEnable(SYSCTL PERIPH PWMI1); /ENABLE PWM1 MODULE
SysCtlPeripheralEnable(SYSCTL PERIPH ADCO0); //ENABLE ADCO MODULE
SysCtlPeripheralEnable(SYSCTL PERIPH GPIOE);

MODULE /ENABLE GPIO FOR ADCO
GPIOPinTypeADC(GPIO PORTE BASE,GPIO PIN 3); /CONFIGURE PE3 AS ANO
SysCtlPeripheralEnable(SYSCTL PERIPH GPIOD);

MODULE /ENABLE GPIO FOR PWM1

GPIOPinTypePWM(GPIO PORTD_ BASE, GPIO PIN 0);

OUTPUT //CONFIGURE PD0O AS PWM

GPIOPinConfigure(GPIO_PD0_M1PWMO); //SET PD0O AS M1PWMO
PWMGenConfigure(PWMI1 BASE, PWM_GEN 0, PWM_GEN_MODE DOWN);

//SET PWM GENERATOR WITH MODEOF OPERATION AS COUNTING
PWMGenPeriodSet(PWM1 BASE, PWM_GEN 0,4095);

//SET THE PERIOD OF PWM GENERATOR

PWMOutputState(PWMI1_ BASE, PWM_OUT 0 BIT, true); /ENABLE BITO OUTPUT
PWMGenEnable(PWMI1 BASE, PWM_GEN 0); /ENABLE PWM GENERATOR
ADCSequenceConfigure(ADCO_BASE, 1, ADC_TRIGGER PROCESSOR, 0);

// ADCO MODULE, TRIGGER IS PROCESSOR EVENT, SEQUENCER 0 IS
CONFIGURED

ADCSequenceStepConfigure(ADCO BASE, 1, 0, ADC_CTL CHO);

// ADCO MODULE, SEQUENCER 0, FOR 1 SAMPLING, INPUT IS FROM CHANNEL 0
PE3

ADCSequenceEnable(ADCO BASE, 1);

// ENABLE THE SEQUENCE 1 FOR ADCO0

while(1)

{

ADClIntClear(ADCO_BASE, 1); / CLEAR INTERRUPT FLAG FOR ADCO0, SEQUENCER1

ADCProcessorTrigger(ADCO BASE, 1);

SEQUENCERI // TRIGGER IS GIVEN FOR ADCO MODULE,

// STORE THE CONVERTED VALUE FOR ALL DIFFERENT SAMPLING IN ARRAY
ui32ADCOValue

ADCSequenceDataGet(ADCO_BASE, 1, ui32ADC0Value);
PWMPulseWidthSet(PWM1 BASE, PWM OUT 0, ui32ADCO0Value[0]);

// SET THE PULSE WIDTH

I

Dept of. ECE

VLSI & ES LAB

PWM AND ADC MODULES OF TM4C123GH6PM MICROCONTROLLER

FLOW CHART:

(START)

Initialize temporary variables

Y ADC Interrupt
Set Clock And PWM Occurred?
Frequency

v

Enable GPIO D, GPIO E Clear ADC Interrupt

i Y
Configure Port D - GPIO Pin 0 Trigger ADC and store ADC
as PWM, Port E - GPIO Pin 3 value to a temporary variable

as ADC

\
Set ADC value as PWM Pulse
Width

y

Configure PWM mode and
Period

Y

Configure PWM output state
and enable PWM generation

Configure ADC Trigger,
Enable Sequence and
Sequence step for ADC

Dept of. ECE

VLSI & ES LAB PWM AND ADC MODULES OF TM4C123GH6PM MICROCONTROLLER

VIVA:

1. What is PWM (Pulse Width Modulation)?

2. How many PWM Modules are there in TM4C123GH6PM controller?

3. What are the two clock source options of PWM?

4. What are the two modes of PWM GENERATOR?

5. What is the difference between Count-Down mode and Count-Up/Down mode.?

Dept of. ECE

VLSI & ES LAB SENSORHUB BOOSTER PACK WITH TM4C123GXL

EXPERIMENT - 12

SENSORHUB BOOSTER PACK WITH TM4C123GXL

AIM:

To Learn and understand interfacing of accelerometer in Sensor Hub Booster pack with
TM4C123GXL Launch pad Using 12C.

