

SVR ENGINEERING COLLEGE

Approved by AICTE & Permanently Affiliated to JNTUA Ayyalurmetta, Nandyal – 518503. Website: www.svrec.ac.in

Department of Electronics and Communication Engineering

DIGITAL SIGNAL PROCESSING LABORATORY (R 15) III B.Tech (ECE) II Semester A Y - 2020-21

STUDENT NAME	
ROLL NUMBER	
SECTION	

DIGITAL SIGNAL PROCESSING LAB

SVR ENGINEERING COLLEGE

Approved by AICTE & Permanently Affiliated to JNTUA

Ayyalurmetta, Nandyal – 518503. Website: <u>www.svrec.ac.in</u> **Department of Electronics and Communication Engineering**

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

CERTIFICATE

ACADEMIC YEAR: 2020-21

This	is	to	certify	that	the	bonafide	record	work	done by
Mr./N	As								bearing
H.T.N	Vo			0	f II B	B.Tech II Se	emester in	the]	Digital signal

processing Laboratory

Faculty In-Charge

Head of the Department

INDEX

<u>S.No.</u>	Name of the Experiment	Page No.
	Minimum of 5 experiments are to be conducted from each	
	Part - Software Experiments (PART – A)	
1	Generation of random signal and plot the same as a waveform showing all the	17-18
	specifications	
2	Finding Power and (or) Energy of a given signal.	19-20
3	Convolution and Correlation (auto and cross correlation) of discrete sequences	21-29
	without using built in functions for convolution and correlation operations.	
4	DTFT of a given signal	30-45
5	N – point FFT algorithm	46-47
6	Design of FIR filter using windowing technique and verify the frequency	48-54
	response of the filter	
7	Design of IIR filter using any of the available methods and verify the frequency	55-57
	response of the filter.	
8	Design of analog filters.	58-59
	Using DSP Processor kits (Floating point) and Code Composure Studio	
	(CCS) (PART – B)	
1	Generation of random signal and plot the same as a waveform showing all the	72-73
	specifications.	
2	Finding Power and (or) Energy of a given signal.	74-75
	Design of FIR filter using windowing technique and verify the frequency	
	response of the filter.	
3	Convolution and Correlation (auto and cross correlation) of discrete sequences	76-80
	without using built in functions for convolution and correlation operations.	
4	DTFT of a given signal	81
5	N – point FFT algorithm	82-84
6	Design of FIR filter using windowing technique and verify the frequency	85
	response of the filter	
7	Design of IIR filter using any of the available methods and verify the frequency	86-87
	response of the filter.	
8	Design of analog filters.	88-89

DIGITAL SIGNAL PROCESSING LAB III B TECH II SEM JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B. Tech III-II Sem. (ECE) L T P C 0042

(15A04608) DIGITAL SIGNAL PROCESSING LABORATORY

Course Outcomes:

- Able to design real time DSP systems and real world applications.
- Able to implement DSP algorithms using both fixed and floating point processors.

List of Experiments: (Minimum of 5 experiments are to be conducted from each part)

Software Experiments (PART – A)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- 3. Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- 6. Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters.

Using DSP Processor kits (Floating point) and Code Composure Studio (CCS) (PART – B)

- 1. Generation of random signal and plot the same as a waveform showing all the specifications.
- 2. Finding Power and (or) Energy of a given signal.
- 3. Convolution and Correlation (auto and cross correlation) of discrete sequences without using built in functions for convolution and correlation operations.
- 4. DTFT of a given signal
- 5. N point FFT algorithm
- 6. Design of FIR filter using windowing technique and verify the frequency response of the filter.
- 7. Design of IIR filter using any of the available methods and verify the frequency response of the filter.
- 8. Design of analog filters

Equipment/Software Required:

1. Licensed MATLAB software with required tool boxes for 30 users.

2. DSP floating Processor Kits with Code Composure Studio (8 nos.),Function generators,CROs,Regulated Power Supplies

DIGITAL SIGNAL PROCESSING LAB III B TECH II SEM ECE DEPT VISION & MISSION PEOS and PSOS

<u>Vision</u>

To produce highly skilled, creative and competitive Electronics and Communication Engineers to meet the emerging needs of the society.

Mission

- Impart core knowledge and necessary skills in Electronics and Communication Engineering through innovative teaching and learning.
- > Inculcate critical thinking, ethics, lifelong learning and creativity needed for industry and society
- Cultivate the students with all-round competencies, for career, higher education and selfemployability

I. PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

- PEO1: Graduates apply their knowledge of mathematics and science to identify, analyze and solve problems in the field of Electronics and develop sophisticated communication systems.
- PEO2: Graduates embody a commitment to professional ethics, diversity and social awareness in their professional career.
- PEO3: Graduates exhibit a desire for life-long learning through technical training and professional activities.

II. PROGRAM SPECIFIC OUTCOMES (PSOS)

- PSO1: Apply the fundamental concepts of electronics and communication engineering to design a variety of components and systems for applications including signal processing, image processing, communication, networking, embedded systems, VLSI and control system
- PSO2: Select and apply cutting-edge engineering hardware and software tools to solve complex Electronics and Communication Engineering problems.

III. PROGRAMME OUTCOMES (PO'S)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

ECE DEPT.

SVR ENGINEERING COLLEGE

DIGITAL SIGNAL PROCESSING LAB

III B TECH II SEM

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

IV. COURSE OBJECTIVES

 \diamond To provide background and fundamental material for the analysis and processing of

digital signals.

 \diamond To familiarize the relationships between continuous-time and discrete time signals

and systems.

♦ To study fundamentals of time, frequency and Z-plane analysis and to discuss the

inter-relationships of these analytic method.

✤ To study the designs and structures of digital (IIR and FIR) filters from analysis to

synthesis for a given specifications.

 \diamond To introduce a few real-world signal processing applications.

♦ To acquaint with DSP processor

DIGITAL SIGNAL PROCESSING LAB

V. <u>COURSE OUTCOMES</u>

After the completion of the course students will be able to

Course	Course Outcome statements	BTL
Outcomes		
CO1	To Review of discrete-time signals and systems and DFT	L1
CO2	Computation of DFT & FFT	L2
CO3	To study the realization of digital filters	L3
CO4	To study the IIR &FIR filters	L4
CO5	To know and study DSP Processors	L5

VI.COURSE MAPPING WITH PO'S AND PEO'S

Course Title	P0 1	P 02	P0 3	P0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P0 10	P 0 11	P 0 12	P E 0 1	P E 0 2
DSP Lab	2.2	2.6	2.2	2.4	2.6	2.2	1.4	2	2.0	2.2	2.2	2.6	2.6	2.4

V MAPPING OF COURSE OUTCOMES WITH PEO'S AND PO'S

Course Title	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P0 10	P 0 11	P 0 12	P E 0 1	P E 0 2
CO1	3	3			2		1	3	3	3	3	1	3	2
CO2	3	3		3	3	2	3		1	2	1	1	3	2
CO3	3	3	2	3	3	2	2	1	2	2		2	3	2
CO4	3	1	2	3	3	2	3	1	2	2	1	2	3	2
CO5	3	3		2			2	3	3		3	1	3	2

DIGITAL SIGNAL PROCESSING LAB III B TECH II SEM LABORATORY INSTRUCTIONS

1. While entering the Laboratory, the students should follow the dress code. (Wear shoes and White apron, Female Students should tie their hair back).

2. The students should bring their observation book, record, calculator, necessary stationery items and graph sheets if any for the lab classes without which the students will not be allowed for doing the experiment.

3. All the Equipment and components should be handled with utmost care. Any breakage or damage will be charged.

4. If any damage or breakage is noticed, it should be reported to the concerned in charge immediately.

5. The theoretical calculations and the updated register values should be noted down in the observation book and should be corrected by the lab in-charge on the same day of the laboratory session.

6. Each experiment should be written in the record note book only after getting signature from the lab in-charge in the observation notebook.

7. Record book must be submitted in the successive lab session after completion of experiment.

8. 100% attendance should be maintained for the laboratory classes.

Precautions.

- 1. Check the connections before giving the supply
- 2. Observations should be done carefully

DIGITAL SIGNAL PROCESSING LAB

9

Day to Day Observations

S.NO	Name of the experiment	Page No.	Performed Date	Date of submission	Marks	Faculty Sgnature
1	Generation of random signal and	16-17				
	plot the same as a waveform					
	showing all the specifications					
2	Finding Power and (or) Energy	18-19				
	of a given signal.					
3	Convolution and Correlation	20-28				
	(auto and cross correlation) of					
	discrete sequences without using					
	built in functions for convolution					
	and correlation operations.					
4	DTFT of a given signal	29-44				
5	N – point FFT algorithm	45-46				
6	Design of FIR filter using	47-53				
	windowing technique and verify					
	the frequency response of the					
	filter					
7	Design of IIR filter using any of	54-56				
	the available methods and verify					
	the frequency response of the					
	filter.					
8	Design of analog filters.	57-58				
9	Generation of random signal and	71-72				
	plot the same as a waveform					
	showing all the specifications.					
10	Finding Power and (or) Energy	73-74				
	of a given signal.					
	Design of FIR filter using					
	windowing technique and verify					
	the frequency response of the					
	filter.					
11	Convolution and Correlation	75-78				
ECE DEP	(auto and cross correlation) of C. SVR ENGI discrete sequences without using	NEERI	NG COLLEG	E		
	built in functions for convolution					
					1	

DIGITAL SIGNAL PROCESSING LAB

	and correlation operations.			
12	DTFT of a given signal	79		
13	N – point FFT algorithm	80-82		
14	Design of FIR filter using windowing technique and verify the frequency response of the filter	83-84		
15	Design of IIR filter using any of the available methods and verify the frequency response of the filter.	85-86		
16	Design of analog filters.	87-88		

WORKING PROCEDURE WITH MATLAB:

1) Double click on Matlab icon. -> Then Matlab will be opened

2) To write the Matlab Program

Goto file menu-> New -> Script(Mfile) -> In the opened Script file write the Matlab code and save the file with an extension of .m

Ex: "linear.m"

3)To execute Matlab Program Select the all lines in matlab program(ctrl+A) of mfile and press "F9"

to execute the matlab code

4)Entering the inputs in command window

□ If the command window is displaying the message like "enter the input sequence" then

enter the sequence with square brackets and each sample values is spaced with single space

Ex: Enter input sequence [1 2 3 4] If it is asking a value input write the value without brackets

Ex: "enter length of sequence 4" After entering inputs It displays the Output Graphs.