APPARATUS:

1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GXL Launch Pad

PROCEDURE:

1. Install TivaWare.
2. Open CCS and create a new workspace.
3. Choose the Import Project link on the TI Resource Explorer page.
4. Import compdecm_mpu9150 project from TivaWare using the following steps:
a. Choose the Import Project link on the TI Resource Explorer page
b. Select the Browse button in the Import CCS Eclipse Projects dialog box
c. Select the compdem_mpu9150 directory within C:\ti\TivaWare C_Series-
2.1.0.12573\examples\boards\ek-tm4c123gxl-boostx-SENSHUB\compdcm_mpu9150.
5. Open compdecm_mpu9150.c and comment the portion from the Line No. 659 to 690.
The printing of all these values are commented and hence prevented to be sent to the
serial terminal.
6. Add the 3 lines of code given below after the commented portion. This is the code to print the x, y
and z values in the serial terminal. The code is now modified to print only the 3 axis values as x, y and
z.
7. Save, Build, Debug the Project and Run.
8. Configure Tera Term serial terminal for Baud rate 115200, Data bits 8, Stop Bit 1 and No Parity.
9. Build, program and debug the code into the LaunchPad using CCS.
10. The accelerometer sensor measurements are printed to the terminal Window
11. The RGB LED begins to blink at 1Hz after initialization is completed.
12. Tilt the LaunchPad with BoosterPack in different axes and observe the change in the x, y and z in
the terminal software.

Dept of. ECE

VLSI & ES LAB SENSORHUB BOOSTER PACK WITH TM4C123GXL

BLOCK DIAGRAM:

BOOSTXL_SENSHUB
BOOSTER PACK

w0 W

ft
-
‘.

P I F
(RRRLITY §
!

shasaddan i
YILEEFERY
YIEERRERF

Booster Sensor

MPU9150

Personal Computer

PROGRAM:

// Print the x,y,z measured in a table format.

UARTprintf("x=%3d.%03d\n", i321Part[0], i32FPart[0]);
UARTprintf("y=%3d.%03d\n", i321Part[1], i32FPart[1]);
UARTprintf("z=%3d.%03d\n", i32IPart[2], i132FPart[2]);

Dept of. ECE

VLSI & ES LAB

SENSORHUB BOOSTER PACK WITH TM4C123GXL

FLOW CHART:

{ START '

r

Configure and Initialize GPIO,

UART and I’C Peripherals in
TIVA

L
Initialize Motion Sensor
MPU9150 Driver

A

Write Application Specific

Motion Sensor MPU9150
Settings

>

Y

Is
Data Ready
Flag=1?7

Yes

DataReady Flag =0
Get Acceleration Value in Float
Increment Skip_counter

Skip_
counter
-

107

Skip_counter=0
Convert Float value to integer

Display in Serial Terminal

Dept of. ECE

VLSI & ES LAB SENSORHUB BOOSTER PACK WITH TM4C123GXL

VIVA:

1. What are the features of BOOSTXL-SENSHUB Booster Pack?
2. What is accelerometer sensor?

3. What is gyroscope sensor?

4. What is pressure and temperature sensor?

5. What is application of this experiment?

Dept of. ECE

EXPERIMENT -1

JK-FLIPFLOP USING VHDL
AIM: To design and simulate JK Flip-Flop using VHDL

SOFTWARE REOQOIURED:
1. Personal computer
2. ISE Xilinx software

HARDWARE REQUIRED:
1. SPARTAN - 3E KIT

THEORY:

This simple JK flip Flop is the most widely used of all the flip-flop designs and is considered to
be a universal flip-flop circuit. The two inputs labelled “J” and “K” are not shortened abbreviated
letters of other words, such as “S” for Set and “R” for Reset, but are themselves autonomous letters
chosen by its inventor Jack Kilby to distinguish the flip-flop design from other types.

The sequential operation of the JK flip flop is exactly the same as for the previous SR flip-flop
with the same “Set” and “Reset” inputs. The difference this time is that the “JK flip flop” has no invalid
or forbidden input states of the SR Latch even when S and R are both at logic “1”".

The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry that
prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to
logic level “1”. Due to this additional clocked input, a JK flip-flop has four possible input
combinations, “logic 17, “logic 0”, “no change” and “toggle”. The symbol for a JK flip flop is similar
to that of an SR Bistable Latch as seen in the previous tutorial except for the addition of a clock input.

CIRCUIT DIAGRAM:

TRUTH TABLE:

PROGRAM IN VHDL:

BEHAVIORAL.:
library ieee;
use ieee. std_logic_1164.all;
use ieee. std_logic_arith.all;
use ieee. std_logic_unsigned.all;
entity JK_FF is
PORT (J, K, CLOCK: in std_logic;
Q, QB: out std_logic);

nd JK_FF;
Architecture behavioral of JK_FF is
begin
PROCESS (CLOCK)
variable TMP: std_logic;
begin
if (CLOCK="1"and CLOCK'EVENT) then
if (J='0"and K='0")then TMP:=TMP;
elsif (J="1'and K="1Ythen = TMP:=not TMP;
elsif (J='0"and K="1then =~ TMP:='0";
else TMP:='1
end if;
end if;
Q<=TMP;
QB <=not TMP;
end PROCESS;
end behavioral;

VHDL TEST BENCH:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL,;

ENTITY JK_FF_TB IS

END JK_FF_TB;

ARCHITECTURE behavior OF JK_FF_TB IS
COMPONENT JK_FF

PORT(
J:IN std_logic;
K:IN std_logic;
CLOCK : IN std_logic;
Q : OUT std_logic;
QB : OUT std_logic
);

END COMPONENT;
signal J : std_logic :="0";
signal K : std_logic :='0";
signal CLOCK : std_logic :='0";

signal Q : std_logic;
signal QB : std_logic;
BEGIN
uut: JK_FF PORT MAP (
J=>],

K =>K,
CLOCK => CLOCK,
Q=>Q,

QB=>QB

);
stim_proc: process
begin

J<='0"; K<="1"; CLOCK<="1";WAIT FOR 100 NS;
J<='0"; K<='1"; CLOCK<='0"; WAIT FOR 100 NS;
J<="1"; K<='0"; CLOCK<="1";WAIT FOR 100 NS;
J<="1"; K<='0"; CLOCK<="'0"; WAIT FOR 100 NS;
J<='0"; K<='0"; CLOCK<="1";WAIT FOR 100 NS;
J<='0"; K<='0"; CLOCK<='0"; WAIT FOR 100 NS;
J<="1"; K<="1"; CLOCK<="1"; WAIT FOR 100 NS;
J<="1"; K<="1"; CLOCK<='0"; WAIT FOR 100 NS;

end process;

END;

OUTPUT WAVEFORMS:

RTL SCHEMATIC:

JK FF:A

and? TMP_mux0002_imp

i
0
0
TP a0

TMP_and0001_imp_TMP_and00011 Jz__

| | T it

QB _imp QB1

THP g0l

TMP_mux0002_imp

and2b1 inv
i

D) o

TP and0002 imp. THP anaogy | 1 -ol000T.imp_THIP_nof0ootd

andzh?