PROCEDURE TO WORK ON CODE COMPOSER STUDIO PROCEDURE FOR EXECUTING NON REAL TIME PROGRAMS (EX: LINEAR & CIRCULAR CONVOLUTION, FFT, PSD)

Test the USB port by running DSK Port test from the start menu

 $Use \; Start \square Programs \square Texas \; Instruments \square Code \; Composer \; Studio \square Code \; Code \; Studio \square Code \; Studio \square$

CDSK6713 Tools DSK6713 Diagnostic Utilities

□ Select □ Start □ Select DSK6713 Diagnostic Utility Icon from Desktop

□ Select Start Option

□ Utility Program will test the board

□ After testing Diagnostic Status you will get **PASS**

To create the New Project

Project
New (File Name. pjt, Eg: Vectors.pjt)

ECE DEPT. SVR ENGINEERING COLLEGE

DIGITAL SIGNAL PROCESSING LABIII B TECH II SEMTo Create a Source file -- File New Type the code (Save & give file name, Eg: sum.c).

To Add Source files to Project

Project
Add files to Project
c/ccs studio3.1/my projects/your project name/

sum.c(select the file type as c/c++ source files)

To Add rts.lib file & hello.cmd:

- Project □ Add files to Project □rts6700.lib
- (Path:c/ccs studio3.1/cg tools/c6000/lib/ rts6700.lib)
- Note: Select Object & Library in(*.o,*.l) in Type of files
- Project □ Add files to Project □ hello.cmd
- CMD file Which is common for all non real time programs.
- (Path: c/ccs studio3.1\tutorial\dsk 6713 \hello1\hello.cmd)
- Note: Select Linker Command file(*.cmd) in Type of files

Compile:

- To Compile: Project
 Compile project
- **To Build:** Project □ build project,
- **To Rebuild:** Project □ rebuild,
- Which will create the final .out executable file.(Eg. Vectors.out).

Procedure to Load and Run program:

- Load the program to DSK: File \Box Load program \Box Vectors. out
- To Execute project: Debug \Box Run.
- 1. Execution should halt at break point.
- 2. Now press F10. See the changes happening in the watch window.
- 3. Similarly go to view & select CPU registers to view the changes happening in CPU registers.
- Configure the graphical window as shown below

SVR ENGINEERING COLLEGE

DIGITAL SIGNAL PROCESSING LAB INPUT :

 $\mathbf{x}[\mathbf{n}] = \{1, 2, 3, 4, 0, 0, 0, 0\}$

 $h[k] = \{1, 2, 3, 4, 0, 0, 0, 0\}$

OUTPUT:

💀 Graph Property Dia	alog 🔀	CONVOLUTION OUTPUT	<u> – D ×</u>
Display Type	Single Time 🛋 🔺	25.0	
Graph Title	CONVOLUTION OUTPUT		
Start Address	Y	16.7-	\sim
Acquisition Buffer Size	7		
Index Increment	1	8.33-	
Display Data Size	7		
DSP Data Type	16-bit signed integer		
Q-value	0		
Sampling Rate (Hz)	1		
Plot Data From	Left to Right	-0.337	
Left-shifted Data Display	Yes	3	
Autoscale	On	-16.7-	
DC Value	0		
A Diseten	o 🔟	-25.01	
	1K Cancel Help	0 1.50 3.00	4.50 6.00
		(0, 1) Time	Lin Auto Sc

b)PROCEDURE FOR EXECUTING REAL TIME PROGRAMS (EX:IIR FILTERS,FIR FILTERS DESIGNING)

CONNECTING DSP PROCESSOR TO PC

- \Box Connect the dsp processor to the pc using usb cable connector.
- □ Check the DSK6713 diagnostics (IF you get the "pass"then click on ok).
- \Box Click on ccs studio3.1 desk top icon. Then the window will be opened.
- □ Go to debug click on connect (then target device will be connected to pc)

TO CREATE PROJECT

- □ Project new given project name and select the family'TMS320C67XX'Then click ok
- □ File new source file write down the 'c'program and save it with.'c' extension in current project file
- □ File new dsp/bios.config file select dsk67xx click on dsk6713 and save it in current project.
- □ Project add files to project add source file
- □ Project add files to project add library file by following the given path

 $\hfill\square$ Project add files to the project . Add the configuration file.

 \Box Now files are generated and included in generated files . in that open the 3rd file, and copy the

header file and paste it in source file. Copy the include files named as "dsk6713.h" and

"dsk6713_aic23.h" paste it in current project folder.

- □ Now compile project.(project compile)
- □ Project build.
- \Box Project rebuild all.
- □ File load program project name.pjt debug "project name .out" file click on open debug click on run
- \Box Now apply the input sine wave to line in of dsk6713 kit.
- \Box Observe the output at line out of dsk6713 by using CRO.

INTRODUCTIONTO MATLAB

MATLAB: MATLAB is a software package for high performance numerical computation and visualization provides an interactive environment with hundreds of built in functions for technical computation, graphics and animation .

The MATLAB name stands for Matrix Laboratory.

It also allows you to put a list of your processing requests together in a file and save that combined list with a name so that you can run all of those commands in the same order at some later time. Furthermore, it allows you to run such lists of commands such that you pass in data and/or get data back out (i.e. the list of commands is like a function in most programming languages). Once you save a function, it becomes part of your toolbox (i.e. it now looks to you as if it were part of the basic toolbox that you started with).

For those with computer programming backgrounds: Note that MATLAB runs as an interpretive language (like the old BASIC). That is, it does not need to be compiled. It simply reads through each line of the function, executes it, and then goes on to the next line. (In practice, a form of compilation occurs when you first run a function, so that it can run faster the next time you run it.)

MATLAB Windows :

MATLAB works with through three basic windows

Command Window : This is the main window .it is characterized by MATLAB command prompt >> when you launch the application program MATLAB puts you in this window all commands including those for user-written programs ,are typed in this window at the MATLAB prompt

Graphics window: the output of all graphics commands typed in the command window are flushed to the graphics or figure window, a separate gray window with white background color the user can create as many windows as the system memory will allow

Edit window: This is where you write edit, create and save your own programs in files called M files.

Input-output:

MATLAB supports interactive computation taking the input from the screen and flushing, the output to the screen. In addition it can read input files and write output files

Data Type: the fundamental data –type in MATLAB is the array. It encompasses several distinct data objects- integers, real n umbers, matrices, charcter strings, structures and cells. There is no need to declare variables as real or complex,

MATLAB automatically sets the variable to be real.

Dimensioning: Dimensioning is automatic in MATLAB. No dimension statements are required for vectors or arrays .we can find the dimensions of an existing matrix or a vector with the size and length commands.

<u>1. Generation of random signal and plot the same as a waveform showing all the specifications.</u>

Aim: To generate random signal and plot the same as a waveform showing all the specifications.

APPARATUS: PC with MATLAB Software.

PROCEDURE:

1. OPEN MATLAB

2. File >>New >>Script - Type the program in untitled window

3. File >>Save >> type filename.m in matlab workspace path

4. Debug >>Run. Wave will display at Figure dialog box.

Program:

N=input('Enter the value of N:');

n=0:N-1;

x=randn(1,N);

figure;

subplot(2,1,1);

plot(n,x);

xlabel('n');

ylabel('x');

title('Continuous Random signal');

subplot(2,1,2);

stem(n,x);

xlabel('n');

ylabel('x');

title('Discrete Random signal');

Output :--

Result : Random signal and plot the same as a waveform showing all the specifications.

VIVA VOCE

1. Random variables give relationship between _____Random event and a real number

2. Which gives the measure of randomness of the random variable?--Variance gives the randomness of the random variable. It is the difference between the mean square value and square of the mean.

3. Random process is a function of _____Random event and time

4. A random process is called as stationary in strict sense if-- Its statistics vary with shift in time origin

5. For a stationary process, auto correlation function depends on--Time difference

2) Finding Power and (or) Energy of a given signal

Aim : To find the Power and (or) Energy of a given signal

APPARATUS: PC with MATLAB Software.

PROCEDURE:

1. OPEN MATLAB

2. File >>New >>Script - Type the program in untitled window

3. File >>Save >> type filename.m in matlab workspace path

4. Debug >>Run. Wave will display at Figure dialog box.

Program:

%Energy of the Discrete Time Signal n=0:1:50; x=(1/2).^n; figure; subplot(2,1,1);

stem(n,x);

axis([0 25 0 1]);

disp('The Calculated Energy E of the Signal is ');

 $E=sum(abs(x).^2);$

disp(E);

%Power of the Discrete Time Signal

f=input('enter the frequency = ');

fs=10*f;

n1=0:1/fs:1;

ss=sin(2*pi*f*n1);

disp('The Calculated Power p of the Signal is ');

p=sum(abs(ss).^2)/length(ss);

subplot(2,1,2);

ECE DEPT.

DIGITAL SIGNAL PROCESSING LAB stem(n1,ss)

disp(p);

Output : The Calculated Energy E of the Signal is 1.3333

enter the frequency = 100

The Calculated Power p of the Signal is 0.4995

Result: Power and (or) Energy of a given signal calculated.

VIVA VOCE

1) The signal power of the periodic rectangular pulses of height 1 and width 1, is _

The signal power in the given signal using Parsevals's relation is $P=1t\int T0x2(t)dt = 12\int 101.dt = 0.5$ W.

2) The signal power of the signal x (t) = $2\sin 2t + 4\sin 4t + 6\cos 4t + 2\cos 2t$ with period 0.5 is __Signal power = 0.5(22 + 42 + 62 + 22) = 0.5(4 + 16 + 36 + 4) = 0.5(20 + 40) = 30 W.

3) A signal is a power signal if the signal has average power equal to _Finite

A signal is said to be a power signal if and only if the average power of the signal is finite. In other words, we can say that a signal is a power signal if the energy of the signal is infinite, i.e., $E = \infty$.

4) The energy in the time-domain representation of a signal is the same as in the frequency domain representation normalized by 2π

5) A periodic signal has power P/4 equal to average energy per period then rms value of signal is $\sqrt{P/2}$

3) Convolution and correlation(auto and cross correlation)of discrete sequence without using built in functions for convolutions and correlation operations.

Aim : To write a matlab program for Convolution and correlation(auto and cross correlation)of discrete sequence without using built in functions for convolutions and correlation operations.

APPARATUS: PC with MATLAB Software.

PROCEDURE:

```
1. OPEN MATLAB
```

2. File >>New >>Script - Type the program in untitled window

3. File >>Save >> type filename.m in matlab workspace path

4. Debug >>Run. Wave will display at Figure dialog box.

Program:

```
%Linear Convolution
clc;
clear all;
close all;
disp('linear convolution program');
x=input('enter i/p x(n):');
m=length(x);
h=input('enter i/p h(n):');
n=length(h);
x=[x, zeros(1,n)];
11=0:length(x)-1;
subplot(2,2,1);
stem(11,x);
title('i/p sequence x(n)is:');
xlabel('--->n');
ylabel('---->x(n)');grid;
h=[h, zeros(1,m)];
ECE DEPT.
```

III B TECH II SEM

DIGITAL SIGNAL PROCESSING LAB 12=0:length(h)-1;

subplot(2,2,2); stem(l2,h); title('i/p sequence h(n)is:'); xlabel('---->n'); ylabel('---->h(n)');grid; disp('convolution of x(n) & h(n) is y(n):'); y=zeros(1,m+n-1); for i=1:m+n-1 y(i)=0; for j=1:m+n-1 if(j < i+1)y(i)=y(i)+x(j)*h(i-j+1);end end end disp(y); l3=m+n-1; n1=0:13-1; subplot(2,2,[3,4]); stem(n1,y); title('Linear Convolution of x(n) & h(n) is :'); xlabel('---->n'); ylabel('---->y(n)'); grid; %Circular Convolution clc; clear all; close all; ECE DEPT. SVR ENGINEERING COLLEGE disp('circular convolution program');

```
x=input('enter i/p x(n):');
```

m=length(x);

```
h=input('enter i/p sequence h(n)');
```

n=length(h);

```
subplot(2,2,1), stem(x);
```

title('i/p sequencce x(n)is:');

xlabel('---->n');

ylabel('---->x(n)');grid;

```
subplot(2,2,2), stem(h);
```

```
title('i/p sequencce h(n)is:');
```

xlabel('---->n');

ylabel('---->h(n)');grid;

```
disp('circular convolution of x(n) & h(n) is y(n):');
```

```
if(m-n = 0)
```

if(m>n)

h=[h,zeros(1,m-n)];

n=m;

end

```
x=[x,zeros(1,n-m)];
```

m=n;

end

```
y=zeros(1,n);
```

y(1)=0;

a(1)=h(1);

for j=2:n

a(j)=h(n-j+2);

end

%ciruclar conv ECE DEPT. y(1)=y(1)+x(i)*a(i);

end

for k=2:n

y(k)=0;

% circular shift

for j=2:n

x2(j)=a(j-1);

end

x2(1)=a(n);

for i=1:n

if(i < n+1)

a(i)=x2(i);

y(k)=y(k)+x(i)*a(i);

end

end

end

```
disp(y);
```

```
subplot(2,2,[3,4]),stem(y);
```

```
title('Circular convolution of x(n) & h(n) is:');
```

xlabel('---->n');

ylabel('---->y(n)');

grid;

%Cross Correlation

clc;

clear all;

close all;

z=input('Enter first sequence x(n):');

n1=length(z);

DIGITAL SIGNAL PROCESSING LAB x=fliplr(z);

m=length(x);

h=input('Enter Second sequence h(n):');

n=length(h);

11=0:n1-1;

figure;

subplot(2,2,1);

stem(11,z);

title('First sequence x(n)is:');

xlabel('---->n');

ylabel('---->x(n)');

grid;

l2=0:n-1;

subplot(2,2,2);

stem(l2,h);

```
title('Second sequence h(n)is:');
```

xlabel('---->n');

```
ylabel('---->h(n)');
```

grid;

```
x=[x,zeros(1,m)];
```

h=[h,zeros(1,m)];

disp('Cross Correlation of x(n) & h(n) is y(n):');

y=zeros(1,m+n-1);

for i=1:m+n-1

y(i)=0;

for j=1:m+n-1

if(j < i+1)

y(i)=y(i)+x(j)*h(i-j+1);

end

ECE DEPT.

III B TECH II SEM

DIGITAL SIGNAL PROCESSING LAB end

end

disp(y);

l3=-(m-1):(n-1);

subplot(2,2,[3,4]);

stem(13,y);

title('Cross Correlation of x(n) & h(n) is :');

xlabel('---->n');

ylabel('---->y(n)');

grid;

%Auto Correlation

clc;

clear all;

close all;

x=input('Enter the sequence x(n):');

n=length(x);

z=fliplr(x);

m=length(z);

11=0:n-1;

figure;

subplot(2,1,1);

stem(11,x);

title('Input Sequence x(n)is:');

xlabel('---->n');

ylabel('---->x(n)');

grid;

x=[x,zeros(1,m)];

z=[z,zeros(1,n)];

disp('Auto Correlation of x(n) & x(n) is y(n):');ECE DEPT.SVR ENGINEERING COLLEGE

DIGITAL SIGNAL PROCESSING LAB y=zeros(1,m+n-1);

for i=1:m+n-1

```
y(i)=0;
```

for j=1:m+n-1

 $if(j \le i+1)$

y(i)=y(i)+z(j)*x(i-j+1);

end

end

end

disp(y);

l2=-(n-1):(n-1);

subplot(2,1,2);

stem(12,y);

title('Auto Correlation of x(n) & x(n) is :');

xlabel('---->n'); ylabel('---->y(n)');

grid;

Output : Linear convolution program enter i/p x(n):[4 5 6 7] enter i/p h(n):[4 7 8 9] convolution of x(n) & h(n) is y(n): 16 48 91 146 142 110 63

Circular convolution program

enter i/p x(n):[7 4 1 2]enter i/p sequence h(n)[7 4 1 2]circular convolution of x(n) & h(n) is y(n): 66 60 34 36

Enter first sequence x(n):[7 4 1 2] Enter Second sequence h(n):[7 4 1 2] Cross Correlation of x(n) & h(n) is y(n): 14 15 34 70 34 15 14

ECE DEPT.

Enter the sequence x(n):[7 4 1 2] Auto Correlation of x(n) & x(n) is y(n): 14 15 34 70 34 15 14

4. VERIFICATION OF DTFT PROPERTIES

AIM: To Verify DTDT Properties.

APPARATUS: PC with MATLAB Software.

PROCEDURE:

- 1. OPEN MATLAB
- 2. File >>New >>Script Type the program in untitled window
- 3. File >>Save >> type filename.m in matlab workspace path
- 4. Debug >>Run. Wave will display at Figure dialog box.

PROGRAM CODE:

A) TIME SHIFTING PROPERTIES OF DTFT

clf: w=-pi:2*pi/255:pi; D=10; num=[1 2 3 4 5 6 7 8 9]; h1=freqz(num,1,w); h2=freqz([zeros(1,D) num],1,w); subplot(2,2,1);plot(w/pi,abs(h1)); grid; title('Magnitude Spectrum of Original Sequence','FontSize',8); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,2);plot(w/pi,abs(h2)); grid; title('Magnitude Spectrum of Time Shifted Sequence','FontSize',8); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,3);plot(w/pi,angle(h1)); grid; title('Phase Spectrum of Original Sequence', 'FontSize', 8); xlabel('\omega/\pi'); ylabel('Phase in radians'); subplot(2,2,4); plot(w/pi,angle(h2)); grid; title('Phase Spectrum of Time Shifted Sequence', 'FontSize', 8); xlabel('\omega/\pi'); ylabel('Phase in radians');

WAVEFORMS:

ECE DEPT.

DIGITAL SIGNAL PROCESSING LAB III B TECH II SEM B) FREQUENCY SHIFTING PROPERTIES OF DTFT

```
clf;
w=-pi:2*pi/255:pi;
wo=0.4*pi;
num1=[1 3 5 7 9 11 13 15 17];
L=length(num1);
h1=freqz(num1,1,w);
n=0:L-1;
num2=exp(wo*i*n).*num1;
h2=freqz(num2,1,w);
subplot(2,2,1);
plot(w/pi,abs(h1));
grid;
title('Magnitude Spectrum of Original Sequence','FontSize',8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(2,2,2);
plot(w/pi,abs(h2));
grid;
title('Magnitude Spectrum of Frequency Shifted Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(2,2,3);
plot(w/pi,angle(h1));
grid;
title('Phase Spectrum of Original Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Phase in radians');
subplot(2,2,4);
plot(w/pi,angle(h2));
grid;
title('Phase Spectrum of Frequency Shifted Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Phase in radians');
```


clf; w=-pi:2*pi/255:pi; x1=[1 3 5 7 9 11 13 15 17]; x2=[1 -2 3 -2 1]; y = conv(x1, x2);h1 = freqz(x1,1,w);h2=freqz(x2,1,w);hp=h1.*h2; h3=freqz(y,1,w);subplot(2,2,1); plot(w/pi,abs(hp)); grid; title('Product of Magnitude Spectrum', 'FontSize',8); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,2);plot(w/pi,abs(h3)); grid; title('Magnitude Spectrum of Convolved Sequence','FontSize',8); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,3); plot(w/pi,abs(hp)); grid; title('Sum of Phase Spectrum', 'FontSize',8); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,3);plot(w/pi,angle(h1)); grid; title('Phase Spectrum of Original Sequence', 'FontSize', 8); xlabel('\omega/\pi'); ylabel('Phase in radians'); subplot(2,2,4); plot(w/pi,angle(h3)); grid; title('Phase Spectrum of Convolved Sequence', 'FontSize', 8); xlabel('\omega/\pi'); ylabel('Phase in radians');

D) MODULATION PROPERTY OF DTFT

```
clf;
w=-pi:2*pi/255:pi;
x1=[1 3 5 7 9 11 13 15 17];
x2=[1 -1 1 -1 1 -1 1 -1 1];
y=x1.*x2;
h1 = freqz(x1,1,w);
h2=freqz(x2,1,w);
h3=freqz(y,1,w);
subplot(3,1,1);
plot(w/pi,abs(h1));
grid;
title('Magnitude Spectrum of First Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(3,1,2);
plot(w/pi,abs(h2));
grid;
title('Magnitude Spectrum of Second Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(3,1,3);
plot(w/pi,abs(h3));
grid;
title('Magnitude Spectrum of Product Sequence','FontSize',8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(2,2,3);
plot(w/pi,angle(h1));
grid;
title('Phase Spectrum of Original Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Phase in radians');
subplot(2,2,4);
plot(w/pi,angle(h3));
grid;
title('Phase Spectrum of Convolved Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Phase in radians');
```

DIGITAL SIGNAL PROCESSING LAB

WAVEFORMS:


```
clf;
w=-pi:2*pi/255:pi;
num=[1 2 3 4];
l=length(num)-1;
h1=freqz(num,1,w);
h2=freqz(fliplr(num),1,w);
h3=exp(w*l*pi).*h2;
subplot(2,2,1);
plot(w/pi,abs(h1));
grid;
title('Magnitude Spectrum of Original Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(2,2,2);
plot(w/pi,abs(h3));
grid;
title('Magnitude Spectrum of Time Reversal Sequence', 'FontSize', 8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(2,2,3);
plot(w/pi,angle(h1));
grid;
title('Phase Spectrum of Original Sequence','FontSize',8);
xlabel('\omega/\pi');
ylabel('Amplitude');
subplot(2,2,4);
plot(w/pi,angle(h3));
grid;
title('Phase Spectrum of Time Reversal Sequence','FontSize',8);
xlabel('\omega/\pi');
ylabel('Phase in radians');
```

DIGITAL SIGNAL PROCESSING LAB

WAVEFORMS:

clf; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,2,1);plot(w/pi,real(h)); grid; title('Real Part of H(e^{j\omega})'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,2)plot(w/pi,imag(h)); grid; title('Imaginary Part of H(e^{j\omega})'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,3); plot(w/pi,abs(h)); grid; title('Magnitude Spectrum[H(e^{j\omega})]') xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,4);plot(w/pi,angle(h)); grid; title('Phase Spectrum arg[H(e^{j\omega})]'); xlabel('\omega/\pi'); ylabel('Phase in radians');

DIGITAL SIGNAL PROCESSING LAB

WAVEFORMS:

G) EVALUATION OF DTFT 2

clf: N=512; num=[0.7 -0.5 0.3 1]; den=[1 0.3 -0.5 0.7]; [h,w]=freqz(num,den,N); subplot(2,2,1);plot(w/pi,real(h)); grid; title('Real Part of H(e^{j\omega})'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,2); plot(w/pi,imag(h)); grid; title('Imaginary Part of H(e^{j\omega})'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,3); plot(w/pi,abs(h)); grid; title('Magnitude Spectrum [H(e^{j\omega})]'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,4); plot(w/pi,angle(h)); grid; title('Phase Spectrum arg[H(e^{i\omega})]'); xlabel('\omega/\pi'); ylabel('Phase in radians');

DIGITAL SIGNAL PROCESSING LAB

WAVEFORMS:

H) EVALUATION OF DTFT 3

clf: w=-4*pi:8*pi/511:4*pi; num=[1 3 5 7 9 11 13 15 17]; den=1; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h)); grid; title('Real Part of H(e^{j\omega})'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,2); plot(w/pi,imag(h)); grid; title('Imaginary Part of H(e^{j\omega})'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,3); plot(w/pi,abs(h)); grid; title('Magnitude Spectrum [H(e^{j\omega})]'); xlabel('\omega/\pi'); ylabel('Amplitude'); subplot(2,2,4); plot(w/pi,angle(h)); grid; title('Phase Spectrum arg[H(e^{i\omega})]'); xlabel('\omega/\pi'); ylabel('Phase in radians');

WAVEFORMS:

5. Design of N point FFT algorithm

Aim: To write a program to Design of N point FFT algorithm

APPARATUS: PC with MATLAB Software.

PROCEDURE:

- 1. OPEN MATLAB
- 2. File >>New >>Script Type the program in untitled window
- 3. File >>Save >> type filename.m in matlab workspace path
- 4. Debug >>Run. Wave will display at Figure dialog box.

Program:

clc; clear all; close all; x=input('Enter the sequence:'); n=input('Enter the length of fft: '); %compute fft disp('Fourier transformed signal'); X = fft(x,n);subplot(1,2,1); stem(x); title('i/p signal'); xlabel('n --->'); ylabel('x(n) -->');grid; subplot(1,2,2);stem(X); title('FFT of i/p x(n) is:'); xlabel('Real axis --->'); ylabel('Imaginary axis -->'); grid;

Output :

ECE DEPT.

DIGITAL SIGNAL PROCESSING LAB Enter the sequence:[5 4 7 8] Enter the length of fft: 8 Fourier transformed signal

Result :-- N point FFT algorithm using Matlab is designed.

VIVA VOCE

FFT algorithm is designed to perform complex operations.-The FFT algorithm is designed to perform complex multiplications and additions, even though the input data may be real valued. The basic reason for this is that the phase factors are complex and hence, after the first stage of the algorithm, all variables are basically complex valued.

Decimation-in frequency FFT algorithm is used to compute H(k)-The N-point DFT of h(n), which is padded by L-1 zeros, is denoted as H(k). This computation is performed once via the FFT and resulting N complex numbers are stored. To be specific we assume that the decimation-in frequency FFT algorithm is used to compute H(k). This yields H(k) in the bit-reversed order, which is the way it is stored in the memory

How many complex multiplications are need to be performed for each FFT algorithm?-The decimation of the data sequence should be repeated again and again until the resulting sequences are reduced to one point sequences. For N=2v, this decimation can be performed v=log2N times. Thus the total number of complex multiplications is reduced to $(N/2)\log 2N$.

6) Design of FIR filter using windowing technique and verify the frequency response of the filter

Aim: To write a matlab program for Design of FIR filter using windowing technique and verify the frequency response of the filter.

APPARATUS: PC with MATLAB Software.

PROCEDURE:

```
1. OPEN MATLAB
```

- 2. File >>New >>Script Type the program in untitled window
- 3. File >>Save >> type filename.m in matlab workspace path
- 4. Debug >>Run. Wave will display at Figure dialog box.

Program:

```
function FIR_Filter_WindowingMethod
% Design and Implementation of FIR Filter Package
% Date: 04/16/2011
% Author: Gang LIU
% Contacts: liug "at" yahoo dot cn
%
% This code is based on the some code from MATLAB Singal Processing
% Toolbox.
%
%. Example MATLAB M-file illustrating FIR filter design and evaluation.
% Finite Impulse Response filter design example
% found in the MATLAB Signal Processing Toolbox
% using the MATLAB FIR1 function (M-file)
close all;
Fs=8000; % Specify Sampling Frequency
Ts=1/Fs; %Sampling period.
Ns=512; %Nr of time samples to be plotted.
t=[0:Ts:Ts*(Ns-1)]; % Make time array that contains Ns elements
\%t = [0, Ts, 2Ts, 3Ts,..., (Ns-1)Ts]
f1=500;
f2=1500;
f3=2000:
f4=3000;
x1=sin(2*pi*f1*t); %create sampled sinusoids at different frequencies
x2=sin(2*pi*f2*t);
x3=sin(2*pi*f3*t);
x4 = sin(2*pi*f4*t);
x=x1+x2+x3+x4; % Calculate samples for a 4-tone input signal
                             SVR ENGINEERING COLLEGE
ECE DEPT.
```

DIGITAL SIGNAL PROCESSING LAB **III B TECH II SEM** %N=16; %FIR1 requires filter order (N) to be EVEN % when gain = 1 at Fs/2. %W=[0.4 0.6]; %Specify Bandstop filter with stop band between %0.4*(Fs/2) and 0.6*(Fs/2) %B=FIR1(N,W,'DC-1'); %Design FIR Filter using default (Hamming window. disp('Please specify the filter type'); FilterType={'low','high','bandpass','stop'}; disp('Here is the filter option:'); disp('1: Low Pass Filter '); disp('2: High Pass Filter'); disp('3: Band Pass Filter'); disp('4: Band Stop Filter'); disp('You only need enter number. EX. 4 means Band Stop filter') FilterOption=input('FilterOption='); while FilterOption ~=1 && FilterOption ~=2 && FilterOption ~=3 && FilterOption ~=4 disp('You only need enter number : 1,2,3 or 4. EX. 4 means Band Stop filter'); FilterOption=input('FilterOption='); end userFilterType=FilterType{FilterOption}; disp('Enter the order of the filter(Must be a positive even number, should be less than 100'); FilterOrder=input('FilterOrder='); str=sprintf('Here is all the frequency infromation in this experiment:Fs=%d; f1=%d; f2=%d; f3=%d; f4=%d;',Fs,f1,f2,f3,f4); disp(str); if FilterOption==1 disp('Enter the Edge Freq. in Hz. Note: the value should be within 0~Fs');W=input('omega='); elseif FilterOption==2 disp('Enter the Edge Freq. in Hz. Note: the value should be within 0~Fs');W=input('omega='); elseif FilterOption==3 disp('Enter the Edge Freq. in Hz. Note: the value should be within 0~Fs');W=input('omega cutoff1=');W2=input('omega cutoff2='); W=[W W2]; elseif FilterOption==4 disp('Enter the Edge Freq. in Hz. Note: the value should be within 0~Fs');W=input('omega cutoff1=');W2=input('omega cutoff2='); W=[W W2]; end %Fs, W, W=W./(Fs/2); % [1600 2400] N=FilterOrder; Window_Option={'hamming','kaiser','rectwin'}; disp('Here is the Windowing option:'); disp('1: hamming'); disp('2: kaiser'); disp('3: rectwin'); WindowOption=input('WindowOption='); while WindowOption ~=1 && WindowOption ~=2 && WindowOption ~=3 disp('You only need enter number : 1,2,or 3. EX. 3 means rectwin');

ECE DEPT.

DIGITAL SIGNAL PROCESSING LAB WindowOption=input('WindowOption='); end %WindowOption='rectwin'; switch Window_Option{WindowOption} case 'hamming' userWindow=hamming(N+1); case 'kaiser' userWindow=kaiser(N+1); case 'rectwin' userWindow=rectwin(N+1); otherwise disp('Wrong windowing option. EXIT'); eixt end %B=FIR1(N,W,'bandpass',userWindow); %Design FIR Filter using default (Hamming window. B=fir1(N,W,userFilterType,userWindow); %Design FIR Filter using default (Hamming window. %B %Leaving off semi-colon causes contents of %B (the FIR coefficients) to be displayed. A=1; % FIR filters have no poles, only zeros. figure; zerophase(B,A); % plot zero phase figure disp('Checking the Zero-Phase Response of the designed filter, enter any key to continue'); pause; figure; %Create a new figure window, so previous one isn't lost. freqz(B,A); %Plot frequency response - both amp and phase response. disp('Checking the Freq. Response of the designed filter, enter any key to continue'); pause; figure; subplot(2,1,1); % Two subplots will go on this figure window. Npts=200; plot(t(1:Npts),x(1:Npts)) %Plot first Npts of this 4-tone input signal title('Time Plots of Input and Output'); xlabel('time (s)'); ylabel('Input Sig'); %Now apply this filter to our 4-tone test sequence y = filter(B,A,x);subplot(2,1,2); %Now go to bottom subplot. plot(t(1:Npts),y(1:Npts)); % Plot first Npts of filtered signal. xlabel('time (s)'); ylabel('Filtered Sig'); disp('Checking the Filtering Effect of the designed filter in time domain, enter any key to continue'); pause; figure; %Create a new figure window, so previous one isn't lost. subplot(2,1,1);xfftmag=(abs(fft(x,Ns))); %Compute spectrum of input signal. xfftmagh=xfftmag(1:length(xfftmag)/2);

DIGITAL SIGNAL PROCESSING LAB %Plot only the first half of FFT, since second half is mirror imag % the first half represents the useful range of frequencies from %0 to Fs/2, the Nyquist sampling limit. f=[1:1:length(xfftmagh)]*Fs/Ns; % Make freq array that varies from %0 Hz to Fs/2 Hz. plot(f,xfftmagh); %Plot frequency spectrum of input signal title('Input and Output Spectra'); xlabel('freq (Hz)'); ylabel('Input Spectrum'); subplot(2,1,2); yfftmag=(abs(fft(y,Ns))); yfftmagh=yfftmag(1:length(yfftmag)/2); %Plot only the first half of FFT, since second half is mirror image % the first half represents the useful range of frequencies from %0 to Fs/2, the Nyquist sampling limit. plot(f,yfftmagh); %Plot frequency spectrum of input signal xlabel('freq (Hz)'); ylabel('Filtered Signal Spectrum');

OUTPUT :

Please specify the filter type

Here is the filter option:

- 1: Low Pass Filter
- 2: High Pass Filter
- 3: Band Pass Filter
- 4: Band Stop Filter

You only need enter number. EX. 4 means Band Stop filter

FilterOption=1

Enter the order of the filter(Must be a positive even number, should be less than 100

FilterOrder=6

Here is all the frequency infromation in this experiment:Fs=8000; f1=500; f2=1500; f3=2000; f4=3000;

Enter the Edge Freq. in Hz. Note: the value should be within 0~Fs

omega=1000

Here is the Windowing option:

1: hamming

ECE DEPT.

SVR ENGINEERING COLLEGE

III B TECH II SEM

3: rectwin

WindowOption=1

Checking the Zero-Phase Response of the designed filter, enter any key to continue

Checking the Freq. Response of the designed filter, enter any key to continue

Checking the Filtering Effect of the designed filter in time domain, enter any key to continue

Result:-- FIR Filter using Matlab is designed.

VIVA VOCE

What are the desirable characteristics of the frequency response of window function?

Advantages:

- a) FIR filters have exact linear phase.
- b) FIR filters are always stable.
- c) FIR filters can be realized in both recursive and non recursive structure.
- d) Filters with any arbitrary magnitude response can be tackled using FIR sequency.

Disadvantages:

a) For the same filter specifications the order of FIR filter design can be as high as 5 to n10 times that of IIR design.

- b) Large storage requirements needed.
- c) Powerful computational facilities required for the implementation.

The Optimum Equi ripple design Criterion is used for designing FIR Filters with Equal level filteration throughout the Design.

FIR Filter is always stable.

FIR Filter with exactly linear phase can easily be designed.

7) Design of IIR filter using anyof the available methods and verify the frequency response of the filter

Aim: To write a matlab program for design of IIR filter using anyof the available methods and verify the frequency response of the filter.

APPARATUS: PC with MATLAB Software.

PROCEDURE:

```
1. OPEN MATLAB
```

2. File >>New >>Script - Type the program in untitled window

3. File >>Save >> type filename.m in matlab workspace path

4. Debug >>Run. Wave will display at Figure dialog box.

Program:

% IIR FILTERS LPF & HPF USING MATLAB

clc;

clear all;

close all;

disp('enter the IIR filter design specifications');

rp=input('enter the passband ripple');

rs=input('enter the stopband ripple');

wp=input('enter the passband freq');

ws=input('enter the stopband freq');

fs=input('enter the sampling freq');

w1=2*wp/fs;w2=2*ws/fs;

[n,wn]=buttord(w1,w2,rp,rs,'s');

% IIR FILTERS LPF & HPF USING MATLAB

clc;

clear all;

close all;

disp('enter the IIR filter design specifications');

DIGITAL SIGNAL PROCESSING LAB

rp=input('enter the passband ripple');

rs=input('enter the stopband ripple');

wp=input('enter the passband freq');

ws=input('enter the stopband freq');

fs=input('enter the sampling freq');

w1=2*wp/fs;w2=2*ws/fs;

[n,wn]=buttord(w1,w2,rp,rs,'s');

c=input('enter choice of filter 1. LPF 2. HPF $\n '$);

if(c==1)

disp('Frequency response of IIR LPF is:');

[b,a]=butter(n,wn,'low','s');

end

if(c==2)

disp('Frequency response of IIR HPF is:');

[b,a]=butter(n,wn,'high','s');

end

w=0:.01:pi;

[h,om]=freqs(b,a,w);

m=20*log10(abs(h));

an=angle(h);

figure,subplot(2,1,1);plot(om/pi,m);

title('magnitude response of IIR filter is:');

xlabel('(a) Normalized freq. -->');

ylabel('Gain in dB-->');

subplot(2,1,2);plot(om/pi,an);

title('phase response of IIR filter is:');

xlabel('(b) Normalized freq. -->');

ylabel('Phase in radians-->');

Output :--

ECE DEPT.

DIGITAL SIGNAL PROCESSING LAB

enter the IIR filter design specifications

enter the passband ripple.5

enter the stopband ripple.8 enter the passband freq1000 enter the stopband freq2000 enter the sampling freq3000 enter choice of filter 1. LPF 2. HPF

1

Frequency response of IIR LPF is:

Result:-- IIR filters using matlab is designed.

8) Design of analog filters

Aim:To writa a matlab program for design of analog filters

APPARATUS: PC with MATLAB Software.

PROCEDURE:

- 1. OPEN MATLAB
- 2. File >>New >>Script Type the program in untitled window
- 3. File >>Save >> type filename.m in matlab workspace path
- 4. Debug >>Run. Wave will display at Figure dialog box.

Program:

clc;

clear all;

close all;

disp('Enter the Analog filter design specifications');

N=input('Enter the order of the filter');

c=input('Enter the choice of filter 1. LPF 2. HPF 3.BPF 4.BSF \n ');

if(c==1)

disp('Frequency response of Analog LPF is:');

Cf=100;

[b,a]=butter(N,Cf,'S');

freqs(b,a);

end

if(c==2)

disp('Frequency response of Analog HPF is:');

Cf=100;

[b,a]=butter(N,Cf,'HIGH','S');

freqs(b,a);

end

if(c==3) ECE DEPT. disp('Frequency response of Analog BPF is:');

Cf1=[10 100];

[b,a]=butter(N,Cf1,'S');

freqs(b,a);

```
end
```

if(c==4)

disp('Frequency response of Analog BPF is:');

Cf1=[10 100];

[b,a]=butter(N,Cf1,'STOP','S');

freqs(b,a);

end

```
OUTPUT :
```

Enter the Analog filter design specifications

Enter the order of the filter6

```
Enter the choice of filter 1. LPF 2. HPF 3.BPF 4.BSF
```

```
2
```

Frequency response of Analog HPF is:

Result :-- Analog filters using Matlab is designed.

CC STUDIO PROGRAMS

TMS320C6x DIGITAL SIGNAL PROCESSOR

The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well suited for numerically intensive algorithms. The internal program memory is structured so that a total of eight instructions can be fetched every cycle. For example, with a clock rate of 225MHz, the C6713 is capable of fetching eight 32-

bit instructions every 1/(225 MHz) or 4.44 ns. Features of the C6713 include 264 kB of internal memory (8kB as L1P and L1D Cache and 256kB as L2 memory shared between program and data space), eight functional or execution units composed of six arithmetic-logic units (ALUs) and two multiplier units, a 32-bit address bus to address 4 GB (gigabytes), and two sets of 32-bit general-purpose registers.

The C67xx (such as the C6701, C6711, and C6713) belong to the family of the C6x floating-point processors, whereas the C62xx and C64xx belong to the family of the C6x fixed-point processors. The C6713 is capable of both fixed- and floatingpoint processing.

An application-specific integrated circuit (ASIC) has a DSP core with customized circuitry for a specific application. A C6x processor can be used as a standard general-purpose DSp programmed for a specific application. Specific purpose digital signal processors are the modem, echo canceler, and others. A

fixed-point processor is better for devices that use batteries, such as cellular phones, since it uses less power than does an equivalent floating-point processor. The fixed-point processors, C1x, C2x, and C5x, are 16-bit processors with limited dynamic range and precision. The C6x fixed-point processor is a 32- bit processor with improved dynamic range and precision. In a fixed-point processor, it is necessary to scale the data. Overflow, which occurs when an operation such as the addition of two numbers produces a result with more bits than can fit within a processor's register, becomes a concern.

A floating-point processor is generally more expensive since it has more "real estate" or is a larger chip because of additional circuitry necessary to handle integer as well as floating-point arithmetic. Several factors, such as cost, power consumption, and speed, come into play when choosing a specific DSp.

The C6x processors are particularly useful for applications requiring intensive computations. Family members of the C6x include both fixed-point (e.g., C62x, C64x) and floating-point (e.g., C67x) processors. Other DSp's are also available from companies such as Motorola and Analog Devices.

Figure : Functional block diagram of TMS320C6713

The TMS320C6713 onboard the DSK is a floating-point processor based on the VLIW architecture [6–10]. Internal memory includes a two-level cache architecture with 4 kB of level 1 program cache (L1P), 4 kB of level 1 data cache (L1D), and 256 kB of level 2 memory shared between program and data space.

It has a glueless (direct) interface to both synchronous memories (SDRAM and SBSRAM) and asynchronous memories (SRAM and EPROM). Synchronous memory requires clocking but provides a compromise between static SRAM and dynamic DRAM, with SRAM being faster but more expensive than DRAM. Onchip peripherals include two McBSPs, two timers, a host port interface (HPI), and a 32-bit EMIF. It requires 3.3 V for I/O and 1.26 V for the core (internal). Internal buses include a 32-bit program address bus, a 256bit program data bus to accommodate eight 32-bit instructions, two 32-bit data address buses, two 64- bit data buses, and two 64-bit store data buses.With a 32-bit address bus, the total memory space is 232 = 4GB, including four external memory spaces: CE0, CE1, CE2, and CE3. Figure shows a functional block diagram of the C6713 processor included with CCS.

TMS320C6X- PROCEDURE FOR USING C60 DEBUGGER

Step1: Open \rightarrow 6177 Diagnostic \rightarrow start \rightarrow Stop \rightarrow Close

Step 2: Project \rightarrow New \rightarrow Project Name \rightarrow Target \rightarrow TMS320C67XX

e Fill View Protect Dehra GE onton Profession (SPRING Help					
	11.22.24.24.24.24.24.24.14.14.14.14.14.14.14.14.14.14.14.14.14				
💭 60' 🗋 🔜 🖽 🔤 🕰					
Projects	Project Creation X Project Name: sinewave				

Step 3: Libraries \rightarrow Add Files to Project \rightarrow My Project \rightarrow C600 \rightarrow CG Tools \rightarrow

Library \rightarrow rts6700.lib

Step 4: File \rightarrow New \rightarrow Source File \rightarrow Write Program in window

🏶 /C (6713 DSK/CPU_1 - C621x - C	ode Com	poser Studio - Not Connected	
File E	dit View Project Debug GEL	Option F	rofile Tools DSP/BIOS Window Help	
管 🛛	🗳 🖬 🎖 🖻 💼 🗠 🗠		_ 新 路 临 船 船 路 经 母 № 唯 相 雌 雌 亜 亜 本 ≫ ≫ 参 矿	
sinew	ave.pjt 💽 Debug		🔄 🖉 🛗 📥 🖉 🗶 📯 📚 🛛 🖉	
, A	667 📋 📰 🔜 🗖	<u>et</u>		
1999年199日 1999年199月19月19月19月19月19月19月19月19月19月19月19月19月	66° EI		<pre>titled1 * #include<stdio.h> #include<stdio.h> #include<math.h> float a[100]; main() { int i; for(i=0;i<100;i++) {</math.h></stdio.h></stdio.h></pre>	
		•		• •

Step 6: Source \rightarrow Add Files to project \rightarrow CStudio \rightarrow lib \rightarrow confi.c

/C6713 DSK/CPU_1 - C621x - Code	Composer Studio - Not Connected	
File Edit View Project Debug GEL Optic	on Profile Tools DSP/BIOS Window Help	
🎽 🚅 🖬 X 🖻 💼 M M	- 希洛哈哈哈! ● ♥ 作作 訴訴 巨王 ▲ ※ ※ ● ●	
sinewave.pjt Debug		
💭 60' 📋 📰 📰 📼 🕰		
Piles GEL files GEL files GEL files Dependent Project Dosprato Dosprato Dosprato Generated Files Include Libraries Source Configuration1	<pre>\$inawaye.c #include (stdio.h> #include (math.h) float a [100]; main() int i; for(i=0;i<100;i++) {</pre>	
	•	▶ //

Step 7: Source \rightarrow Add Files to Project \rightarrow CStudio \rightarrow C600 \rightarrow Tutorial \rightarrow

 $Dsk6713 \rightarrow hello1 \rightarrow link cmd \rightarrow hello.cmd$

Step 8: Project → Compile File

Step 9: Project \rightarrow Build all

🤗 /C6713 DSK/CPU_1 - C671x - Code Composer	Studio				
File Edit View Project Debug GEL Option Profile Image: State of the state of	Tools DSP/BIOS Window Help				
Prior Close Close Source Control Compile File Ctrl F7 Build F7 Rebuild All Stop Build Stop Build Build Cean Configurations Function Level Options Function Level Options Function Level Options Project Dependencies Scon All File Dependencies Scon All File Dependencies Recent Project Files Image: Project Dependencies Image: Project Files	<pre>plude(stdio.h) it (100); it (1-0):(100);+++) p=sin(2-3.14=5+i/100); ntf("%f \n",e[1]); </pre>				
Use -heap option to change the default si Build Complete, O Errors, 2 Warnings, O Remarks.					

Step 10: File \rightarrow Load Program \rightarrow Debug \rightarrow Output File

File Ec	Edit View Project Debug GEL Option Profile Tools DSP/8105 Window Help					
12 🖬						
sinewa	ve.pit 🔻 Debug	▼ ② 酉 凿 乙 ⊕ ※ № № ● 些				
- দলা ৫						
■ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Files Files CEL files Projects Stranove.pit (Debu Stranove.pit (Debu Stranove.c.) Stranove.c.	<pre> finewave.c fine lude (stdio.h) fine i (100); fine i (100); int i; int i; int i; int i: i</pre>				
Buil O	Use -heap og d Complete, Errors, 2 Warnings,	0 Remarks.				

Step 11: Debug \rightarrow Run

🥡 /C	6713 DSK/CPU_1	- C671x - Code Composer S	tudio	
File 8	idit View Project	Debug GEL Option Profile To	ools DSP/BIOS Wind	ow Help
1	2 🖬 X 🗈 I	Breakpoints Probe Points		& & & & & & ↓ @ # # # # # # 距 距 ★ % % & ♥
sinev	ave.pit 661 📋 📰 📑	Step Into Step Over	F11 F10	
は で で で で で で で で で で で で で	oor Files File	Step Out Run Hait Animate Run Free Run to Cursor Multiple Operation Assembly/Source Stepping Reset CPU Restart Go Main Rester Enulator Disconnect Restor Debug State Enable Runder Debug State Enable Runde Real-time Mode V Flush Pipeline on Halt	Shift+F11 F5 Shift+F5 Ctrl+F5 Ctrl+F10 Ctrl+F10 Ctrl+R Ctrl+Shift+F5 Ctrl+M Ctrl+Shift+R Alt+C T	*) 5*i/100); [1]);
		Disasse	POX	
-0. -0. -0. -0.	999886 955670 818001 600340 323974			GEL StartUp Complete.

Step 12: Veiw \rightarrow Graph \rightarrow Time/Frequency

🥐 JI	🥦 /C6713 DSK/CPU_1 - C671x - Code Composer Studio					
File	Edit View Project	Debug GEL Option Profile Too	ols DSP/BIOS Wine	dow Help		
1	🗃 🖬 🕺 🖻 🛙	Breakpoints Probe Points				
sine	wave.pjt	Step Into	F11			
R a	66° 🗋 🔚 🔜	Step Over Step Out	F10 Sbift+F11			
74	C Filer	Run	F5			
8	GEL files	Halt	Shift+F5			
(P	🖹 🔄 Projects	Run Free	Ctrl+F5			
6	Dep	Run to Cursor	Ctrl+F10			
$\overline{\Omega^{k}}$	Doc	Multiple Operation	Ctri+Shirt+F10			
→0	- Gen	Assembly/Source Stepping	•	+)		
(⁴)	E 🔄 Libr.	Reset CPU	Ctrl+R	5*i/100);		
æ	E 🔄 Sou	Go Main	Ctrl+M	[1]);		
×	and the light state of the light	Reset Emulator	Ctrl+Shift+R			
×		Disconnect	Alt+C			
ox.		Restore Debug State				
		Real-time Mode				
函		Enable Rude Real-time Mode				
5		✓ Flush Pipeline on Halt				
		•				
		Disasse				
-0, -0, -0, -0,	.999886 .955670 .818001 .600340 .323974			GEL StartUp Complete.		

😢 /C6713 DSK/CPU_1 - C671x - Code Composer Studio						
File Edit View Project Debug GEL Option Profile Tools DSP/BIOS Window Help						
	🖌 🖌 An The Ann 🐜 🖓 🥔 😽	6月 7月 6月 6月 6月 1日 1日 1日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🍝 🍖 🗉			
sinewave.pjt 💽 Debug	💽 🖉 🏙 🛗 🕘 🛞 🐎 📄 🗳					
💭 60° 📋 🚍 🔜 🖂 🗖	R					
P Files Image: Construction of the second state of the second stat	<pre>sinawave.c #include(stdio.h) #include(math.h) float a[100]; main() { int i; for(i=0;i<100;i++) a[i]=sin(2*3.14*5*i>100); printf("%f \n",a[i]); } } Dbasse P • × </pre>	Graph Property Dialo Display Type Graph Tile Start Address Acquisition Buffer Size Indew Increment Display Data Size DSP Data Type Sampling Rate (H2) Piot Data From Left-shifted Data Display Autoscale DC Value Axes Display Magnitude Display Unit Status Bar Display Magnitude Display Scale Data Piot Style Grid Style Guid Style Cursor Mode				
0.322466 0.014333 -0.295201 -0.575869 -0.800222	GEL StartUg	o Complete.				

Step 14: We will get th required output!!!!!!

TMS320C6748 LCDK

Kit Contents:

- C6748 LCDK Hardware Board
- \Box Power Card
- □ XDS 100v2 JTAG Emulator
- □ USB Cable
- \Box SD Card
- \Box User Manual

Description:

The TMS320C6748 DSP development kit (LCDK) is a scalable platform that breaks down development barriers for applications that require embedded analytics and real-time signal processing, including biometric analytics, communications and audio. The low-cost LCDK will also speed and ease your hardware development of real-time DSP applications. This new board reduces design work with freely downloadable and duplicable board schematics and design files. A wide variety of standard interfaces for connectivity and storage enable you to easily bring audio, video and other signals onto the board.

The LCDK does not have an onboard emulator. An external emulator from TI (such as the XDS100, XDS200, XDS510, XDS560) or a third-party will be required to start development.

The TMS320C6748 C6000 DSP processor is a low-power applications processor based on C674x DSP core. This processor provides significantly lower power than other members of the TMS320C6000[™] platform of DSPs

The architecture of the device provides benefits of both DSP and reduced instruction set computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core.

The device DSP core uses a 2-level cache-based architecture. The level 1 program cache (L1P) is a 32- KB direct mapped cache, and the level 1 data cache (L1D) is a 32-KB 2-way, set-associative cache. The level 2 program cache (L2P) consists of a 256-KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two..

Processor

- □ TI TMS320C6748 DSP Application Processor
- □ 456-MHz C674x Fixed/Floating Point DSP
- □ On-Chip RTC

Memory

- □ 128 MByte DDR2 SDRAM running at 150MHz
- □ 128 MByte 16-bit wide NAND FLASH
- □ 1 Micro SD/MMC Slot

Interfaces

- □ One mini-USB Serial Port (on-board serial to USB)
- $\hfill\square$ One Fast Ethernet Port (10/100 Mbps) with status LEDs
- \Box One USB Host port (USB 1.1)
- □ One SATA Port (3Gbps)
- □ One LCD Port (Beagleboard XM connectors)
- □ One Leopard Imaging Camera Sensor Input (36-pin ZIP connector)
- □ Three AUDIO Ports (1 LINE IN-J55 & 1 LINE OUT-J56 & 1 MIC IN-J57)
- □ 14-pin JTAG header (No onboard emulator; external emulator is required)

TMS320C6748 DSP Features

□ Highest-Performance Floating-Point Digital Signal Processor (DSP):

ECE DEPT.

SVR ENGINEERING COLLEGE

- □ 32/64-Bit Data Word
- □ 375/456-MHz C674x Fixed/Floating-Point
- □ Up to 3648/2746 C674x MIPS/MFLOPS
- □ Rich Peripheral Set, Optimized for Audio
- \Box Highly Optimized C/C++ Compiler
- □ Extended Temperature Devices Available

1) GENARATION OF RANDOM AND SQUARE SIGNAL

1.Program --

#include<stdio.h>

#include<math.h>

#define PI 3.14

#define PTS 128

- float x[PTS];
- float y[PTS];

float z[PTS];

float n[PTS];

void main()

{

int i,j; ECE DEPT.

```
DIGITAL SIGNAL PROCESSING LAB
for (i = 0 ; i < PTS ; i++)
{
    x[i] = sin(2*PI*i*20/128.0);
    printf("%f\n",x[i]);
    y[i]=0.0;
    n[i]=x[i] + rand() * 10 ;
}</pre>
```

```
}
```

```
RESULT:
```


III B TECH II SEM

2) Program--

```
#include <stdio.h>
#define amp 1 // defined amplitude
int y[50]; // no. of points to be stored in output variable 'y'
int i;
void main()
{
for(i=0;i<25;i++)
{</pre>
```

```
y[i]=amp;
```

printf("%d\n",y[i]);

}

for(i=25;i<50;i++)

ECE DEPT.

SVR ENGINEERING COLLEGE


```
y[i]=-amp;
```

```
printf("%d\n",y[i]);
```

```
}
```

```
~
```

```
}
```

RESULT:

2 Finding energy and power of a signal.

1. Program-- Energy of a signal

```
#include<stdio.h>
```

```
int main()
```

{

int num,i,j,x[32];

```
long int sum=0;
```

printf("\nEnter the number of samples: ");

```
scanf("%d",&num);
```

printf("\nEnter samples: ");

```
for(j=0;j<num;j++)</pre>
```

```
scanf("%d",&x[j]);
```

```
for(i=0;i<=num;i++)</pre>
```

```
DIGITAL SIGNAL PROCESSING LAB
```

{

```
sum+=x[i]*x[i];
```

}

printf("\n the energy of above samples is\n %d",sum);
return 0;

}

```
2. Program--Power of a signal
```

#include<stdio.h>

int main(){

int num,i,j,x[32];

float num1;

long int sum=0;

printf("\nEnter the number of samples: ");

scanf("%d",&num);

```
printf("\nEnter samples: ");
```

```
for(j=0;j<num;j++)</pre>
```

```
scanf("%d",&x[j]);
```

for(i=0;i<=num;i++)</pre>

{

```
sum+=x[i]*x[i];
```

}

```
num=num*2;
```

num++;

num1 = sum / (float) num;

printf("\n the Average power of above samples is\n %.2f",num1);

return 0;

}

3) Convolution and correlation(auto and cross correlation)of discrete sequence without using built in functions for convolutions and correlation operations.

Program:

DIGITAL SIGNAL PROCESSING LAB PROGRAM: LINEAR.C

```
#include<stdio.h>
#define LENGHT1 6 /*Lenght of i/p samples sequence*/
#define LENGHT2 4 /*Lenght of impulse response Co-efficients */
int x[2*LENGHT1-1]={1,2,3,4,5,6,0,0,0,0,0}; /*Input Signal Samples*/
int h[2*LENGHT1-1]={1,2,3,4,0,0,0,0,0,0,0,0}; /*Impulse Response Coefficients*/
int y[LENGHT1+LENGHT2-1];
main()
ł
int i=0,j;
for(i=0;i<(LENGHT1+LENGHT2-1);i++)</pre>
{
y[i]=0;
for(j=0;j<=i;j++)</pre>
y[i]+=x[j]*h[i-j];
for(i=0;i<(LENGHT1+LENGHT2-1);i++)</pre>
printf("%d\n",y[i]);}
```

INPUT :

 $x[n] = \{1, 2, 3, 4\}$ $h[k] = \{1, 2, 3, 4\}$

OUTPUT : y[r] = {1, 4, 10, 20, 25, 24, 16}

/* program to implement circular convolution */

#include<stdio.h>

int m,n,x[30],h[30],y[30],i,j, k,x2[30],a[30];

ECE DEPT.

SVR ENGINEERING COLLEGE

DIGITAL SIGNAL PROCESSING LAB void main()

```
{
printf(" Enter the length of the first sequence\n");
scanf("%d",&m);
printf(" Enter the length of the second sequence\n");
scanf("%d",&n);
printf(" Enter the first sequence\n");
for(i=0;i<m;i++)
scanf("%d",&x[i]);
printf(" Enter the second sequence\n");
for(j=0;j<n;j++)
scanf("%d",&h[j]);
if(m-n!=0) /*If length of both sequences are not equal*/
{
if(m>n) /* Pad the smaller sequence with zero*/
{
for(i=n;i<m;i++)
h[i]=0;
n=m;
}
for(i=m;i<n;i++)
x[i]=0;
m=n;
}
y[0]=0;
a[0]=h[0];
for(j=1;j<n;j++) /*folding h(n) to h(-n)*/
a[j]=h[n-j];
/*Circular convolution*/
for(i=0;i<n;i++)
ECE DEPT.
                                SVR ENGINEERING COLLEGE
```

```
DIGITAL SIGNAL PROCESSING LAB y[0]+=x[i]*a[i];
```

for(k=1;k<n;k++)

```
{
```

y[k]=0;

/*circular shift*/

 $for(j=1;j<\!n;j\!+\!+)$

x2[j]=a[j-1];

x2[0]=a[n-1];

for(i=0;i<n;i++)

{

a[i]=x2[i];

y[k]+=x[i]*x2[i];

```
}
```

}

```
printf(" The circular convolution is\n");
```

for(i=0;i<n;i++)

```
printf("%d \t",y[i]);
```

}

/*cross correlation*/

#include<stdio.h>

#include<math.h>

int y[10];

main()

{i

nt i,j;

int x[15]={1,2,3,4,0,0,0,0,0,0,0,0,0,0,0;};

```
int h[15]={4,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0;};
```

int n=4;

```
for(i=-(n-1);i<=(n-1);i++)
```

```
{
ECE DEPT.
```

```
III B TECH II SEM
```

```
DIGITAL SIGNAL PROCESSING LAB
y[i]=0;
for(j=0;j<=4;j++)
```

```
y[i]+= x[j] * h[j-i];
```

```
}f
```

```
or(i=-(n-1);i<n;i++)
```

```
printf("%d\n",y[i]);
```

}

/*auto correlation*/

```
#include<stdio.h>
```

#include<math.h>

int y[10];

main()

{

int i,j,k;

```
int x[15]=\{0,0,0,0,0,1,1,1,1,1,0,0,0,0,0\};
```

int n=15;

k=n-1;

```
for(i=-(n-1);i<=(n-1);i++)
```

{

```
y[i+k]=0;
```

```
for(j=0;j<=5;j++)
```

```
y[i+k]+=x[j+k] * x[i+j+k];
```

```
}
```

```
for(i=-(n-1);i<n;i++)
```

printf("%d\n",y[i+k]);

```
}
```

4) DTFT of a given signal

Program--

```
DIGITAL SIGNAL PROCESSING LAB
#include<stdio.h>
```

```
#include<math.h>
int N,k,n,i;
float pi=3.1416,sumre=0, sumim=0,out_real[8]={0.0}, out_imag[8]={0.0};
int x[32];
void main(void)
{
printf(" enter the length of the sequence\n");
 scanf("%d",&N);
 printf(" enter the sequence\n");
 for(i=0;i<N;i++)
 scanf("%d",&x[i]);
for(k=0;k<N;k++)
{
sumre=0;
sumim=0;
for(n=0;n<N;n++)
{
sumre=sumre+x[n]* cos(2*pi*k*n/N);
sumim=sumim-x[n]* sin(2*pi*k*n/N);
}
out_real[k]=sumre;
out_imag[k]=sumim;
printf("X([%d])=\t%f\t+\t%fi\n",k,out_real[k],out_imag[k]);
}
}
```

5) N – point FFT algorithm

Program--

DIGITAL SIGNAL PROCESSING LAB #include<stdio.h>

#include<math.h>

#define PI 3.14

typedef struct

{

float real, imag;

}com;

void main()

{

```
com xx[8],x[8],temp[8],temp1[8],y[8],a[8],b[8],w[4];
int i,j=0;//loop counter variables
printf("\nEnter 8 input samples==");
for(i=0;i<8;i++)
      scanf("%f",&xx[i].real);
j=0;
for(i=0;i<8;i=i+2)
{
      x[j].real=xx[i].real;
      x[j+1].real=xx[i+4].real;
      if(i==2)
      i=-1;
      j=j+2;
}
for(i=0;i<4;i++)
{
      w[i].real=cos(2*PI*i/8);
      w[i].imag=-sin(2*PI*i/8);
}
```

```
for(i=0;i<8;i=i+2)
```

```
DIGITAL SIGNAL PROCESSING LAB
      {
            temp[i].real=x[i].real+x[i+1].real;
            temp[i].imag=x[i].imag+x[i+1].imag;
            temp[i+1].real=x[i].real-x[i+1].real;
            temp[i+1].imag=x[i].imag-x[i+1].imag;
      }
      for(i=2;i<8;i=3*i)
      {
            a[i].real=temp[i].real*w[0].real-temp[i].imag*w[0].imag;
            a[i].imag=temp[i].real*w[0].imag+temp[i].imag*w[0].real;
            a[i+1].real=temp[i+1].real*w[2].real-temp[i+1].imag*w[2].imag;
            a[i+1].imag=temp[i+1].real*w[2].imag+temp[i+1].imag*w[2].real;
            temp[i].real=a[i].real;
            temp[i].imag=a[i].imag;
            temp[i+1].real=a[i+1].real;
            temp[i+1].imag=a[i+1].imag;
      }
      for(i=0;i<6;i++)
      {
            temp1[i].real=temp[i].real+temp[i+2].real;
            temp1[i].imag=temp[i].imag+temp[i+2].imag;
            temp1[i+2].real=temp[i].real-temp[i+2].real;
            temp1[i+2].imag=temp[i].imag-temp[i+2].imag;
            if(i=1)
            i=3;
      }
      for(i=4;i<8;i++)
      {
            b[i].real=temp1[i].real*w[i-4].real-temp1[i].imag*w[i-4].imag;
```

```
DIGITAL SIGNAL PROCESSING LAB
                                                               III B TECH II SEM
            b[i].imag=temp1[i].real*w[i-4].imag+temp1[i].imag*w[i-4].real;
            temp1[i].real=b[i].real;
            temp1[i].imag=b[i].imag;
      }
      for(i=0;i<4;i++)
      {
            y[i].real=temp1[i].real+temp1[i+4].real;
            y[i].imag=temp1[i].imag+temp1[i+4].imag;
            y[i+4].real=temp1[i].real-temp1[i+4].real;
            y[i+4].imag=temp1[i].imag-temp1[i+4].imag;
      }
      printf("\nDFT values==\n");
      for(i=0;i<8;i++)
            printf("\nF(%d)=(%0.1f)+j(%0.1f)\n",i,y[i].real,y[i].imag);
```

}

RESULT :

E Console X				
sine [Project Debug Session] Texas Instruments XDS100v1 USB Emu				
enter the length of the sequence				
8				
enter the sequence				
1 1 2 -2 3 0 5 1				
•				
E Console X III Memory Man				
C6748LCDK.ccxml:CIO				

and the sector	www.united.es.w		
1			
X([O])=	9.000000	+	0.000000i
X([1])=	-1.292866	+	1.535557i
X([2])=	1.999946	+	-5.000029i
X([3])=	-2.706979	+	5.535595i
X([4])=	3.000000	+	0.000006i
X([5])=	-2.707312	+	-5.535431i
X([6])=	2.000164	+	4.999912i
X([7])=	-1.293085	+	-1.535376i

6) Design of FIR filter using windowing technique and verify the frequency response of the filter

DIGITAL SIGNAL PROCESSING LAB #include<stdio.h>

```
#include<math.h>
#define pi 3.1415
int n,N,c;
float wr[64], wt[64];
void main()
{ printf("\n enter no. of samples,N= :"); scanf("%d",&N);
printf("\n enter choice of window function\n 1.rect \n 2. triang \n c= :"); scanf("%d",&c);
printf("\n elements of window function are:");
switch(c)
{
case 1:
for(n=0;n<=N-1;n++)
{
wr[n]=1;
printf(" \n wr[%d]=%f",n,wr[n]);
}
break;
case 2:
for(n=0;n<=N-1;n++)
{
wt[n]=1-(2*(float)n/(N-1));
printf("\n wt[%d]=%f",n,wt[n]);
}
break;
}}
```

High Pass FIR filter(Fc= 800Hz).

7) Design of IIR filter using any of the available methods and verify the

frequency response of the filter

Program:

//IIRFILTERS USING C

#include<stdio.h>

```
#include<math.h>
```

int i,w,wc,c,N;

float H[100];

float mul(float, int);

void main()

{

printf("\n enter order of filter ");

scanf("%d",&N);

printf("\n enter the cutoff freq ");

```
scanf("%d",&wc);
```

printf("\n enter the choice for IIR filter 1. LPF 2.HPF ");

scanf("%d",&c);

switch(c)

{

case 1:

```
for(w=0;w<100;w++)
```

{

```
H[w]=1/sqrt(1+mul((w/(float)wc),2*N));
```

```
printf("H[%d]=%f\n",w,H[w]);
```

```
}
```

break;

case 2:

```
for(w=0;w<=100;w++)
```

```
{
```

printf("H[%d]=%f\n",w,H[w]);

}

break;

}}

float mul(float a, int x)

{

for(i=0;i<x-1;i++)

a*=a;

return(a);

}

8) Design of Analog filters

Program:

```
// IIR filter implemented using second order sections
// integer coefficients read from file
#include "L138 LCDK aic3106 init.h"
#include "elliptic.cof"
int w[NUM SECTIONS][2] = {0};
interrupt void interrupt4() //interrupt service routine
ł
  int section; // index for section number
 int input; // input to each section
int wn,yn; // intermediate and out
                 // intermediate and output values in each stage
  input = input left sample();
// input = (int)prbs();
 for (section=0 ; section< NUM SECTIONS ; section++)</pre>
  {
11
    wn = input - ((a[section][1]*w[section][0])>>15) -
((a[section][2]*w[section][1])>>15);
11
    yn = ((b[section][0]*wn)>>15) +
((b[section][1]*w[section][0])>>15) +
((b[section][2]*w[section][1])>>15);
    w[section][1] = w[section][0];
    w[section][0] = wn;
                             // output of current section will be
    input = yn;
input to next
  }
  output left sample((int16 t)(yn)); // before writing to codec
  return;
                                 //return from ISR
}
int main(void)
{
L138 initialise intr(FS 48000 HZ,ADC GAIN ODB,DAC ATTEN ODB,LCDK L
INE INPUT);
 while(1);
} // end of main()
```

RESULT :