TMP_and0000_imp_TMP_andd0001

INTERNAL DIAGRAM OF D FLIPFLOP:

obur

[~

QB1_INV_0 QB_OBUF

™ P_mux 00021

TMP_not00011

CLOCK_BUFGP

DEVICE UTILIZATION SUMMARY

Number of Slices: 2 outof 4656 0%
Number of Slice Flip Flops: loutof 9312 0%
Number of 4 input LUTS: 3outof 9312 0%
Number of 10s: 5

Number of bonded 10Bs: Soutof 232 2%
Number of GCLKSs: loutof 24 4%

SYNTHESIS REPORT:
RTL Top Level Output File Name : JK_FF.ngr
Top Level Output File Name - JK_FF
Output Format :NGC
Optimization Goal : Speed
Keep Hierarchy : No
Design Statistics
#10s
Cell Usage:

BELS

INV

LUT2

LUT3

Flip-flops/Latches
FDE

Clock Buffers
BUFGP

10 Buffers

IBUF

OBUF

NNDARPRPRPRPRRERRER®W

RESULT:
Thus the VHDL code for JK Flip-Flop is verified, synthesis report is generated and the design
is implemented using FPGA.

VIVA QUESTIONS:
1. What is the use of JK flip flop?
. What is the significance of the J and K terminals on the JK flip flop?
. What does the triangle on the clock input of a JK flip flop mean?
. What is toggle State in JK flip flop?
. What are the advantages and disadvantages of JK flip flop?

EXPERIMENT -2
ECHO OF THE DATA INPUT BACK TO THE PC USING UART

AlIM:

To connect TM4C123GXL Launch pad to the PC Terminal and send an echo of the data input
back to the PC Using UART
APPARATUS:

1. Software Required: Code Composer Studio (CCS)
2. Hardware Required: TIVA TM4C123GXL Launch Pad

PROCEDURE:

1. Connect the EK-TM4C123GXL to the PC using the USB cable supplied.

2. Build, program and debug the code.

3. Open Tera Term UART terminal window and configure which is explained.
4. Type characters on the keyboard and observe the terminal window.

THEORY:

The universal asynchronous receiver-transmitter (UART) takes bytes of data and transmits the
individual bits in a sequential fashion. At the destination, a second UART re-assembles the bits into
complete bytes. Each UART contains a shift register, which is the fundamental method of conversion
between serial and parallel forms. Serial transmission of digital information (bits) through a single
wire or other medium is less costly than parallel transmission through multiple wires.

The UART usually does not directly generate or receive the external signals used between
different items of equipment. Separate interface devices are used to convert the logic level signals of
the UART to and from the external signalling levels, which may be standardized voltage levels,
current levels, or other signals.

Communication may be simplex (in one direction only, with no provision for the receiving
device to send information back to the transmitting device), full duplex (both devices send and receive
at the same time) or half duplex (devices take turns transmitting and receiving).

BLOCK DIAGRAM:

EK-TM4C123G XL

TMA4C123GH6PM
Display

CPU
=

UsB
Connector

Port:

Baud rate:

Data:

Parity:

Stop:

Flow control:

Transmit delay

D msecichar msecfline

L

PROGRAM :

#include<stdint.h>

#include<stdbool.h>

#include"inc/hw_memmap.h"

#include"inc/hw_types.h"

#include"driverlib/gpio.h™

#include"driverlib/pin_map.h"

#include"driverlib/sysctl.h"

#include"driverlib/uart.h"

#define GPIO_PAO_UORX 0x00000001 // UART PIN ADDRESS FOR UART RX
#define GPIO_PA1_UOTX 0x00000401 // UART PIN ADDRESS FOR UART TX
{// SYSTEM CLOCK AT 40 MHZ
SysCtIClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|
SYSCTL_XTAL_16MHZ); /l ENABLE PERIPHERAL UART

0

SysCtlPeripheralEnable(SYSCTL_PERIPH_UARTO);
SysCtIPeripheralEnable(SYSCTL_PERIPH_GPIOA); // ENABLE GPIO PORT A,FOR
UART

GPIOPinConfigure(GP10_PAQO_UORX); // PA0 IS CONFIGURED TO UART RX
GPIOPinConfigure(GP10O_PAL1 _UOTX); // PAL1 IS CONFIGURED TO UART TX
GPIOPinTypeUART(GPIO_PORTA _BASE, GPIO_PIN_0 | GPIO_PIN_1);

/l CONFIGURE UART, BAUD RATE 115200, DATA BITS 8, STOP BIT 1, PARITY NONE
UART ConfigSetExpCIk(UARTO_BASE, SysCtIClockGet(), 115200,
(UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE));

UARTCharPut(UARTO_BASE, 'E'); UARTCharPut(UARTO_BASE, 'c";
UARTCharPut(UARTO_BASE, 'h"); UARTCharPut(UARTO_BASE, '0;

// SEND "Echo Output: " IN UART

UARTCharPut(UARTO_BASE, '); UARTCharPut(UARTO_BASE, 'O");
UARTCharPut(UARTO_BASE, 'u"); UARTCharPut(UARTO_BASE, '1);
UARTCharPut(UARTO_BASE, 'p'); UARTCharPut(UARTO_BASE, 'u’);
UARTCharPut(UARTO_BASE, 't"); UARTCharPut(UARTO_BASE, " ;
UARTCharPut(UARTO_BASE, '"); UARTCharPut(UARTO_BASE, '\n’);
while (1)

{//UART ECHO -

what is received is transmitted back //

if (UARTCharsAvail(UARTO_BASE)) UARTCharPut(UARTO_BASE,
UARTCharGet(UARTO_BASE)); } }

FLOW CHART:

| START |

b

Set clock Fregquency

L i
Enable GPIO A Pin 0
and Pin 1 as UART

¥
Configure GPIO Pin O

as Receiver and GPIID
Pin 1 as Transmitter

v

Configure Baudrate

and Data format for
UART

¥

Set as Default Message

(A—]

Is Controller

received a message
from PC

Send it back to the PC

RESULT:

VIVA:

. What is UART?
. What are different modes for the communication of UART?
. What is UART baud rate?
. What is a serial and parallel communication?
How may UART modules are there in TM4C123GH6PM controller?

	Department of Electronics and Communication Engineering
	IV B. Tech (ECE) I Semester 2021-22
	Vision
	Mission

	LABORATORY INSTRUCTIONS
	Precautions.
	INDEX
	TEXT BOOKS:
	T1: 1. Kamran Eshraghian, Eshraghian Douglas and A. Pucknell, “Essentials of VLSI circuits and systems”, PHI, 2013 Edition.
	2. K.Lal Kishore and V.S.V. Prabhakar, “VLSI Design”, IK Publishers
	T2: 1. Embedded Systems: Real-Time Interfacing to ARM Cortex-M Microcontrollers, 2014, Create space publications ISBN: 978-1463590154.
	2. Embedded Systems: Introduction to ARM Cortex - M Microcontrollers, 5th edition Jonathan W Valvano, Createspace publications ISBN-13: 978-1477508992
	3. Embedded Systems 2E Raj Kamal, Tata McGraw-Hill Education, 2011 ISBN
	0070667640, 9780070667648

	SOFTWARE REQUIRED:
	PROCEDURE:
	# Create new project.
	PIN DIAGRAM:
	PIN DIAGRAM:
	PIN DIAGRAM:
	PIN DIAGRAM:
	CIRCUIT DIAGRAM:
	CIRCUIT DIAGRAM:
	EXPERIMENT – 2
	ECHO OF THE DATA INPUT BACK TO THE PC USING UART
	PROCEDURE:
	THEORY:
	BLOCK DIAGRAM:
	PROGRAM :
	FLOW CHART:
	RESULT:
	VIVA:

