

| Experiment No. | Date: |  |  |  |  |  |  |  |
|----------------|-------|--|--|--|--|--|--|--|
|----------------|-------|--|--|--|--|--|--|--|

# **GENERAL INSTRUCTIONS**

1. Students should wear the uniform and closed foot wear. Students inappropriately dressed for lab, at the instructor's discretion, are denied access.

2. Eating, drinking and smoking are prohibited in the laboratory at all times.

3. Never work in the laboratory without proper supervision by an instructor.

4. Never carry out unauthorized experiments. Come to the laboratory prepared. If you are unsure about what to do, please ask the instructor.

5. Except the scientific calculator, any other electronic devices are not permitted to use inside the Laboratory.

6. Any damage to any of the equipment/instrument/machine caused due to carelessness, the cost will be fully recovered from the individual (or) group of students.

| Experimer    | nt No. 🦳 | Date:                                                              |         |
|--------------|----------|--------------------------------------------------------------------|---------|
| List of Expe | riments: |                                                                    |         |
| EXPT<br>NO.  | DATE     | TOPIC                                                              | PAGE NO |
| Ι            |          | 2D and 3D Drafting using Solidworks or any drafting package        | 5       |
| 1.           |          | Modeling of Component in 3D – V block                              | 8       |
| 2.           |          | Modeling of Component in 3D – Open Bearing                         | 10      |
| 3.           |          | Modeling of Component in 3D – Angular block                        | 12      |
| 4.           |          | Modeling of Component in 3D – Dovetail Guide                       | 14      |
| II           |          | Assembly Modeling                                                  | 15      |
| 5.           |          | Details and assembly of Screw jack using solidworks software       | 17      |
| 6.           |          | Details and assembly of Stuffing Box using solidworks software.    | 22      |
| 7.           |          | Details and assembly of Footstep bearing using solidworks software | 27      |
| III          |          | Machining of Simple Components on CNC Lathe                        | 44      |
| 8.           |          | FACING                                                             | 50      |
| 9.           |          | TURNING CYCLE                                                      | 52      |
| IV           |          | Machining of Simple Components on CNC<br>Milling Machine           | 54      |
| 10.          |          | LINEAR AND CIRCULAR INTERPOLATION                                  | 54      |
| 11           |          | ENGRAVING                                                          | 56      |

| SVR ENGINEERING COLLEGE |  |  |  |  |
|-------------------------|--|--|--|--|
| Experiment No. Date:    |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
| Dout Madaling           |  |  |  |  |
| Part Modeling           |  |  |  |  |
|                         |  |  |  |  |
| Colid Works             |  |  |  |  |
| JUILU VVULKS            |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |

| Experiment No. | Date: |
|----------------|-------|
|----------------|-------|

#### **BASICS OF SOLIDS MODELING WITH SOLIDWORKS**

#### Introduction

Solid Works is the state of the art in computer-aided design (CAD). Solid Works represents an object in a virtual environment just as it exists in reality, i.e., having volume as well as surfaces and edges. This, along with exceptional ease of use, makes Solid Works a powerful design tool. Complex three-dimensional parts with contoured surfaces and detailed features can be modeled quickly and easily with Solid-Works. Then, many parts can be assembled in a virtual environment to create a computer model of the finished product. In addition, traditional engineering drawings can be easily extracted from the solids models of both the parts and the final assembly. This approach opens the door to innovative design concepts, speeds product development, and minimizes design errors. The result is the ability to bring high-quality products to market very quickly.

#### **CONSTRAINT-BASED SOLIDS MODELING**

The constraint-based solids modeling used in Solid Works makes the modeling process intuitive. The 3-D modeling begins with the creation of a 2-D sketch of the profile for the cross section of the part. The sketch of the cross section begins much like the freehand sketch of the face of an object. The initial sketch need not be particularly accurate; it needs only to reflect the basic geometry of the part's cross-sectional shape. Details of the cross section are added later. The next step is to constrain the two-dimensional sketch by adding enough dimensions and parameters to completely define the shape and size of the two-dimensional profile. The name constraint-based modeling arises because the shape of the initial two-dimensional sketch is "constrained" by adding dimensions to the sketch. Finally, a three-dimensional object is created by revolving or extruding the two-dimensional sketched profile. Figure 1 shows the result of revolving a simple L-shaped cross section by 2700 about an axis and extruding the same L-shaped cross section along an axis.

In either case, these solid bodies form the basic geometric solid shapes of the part. Other features can be added subsequently to modify the basic solid shape. Once the solids model is generated using Solid Works, all of the surfaces have been automatically defined, so it is

possible to shade it in order to create a photorealistic appearance. It is also easy to generate twodimensional orthographic views of the object. Solid modeling is like the sculpting of a virtual solid volume of material. Because the volume of the object is properly represented in a solids model, it is possible to slice through the object and show a view of the object that displays the interior detail (sectional views). Once several solid objects have been created, they can be assembled in a virtual environment to confirm their fit and to visualize the assembled product. Solids models are useful for purposes other than visualization. The solids model contains a complete mathematical representation of the object, inside and out. This mathematical representation is easily converted into specialized computer code that can be used for stress analysis, heat transfer analysis, fluid-flow analysis, and computer-aided manufacturing. Getting Started in Solid Works Introduction and Reference Solid Works Corporation developed Solid Works® as a three-dimensional, feature-based, solids-modeling system for personal computers.

Solid modeling represents objects in a computer as volumes, rather than just as collections of edges and surfaces. Features are three-dimensional geometries with direct analogies to shapes that can be machined or manufactured, such as holes or rounds. Feature-based solid modeling creates and modifies the geometric shapes of an object in a way that represents common manufacturing processes. This makes Solid Works a very powerful and effective tool for engineering design. As per other computer programs, Solid Works organizes and stores data in files. Each file has a name followed by a period (dot) and an extension. There are several file types used in Solid Works, but the most common file types and their extensions are Part files .prt or .sldprt Assembly files .asm or .sldasm Drawing files .drw or .slddrw

Part files are the files of the individual parts that are modeled. Part files contain all of the pertinent information about the part. Because Solid Works is a solids-modeling program, the virtual part on the screen will look very similar to the actual manufacture part. Assembly files are created from several individual part files that are virtually assembled (in the computer) to create the finished product.

Assembly files are the two dimensional engineering drawing representations of both the part and assembly file. The drawings should contain all of the necessary information for the manufacture of the part, including dimensions, part tolerances, and so on. The part file is the

| Experiment No. | Date: |  |     | ] |
|----------------|-------|--|-----|---|
|                |       |  | 1 1 |   |

driving file for all other file types. The modeling procedure begins with part files. Subsequent assemblies and drawings are based on the original part files. One advantage of Solid Works files is the feature of dynamic links. Any change to a part file will automatically be updated in any corresponding assembly or drawing file.

#### <u>Tool bars:</u>

The Sketch toolbar contains tools to set up and manipulate a sketch.

• The Sketch Tools toolbar contains tools to draw lines, circles, rectangles, arcs, and so on.

• The Sketch Relations toolbar contains tools for constraining elements of a sketch by using dimensions or relations.

• The Features toolbar contains tools that modify sketches and existing features of a part.

• The Standard toolbar contains the usual commands available for manipulating files (Open, Save, Print, and so on), editing documents (Cut, Copy, and Paste), and accessing Help.

The Standard Views toolbar contains common orientations for a model.

- The View toolbar contains tools to orient and rescale the view of a part.
- Line: creates a straight line.
- Center point Arc: creates a circular arc from a center point, a start point and an end point.
- Tangent Arc: creates a circular arc tangent to an existing sketch entity.
- 3 Pt Arc: creates a circular arc through three points.
- Circle: creates a circle.
- Splines: creates a curved line that is not a circular arc.
- Polygon: creates a regular polygon.
- Rectangle: creates a rectangle.
- Point creates: a reference point that is used for constructing other sketch entities.
- Centerline: creates a reference line that is used for constructing other sketch entities.

Convert Entities: creates a sketch entity by projecting an edge, curve, or contour onto the sketch plane.

- Mirror: reflects entities about a centerline.
- Fillet: creates a tangent arc between two sketch entities by rounding an inside or an outside corner.
- Offset: Entities creates a sketch curve that is offset from a selected sketch entity by a specified distance.
- Trim: removes a portion of a line or curve.

| SVR ENGINEERING COLLEGE                                                                                                                                                                     |                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Experiment No.                                                                                                                                                                              | Date:                                                             |  |  |  |  |
| <b>1.Modeling of Component in 3D – V block</b><br><b>AIM:</b> To draw the detail view of part drawing of the simple component (V-BLOCK) as shown in the figure by using Soliworks software. |                                                                   |  |  |  |  |
| HARDWARE REQUIRED:                                                                                                                                                                          |                                                                   |  |  |  |  |
| <ol> <li>CPU</li> <li>A colour monitor<br/>resolution 1024 by 7</li> <li>A scroll mouse.</li> </ol>                                                                                         | with highest 64 bit colour display and with screen<br>'68 pixels. |  |  |  |  |

# **SOFTWARE REQUIRED:**

Windows XP operating system
 Solid works

# **COMMANDS USED:**

Ex: Line, Circle, Erase, Trim, Mirror, Move, Region, Extrude, Subtract.

# **PROCEDURE:**

Study the given drawing completely and find out the front view of the given Isometric object. Draw the required front view of the object with specified dimensions. Extrude the drawn section using extrude command for the given dimension. Next select the appropriate plane and draw the other sections in similar way. Also remove the materials where ever needed using subtract command. Chamfering is done by the chamfer command. All individual objects are combined together by using union command.



Thus the detailed view of part drawing of the simple component (V-BLOCK) is drawn by using the Solidworks software.

| Experiment N                                                                                                                                                         | 0.                                                                                                                                                           | Dat                                                                                                           | e:                                                                                      |                                            |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|---------------|
|                                                                                                                                                                      | 2.Modeling of C                                                                                                                                              | Component ir                                                                                                  | ı 3D – Open                                                                             | Bearing                                    |               |
|                                                                                                                                                                      | (                                                                                                                                                            | OPEN BEARIN                                                                                                   | ١G                                                                                      |                                            |               |
| AIM:<br>To draw the detai<br>in the figure by us                                                                                                                     | l view of part drawing<br>sing Solidworks softw                                                                                                              | of the simple co<br>are.                                                                                      | omponent (OP                                                                            | EN BEARIN                                  | G) as shown   |
| HARDWARE R                                                                                                                                                           | EQUIRED:                                                                                                                                                     |                                                                                                               |                                                                                         |                                            |               |
| <ol> <li>CPU</li> <li>A colour monit<br/>resolution 1024 b</li> <li>A scroll mouse</li> </ol>                                                                        | or with highest 64 bit<br>y 768 pixels.                                                                                                                      | colour display a                                                                                              | nd with screen                                                                          | L                                          |               |
| SOFTWARE RI<br>1. Windows XP o<br>2. Solidworks                                                                                                                      | QUIRED:<br>perating system                                                                                                                                   |                                                                                                               |                                                                                         |                                            |               |
| COMMANDS U                                                                                                                                                           | SED:                                                                                                                                                         |                                                                                                               |                                                                                         |                                            |               |
| Ex: Line, Circle, I<br>Union.                                                                                                                                        | Erase, Trim, Mirror, N                                                                                                                                       | Iove, Region, E                                                                                               | ktrude, Subtrac                                                                         | xt,                                        |               |
| PROCEDURE:                                                                                                                                                           |                                                                                                                                                              |                                                                                                               |                                                                                         |                                            |               |
| <ul> <li>Study the given</li> <li>Draw the require</li> <li>Extrude the draw</li> <li>Next select the a</li> <li>Also remove the</li> <li>Chamfering is d</li> </ul> | drawing completely and<br>ed front view of the ob-<br>vn section using extruc-<br>ppropriate plane and co-<br>materials where ever<br>one by the chamfer co- | nd find out the f<br>oject with specified<br>de command for<br>lraw the other so<br>needed using su<br>mmand. | ront view of the<br>ied dimensions<br>the given dim<br>ections in simi<br>ibtract comma | e given Isom<br>ension.<br>lar way.<br>nd. | etric object. |



Thus the detailed view of part drawing of the simple component (OPEN BEARING) is drawn by using the Solidworks software.

|                                                                                                                                                               | SVK ENGINEERING COLLEGE                                                                                                                                                                                       |                                                                                                                                                                                                                                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Experiment N                                                                                                                                                  | 0.                                                                                                                                                                                                            | Date:                                                                                                                                                                                                                                      |  |  |
| 3.]                                                                                                                                                           | Modeling of Compo                                                                                                                                                                                             | onent in 3D – Angular block                                                                                                                                                                                                                |  |  |
|                                                                                                                                                               | ANG                                                                                                                                                                                                           | ULAR BLOCK                                                                                                                                                                                                                                 |  |  |
| AIM:<br>To draw the deta<br>(ANGULAR BL)                                                                                                                      | l view of part drawing of t<br>DCK) as shown in the figu                                                                                                                                                      | the simple component<br>are by using Solidworks software.                                                                                                                                                                                  |  |  |
| HARDWARE R<br>1. CPU with Pent<br>2. A colour moni<br>pixels.<br>3. A scroll mouse                                                                            | EQUIRED:<br>ium IV processor.<br>or with highest 64bit color                                                                                                                                                  | our display and with screen resolution 1024 by 768                                                                                                                                                                                         |  |  |
| <b>SOFTWARE R</b><br>1. Windows XP o<br>2. Solidworks                                                                                                         | EQUIRED:<br>perating system                                                                                                                                                                                   |                                                                                                                                                                                                                                            |  |  |
| <b>COMMANDS U</b><br>Ex: Line, Circle,                                                                                                                        | <b>SED:</b><br>Erase, Trim, Mirror, Move                                                                                                                                                                      | e, Region, Extrude, Subtract, Union.                                                                                                                                                                                                       |  |  |
| PROCEDURE:<br>• Study the given<br>• Draw the requir<br>• Extrude the dra<br>• Next select the<br>• Also remove th<br>• Chamfering is c<br>• All individual c | drawing completely and fi<br>ed front view of the object<br>wn section using extrude co<br>appropriate plane and draw<br>e materials where ever need<br>one by the chamfer comm<br>bjects are combined togeth | find out the front view of the given Isometric object.<br>t with specified dimensions.<br>command for the given dimension.<br>w the other sections in similar way.<br>eded using subtract command.<br>nand.<br>her by using union command. |  |  |
|                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                               |                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |  |  |



Thus the detailed view of part drawing of the simple component (ANGULAR BLOCK) is drawn by using the Solidworks software.

| 1                                                                                                                                                                         | Date.                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                           | 4.Modeling of Component in 3D –Dovetail Guide                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                           | DOVETAIL GUIDE                                                                                                                                                                                                                                                                                                     |
| AIM:<br>To draw the detail vi<br>in the figure by using                                                                                                                   | iew of part drawing of the simple component (DOVETAIL Guide) as shown g Solidworks.                                                                                                                                                                                                                                |
| <ol> <li>CPU.</li> <li>A colour monitor<br/>resolution 1024 by 7</li> <li>A scroll mouse.</li> <li>SOFTWARE REQ</li> <li>Windows XP oper<br/>2. Solidworks.</li> </ol>    | with highest 64 bit colour display and with screen<br>68 pixels.<br><b>UIRED:</b><br>rating system                                                                                                                                                                                                                 |
| <b>COMMANDS USE</b><br>Ex: Line, Circle, Era                                                                                                                              | C <b>D:</b><br>Ise, Trim, Mirror, Move, Region, Extrude, Subtract, Union.                                                                                                                                                                                                                                          |
| <ul> <li>PROCEDURE:</li> <li>Study the given dra</li> <li>Draw the required</li> <li>Extrude the drawn</li> <li>Next select the app</li> <li>Also remove the m</li> </ul> | awing completely and find out the front view of the given Isometric object.<br>front view of the object with specified dimensions.<br>section using extrude command for the given dimension.<br>propriate plane and draw the other sections in similar way.<br>materials where ever needed using subtract command. |



Thus the detailed view of part drawing of the simple component (DOVETAIL GUIDE) is drawn by using the Solidworks software

| SVR ENGINEERING COLLEGE  |   |
|--------------------------|---|
| Experiment No. Date:     | ] |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
|                          |   |
| <b>Assembly modeling</b> |   |
| e C                      |   |
|                          |   |
|                          |   |
| Page 16                  |   |
| Page 10                  |   |

| SVR ENGINEERING COLLEGE |       |  |  |  |  |
|-------------------------|-------|--|--|--|--|
| Experiment No.          | Date: |  |  |  |  |
|                         |       |  |  |  |  |

## 5. Assembly of a screw jack parts

#### AIM:

To model and assemble the Screw jack as per the dimensions given and also convert the 3D model into different views.

#### **Description about Screw jack:**

A Screw Jack, manually operated is a contrivance to lift heavy object over a small height with a distinct Mechanical Advantages. It also serves as a supporting aid in the raised position. A screw Jack is actuated by a square threaded screw worked by applying a moderate effort at the end of a Tommy bar inserted into the hole of the head of the screw. The body of the screw jack has an enlarged circular base which provides a large bearing area. A gun metal nut is tight fitted into the body at the top. A screw spindle is screwed through the nut. A load bearing cup is mounted at the top of the screw spindle and secured to it by a washer and a CSK screw. When the screw spindle is rotated, the load bearing cup moves only up or down along with the screw spindle but will not rotate with it. The Tommy bar is inserted into the hole in the head of the screw spindle only during working and will be detached when not in use.





**1.Body Use revolve feature** 





| SVR ENGINEERING COLLEGE                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                                                              |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Experiment No.                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date:                                                                                                                                                                                                                                                                              |                                                                                                                                              |      |  |
| <ul> <li>Procedure: <ol> <li>Model different parts of a S</li> <li>Select the assembly in solid</li> <li>Using Insert component icc</li> <li>to be assemble.</li> <li>Assemble using MATE Fea</li> <li>Continue the inserting the c</li> <li>assembled.</li> <li>Save the assembly.</li> <li>From the main menu of soli</li> <li>Drawing icon in main menu</li> <li>Select the drawing sheet for</li> <li>Using the model view mar</li> </ol> </li> </ul> | crew Jack using Extrude, Revel<br>works main menu.<br>on of property manager, insert<br>ture.<br>omponent & mating until the of<br>id works select the drawing op<br>of Solid works<br>rmat size as – A4 Landscape.<br>hager browse the document to<br>n from the model view manag | volve and features.<br>t base component & next component<br>e entire component are<br>ption.<br>be open.<br>ager & place the drawing view in | ents |  |
| <ul> <li>12.Using the placed view as p.</li> <li>13. Move cursor to any one vi</li> <li>14. Select the Table – BOM.</li> <li>15. Place the BOM in the procession.</li> </ul>                                                                                                                                                                                                                                                                              | arent view project the other or<br>ew and right click the mouse b                                                                                                                                                                                                                  | r needed views<br>button.                                                                                                                    |      |  |
| 16. Save the drawing sheet.                                                                                                                                                                                                                                                                                                                                                                                                                               | ber prace in the trawing sheet.                                                                                                                                                                                                                                                    |                                                                                                                                              |      |  |

# **Result:**

Thus the given Screw Jack is modeled; assembled & different views are taken



| SVR ENGINEERING COLLEGE                                                             |                                                                  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Experiment No.                                                                      | Date:                                                            |
| 6.DETAILS AND ASSEMI                                                                | <b>BLY OF STUFFING BOX USING SOLIDWORKS</b>                      |
|                                                                                     | SOFTWARE                                                         |
| oftware and obtain its respective vi<br>COMMANDS USED: Sketch, extr<br>Chamfer etc, | ews.<br>ude , Shaft, Pattern, Mate, Align, Helical Sweep, Round, |
|                                                                                     | 1.Create a 2D sketch on Front Plane as shown in the figure.      |
|                                                                                     |                                                                  |

2.(Right click the Front plane>insert sketch and draw the 2D sketch).

Note: All the 2D sketches drawn should be fully Defined and there should not be any under defined) and use ( click Add Relation and Smart Dimensions.

3. extrude to 15 mm (Select the face by (Enter Space bar> double click the plane)



and Draw the 2D sketch as given above



4.extrude to 50 mm (Select the face by (Enter Space bar> double click the plane) and Draw the 2D sketch as given above

# SVR ENGINEERING COLLEGE Experiment No. Date: Inner diameter 34 mm size and use extrude cut and remove material up to end of block as shown below. Image: College Colle

5.Create a 2D sketch on Front Plane as shown in the figure.

(Right click the Front plane>insert sketch and draw the 2D sketch).

extrude to 15 mm (Select the face by (Enter Space bar> double click the plane) and Draw the 2D sketch



as given above

1. Use Extrude cut with dimensions of 42 mm size circle as per below figure.



Create a hole as per the dimensions of 12mm size both sides.

| SVR ENGINEERING COLLEGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Experiment No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date:                                                                                                                                                                                                                                                                                           |  |
| 6.Create a 2D sketch on Front Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne as shown in the figure.                                                                                                                                                                                                                                                                      |  |
| (Right click the Front plane>insert sket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etch and draw the 2D sketch).                                                                                                                                                                                                                                                                   |  |
| Extrude cut to 51 mm (Select the face 1<br>2D sketch as given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by (Enter Space bar> double click the plane) and Draw the                                                                                                                                                                                                                                       |  |
| <ul> <li>7. Create thread, Take sweep (insert and there relative circle, and Select (select →along path), Define by→se mirror it.</li> <li>II Gland: 6.Create a 2D sketch or a section of the section of</li></ul> | ert $\rightarrow$ boss/base $\rightarrow$ sweep) command and give Select profile<br>ct path there relative curve,Options $\rightarrow$ orientation /twist type<br>select turns $\rightarrow$ give the valve of 50 to 100). $\rightarrow$ Ok done. And<br>on Front Plane as shown in the figure. |  |
| (Right click the Front plane>insert sket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etch and draw the 2D sketch).                                                                                                                                                                                                                                                                   |  |
| Extrude to 12 mm and 10mm (Select th<br>Draw the 2D sketch as given above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the face by (Enter Space bar> double click the plane) and                                                                                                                                                                                                                                       |  |
| R18 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |
| Extrude to 45 mm (Select the face by (<br>sketch as given above, Extrude cut use<br>click the plane) and Draw the 2D sketc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Enter Space bar> double click the plane) and Draw the 2D are through all.(Select the face by (Enter Space bar> double tch as given below,                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |  |

7.Create a 2D sketch on Front Plane as shown in the figure.

| SVR ENGIN                                | EERING COLLEGE                                |
|------------------------------------------|-----------------------------------------------|
| Experiment No.                           | Date:                                         |
| (Right click the Front plane>inser       | t sketch and draw the 2D sketch).             |
| Revolve, the sketch to 360 degree on top | sketched line, by (Insert> Boss/Base>Revolve) |
| ok. As per given below figure.           |                                               |
| ¥12                                      |                                               |
| Below figures use as per the dimension   | 8                                             |
| III Neck bush:                           | IV M12 Nut                                    |
|                                          |                                               |
| V. Stud                                  |                                               |
|                                          |                                               |
|                                          | Page 24                                       |

| SVR ENGINH     | EERING COLLEGE |
|----------------|----------------|
| Experiment No. | Date:          |
|                |                |

Assembly model as per the dimensions:



# **PROCEDURE: PART DRAWING:**

CYLINDER: ¬Using Pad, Cut and Round Commands the cylinder has been drawn. NUT: ¬Using extrude, Cut and Round Commands the nut has been drawn. GLAND BUSH: ¬Using extrude and Cut Commands the gland bush has been drawn. PISTON ROD: ¬Using extrude and Cut Commands the piston rod has been drawn. PACKING: ¬Using Shaft command the packing has been drawn.

#### ASSEMBLY AND DETAILED DRAWING: 1ò

Using the Assembly and Drawing mode to make the respective views and bill of materials.

#### **RESULT:**

Thus the Detail View of the Stuffing Box and then its respective views have been drawn



| Experiment No.                                                                                                                                                                                                                                   |                                                                                                                                        | Date:                                                                                                                                          |                                                                                          |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|
| 7.DETAILS AND ASS                                                                                                                                                                                                                                | SEMBLY OF I                                                                                                                            | FOOT STEP BEA<br>SOFTWARE                                                                                                                      | RING USING SO                                                                            | LIDWORKS          |
| AIM - To develop t<br>using Auto cad.                                                                                                                                                                                                            | he part drawing                                                                                                                        | g of foot step bearin                                                                                                                          | ng in the orthograph                                                                     | ic representation |
| HARDWARE REQUIRE                                                                                                                                                                                                                                 | D:                                                                                                                                     |                                                                                                                                                |                                                                                          |                   |
| <ol> <li>A colour monitor with hiresolution 1024 by 768 pix</li> <li>A scroll mouse.</li> </ol>                                                                                                                                                  | ighest 64 bit co<br>els.                                                                                                               | lour display and w                                                                                                                             | th screen                                                                                |                   |
| SOFTWARE REQUIRE<br>1. Windows XP operating s<br>2. Solidworks                                                                                                                                                                                   | <b>D:</b><br>system                                                                                                                    |                                                                                                                                                |                                                                                          |                   |
| COMMANDS USED:                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                |                                                                                          |                   |
| Ex: Line, Circle, Erase, Tri<br>Union.                                                                                                                                                                                                           | m, Mirror, Mov                                                                                                                         | ve, Region, Extrud                                                                                                                             | e, Subtract,                                                                             |                   |
| PROCEDURE:                                                                                                                                                                                                                                       |                                                                                                                                        |                                                                                                                                                |                                                                                          |                   |
| <ul> <li>Study the given drawing of Draw the required front v</li> <li>Extrude the drawn section</li> <li>Next select the appropriat</li> <li>Also remove the materials</li> <li>Chamfering is done by the All individual objects are</li> </ul> | completely and<br>iew of the object<br>i using extrude<br>the plane and dra<br>is where ever ne<br>e chamfer complete<br>combined toge | find out the front v<br>ct with specified di<br>command for the g<br>w the other section<br>eded using subtrac<br>nand.<br>ther by using union | view of the given Iso<br>mensions.<br>iven dimension.<br>s in similar way.<br>t command. | ometric object.   |



Thus the Detail View of the Footstep bearing and then its respective views have been drawn

|                                                                              | Date:                                                                                                   |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1. DETAILS AND MODE                                                          | LING OF INTERNAL AND EXTERNAL THREAD OF BOLT                                                            |
| ANI                                                                          | O NUT USING SOLID WORKS(EXTRA)                                                                          |
| AIM : To model a bolt and features by feature based par                      | d nut by creating, modifying assembling and manipulating various ametric solid modeliing and detailing. |
| Tools: Personal computer<br>solidworks software.<br>1. Procedure: Create a 2 | with Pentium IV processor with windows xp/windows-7 and D sketch on Front Plane as shown in the figure. |
| 2. (Right click the Front                                                    | plane>insert sketch and draw the 2D sketch)                                                             |
| 3. Note: All the 2D ske                                                      | etches drawn should be fully Defined and there should not be any                                        |
| under defined) and us                                                        | se ( click Add Relation and Smart Dimensions)                                                           |
|                                                                              |                                                                                                         |

4. Create circle of 2D sketch of

Hexagonal width of 11.6 mm, on right plane and cut extrude to 7mm, (Select the face by (Enter Space bar> double click the Normal plane)

| Experiment No.   | Date: |  |
|------------------|-------|--|
| Cut-Extrude2 ?   |       |  |
| From A           |       |  |
| Direction 1 🔅    |       |  |
| Blind V          |       |  |
| 7.00mm           |       |  |
| Flip side to cut |       |  |
|                  |       |  |

 Create circle of 2D sketch of Diameter of 11.6 mm, on right plane and extrude cut to 7mm taper 60°, flip side to cut, draft inward. (Select the face by (Enter Space bar> double click the Normal plane) and Draw the 2D sketch as given above. Extrude cut by (Insert>Boss/Base>Extrude)) ok.



6.Create circle of 2D sketch of Diameter of 10 mm, on right plane and extrude to 7mm (Enter Space bar> double click the Normal plane)





| Trans | slate    | ^ |
|-------|----------|---|
|       |          |   |
| ΔX    | 0.00mm   | 0 |
| ΔY    | 0.00mm   | 0 |
| ΔZ    | -30.00mm | 0 |



**Assembly:** Open new assembly file. Import bolt and nut file in assembly mode.

**12.** Mate the components using concentric Mate (select both bolt and nut thread faces).

**13.**Mate the components using screw Mate and select both faces of bolt and nut.



Animation: open the motion study>switch of the orientation and camera





Start the motor> select the linear motor>motor location(select nut face ) and component to move relative to(select bolt ) ,motion at constant speed of 10mm/s>OK. Calculate and play.

| SVR ENGIN                    | EERING COLLEGE                             |
|------------------------------|--------------------------------------------|
| Experiment No.               | Date:                                      |
| 2. Details and assembly of I | Eccentric using solidworks software(Extra) |

# AIM:

To model and assemble the Eccentric as per the dimensions given and also convert the 3D models into different views with Bill of materials.

**Tools:** Personal computer with Pentium IV processor with windows xp/windows-7 and solidworks software, Sketch, extrude , Shaft, Pattern, Mate, Align, Helical Sweep, Round, Chamfer etc,



Extrude by (Insert>Boss/Base>Extrude)) ok.

1.Create a 2D sketch on Front Plane as shown in the figure.

2.(Right click the Front plane>insert sketch and draw the 2D sketch).

Note: All the 2D sketches drawn should be fully Defined and there should not be any under defined) and use ( click Add Relation and Smart Dimensions.

3. extrude to 45 mm (Select the face by (Enter Space bar> double click the Mid plane) and Draw the 2D sketch as given above

4.select right plane and draw the 2D Sketch circles for hole both ends sides.





(Right click the Front plane>insert sketch and draw the 2D sketch).

Circle of 200 mm diameter and use cut extrude(select mid plane 25 mm.







Create circle of 2D sketch as per the dimensions, on right plane and extrude to 20mm (Select the face by (Enter Space bar> double click the Normal plane) and Draw the 2D sketch as given above. Extrude by (Insert>Boss/Base>Extrude)) ok.







| SVR ENGINEERING COLLEGE                      |                                                                  |
|----------------------------------------------|------------------------------------------------------------------|
| Experiment No.                               | Date:                                                            |
| 5. Rod:                                      |                                                                  |
|                                              | Use extrude option and select mid plane 30mm.                    |
|                                              |                                                                  |
|                                              |                                                                  |
|                                              |                                                                  |
| Use extrude option and select mid plane 20mm |                                                                  |
|                                              | 510                                                              |
| Use extrude option and s<br>95 mm size.      | select mid plane 12mm and center hole of 17mm ,distance of holes |
| <b>2</b>                                     |                                                                  |
|                                              |                                                                  |
|                                              |                                                                  |
| 0                                            |                                                                  |
|                                              |                                                                  |
|                                              |                                                                  |
|                                              |                                                                  |



Select the assembly in solid works main menu.

3. Using Insert component icon of property manager, insert base component & next components to be assemble.

- 4. Assemble using MATE Feature.
- 5. Continue the inserting the component & mating until the entire component are assembled.
- 6. Save the assembly.
- 7. From the main menu of solid works select the drawing option.
- 8. Drawing icon in main menu of Solid works
- 9. Select the drawing sheet format size as A4 Landscape.

| Experiment No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Using the model view</li> <li>Click the view orients</li> <li>proper place in the sheet.</li> <li>Using the placed view</li> <li>Move cursor to any on</li> <li>Select the Table – BO</li> <li>Place the BOM in the</li> <li>Seve the drawing sheet</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | manager browse the document to be open.<br>ation from the model view manager & place the drawing view in<br>as parent view project the other or needed views<br>le view and right click the mouse button.<br>M.<br>proper place in the drawing sheet. |
| With the second |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |



| SVR ENGINEERING COLLEGE |  |
|-------------------------|--|
| Experiment No. Date:    |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
|                         |  |
| D 40                    |  |
| Page 42                 |  |

| Experiment No. | Date: |  | ] |
|----------------|-------|--|---|
|                |       |  |   |

# **INTRODUCTION**

# **WORD DETAILS:**

Although the control will, in general, accept part programming words in any sequence, it is recommended that the following word order for each block is used.

N; G; X or U; Z or W; I; K; F; S; T;

# **O: PROGRAM NUMBER**

The "O" followed by a 4 digit numeral value is used to assign a program number.

# Example: O1002

# **N: SEQUENCE NUMBER**

The N word may be omitted. When programmed, the sequence number following the N address is a four digit numerical value and is used to identify a complete block of information. Although ascending, descending, or duplicate numbering is allowed, it is best to program in ascending order in increments of 10. This allows for future editing and simplified sequence number search.

# **<u>G: PREPARATORY COMMAND:</u>**

The two digit G command is programmed to set up the control to perform an automatic machine operation. A full list of G codes are given, one G word from each modal group and one non modal G word can be programmed on the same block.

# **Example:**

Valid N 100 G00 G40 G41 G90 G95

\*G40 & G41 are from the same group.

A retained G word (Modal) from one group remains active until another G word from the same group is programmed.

| Experime   | nt No.        |                                | Date:                        |       |       | ][        |       | ][  |       |
|------------|---------------|--------------------------------|------------------------------|-------|-------|-----------|-------|-----|-------|
|            |               |                                |                              |       |       |           |       |     |       |
| One-shot G | word (N       | on-Modal) must be p            | programmed in ever           | y blo | ck wl | hen re    | quire | ed. |       |
| G-CODES    | <u>S LIST</u> | ING FOR DENF                   | ORD FANUC I                  | LAT   | HES   | <u>S:</u> |       |     |       |
|            | <u>Note</u>   | <u>: -</u> NOT ALL G C         | CODES APPLY                  | TO E  | EAC   | ΗM        | ACF   | III | NE.   |
| Group 1    | G00           | Positioning (Rapid             | d Traverse)                  |       |       |           |       |     |       |
| 1          | G01           | Liner Interpolation            | on (Feed)                    |       |       |           |       |     |       |
| 1          | G02           | Circular Interpola             | ation CW                     |       |       |           |       |     |       |
| 1          | G03           | Circular Interpola             | ation CW                     |       |       |           |       |     |       |
| 0          | G04           | Dwell                          |                              |       |       |           |       |     |       |
| 0          | G10           | Offset Value Setti             | ng By Program                |       |       |           |       |     |       |
| 6          | G20           | Inch Data Input                |                              |       |       |           |       |     |       |
| 6          | G21           | Metric Data Input              | t                            |       |       |           |       |     |       |
| 9          | G22           | Stored Stroke Cho              | eck On                       |       |       |           |       |     |       |
| 9          | G23           | Stored Stroke Cho              | eck Off                      |       |       |           |       |     |       |
| 0          | G27           | <b>Reference Point R</b>       | Reference Point Return Check |       |       |           |       |     |       |
| 0          | G28           | <b>Reference</b> Point R       | Return                       |       |       |           |       |     |       |
| 0          | G29           | Return from Refe               | rence Point                  |       |       |           |       |     |       |
| 0          | G30           | Return to 2 <sup>nd</sup> Refe | erence Point                 |       |       |           |       |     |       |
| 0          | G31           | Skip Function                  |                              |       |       |           |       |     |       |
| 1          | G32           | Thread Cutting                 |                              |       |       |           |       |     |       |
| 1          | G34           | Variable Lead Th               | read Cutting                 |       |       |           |       |     |       |
| 0          | G36           | Automatic Tool C               | ompensation X                |       |       |           |       |     |       |
| 0          | G37           | Automatic Tool C               | ompensation Z                |       |       |           |       |     |       |
| 7          | G40           | Tool Nose Radius               | Compensation car             | ncels |       |           |       |     |       |
| 7          | G41           | <b>Tool Nose Radius</b>        | Compensation Le              | ft    |       |           |       |     |       |
| 7          | G42           | Tool Nose Radius               | Compensation Rig             | ght   |       |           |       |     |       |
| 0          | G50           | Work Co-ord. Ch                | ange/Max. Spindle            | e Spe | ed se | tting     |       |     |       |
| 0          | G65           | Macro call                     |                              |       |       |           |       |     |       |
| 12         | G66           | Macro Modal Cal                | l Cancel                     |       |       |           |       |     |       |
|            |               |                                |                              |       |       |           |       | Ра  | ge 44 |

| SVR ENGINEERING COLLEGE |            |                                       |  |  |  |
|-------------------------|------------|---------------------------------------|--|--|--|
| Experiment              | t No.      | Date:                                 |  |  |  |
| 12                      | G67        | Macro Modal Call Cancel               |  |  |  |
| 4                       | G70        | Finishing Cycle                       |  |  |  |
| 4                       | G71        | Stock Removal in Turning              |  |  |  |
| 0                       | G72        | Stock Removal in Turning              |  |  |  |
| 0                       | G73        | Pattern Repeating                     |  |  |  |
| 0                       | <b>G74</b> | Peck Drilling in Z Axis               |  |  |  |
| 0                       | G75        | Grooving in X Axis                    |  |  |  |
| 0                       | G76        | Thread Cutting Cycle                  |  |  |  |
| 1                       | <b>G90</b> | Cutting Cycle A                       |  |  |  |
| 1                       | <b>G92</b> | Thread Cutting Cycle                  |  |  |  |
| 1                       | <b>G94</b> | Cutting Cycle B                       |  |  |  |
| 2                       | G96        | Constant surface Speed Control        |  |  |  |
| 2                       | <b>G97</b> | Constant Surface Speed Control Cancel |  |  |  |
| 11                      | G98        | Feed per Minute                       |  |  |  |
| 11                      | G99        | Feed per Revolution                   |  |  |  |

# **NOTES FOR G CODE LISTING:**

Note 1:-

G Codes of 0 group represent those non modal and are effective to the designed block.

Note 2:-

G Codes of different groups can be commanded to the same block. If more than one G codes from the same group are commanded, the latter becomes effective.

# **AXIS DEFINITIONS:-**

Z AXIS:-

The Z axis is along a line between the spindle and the tailstock, or the center line of rotation of the spindle. Minus (-) movements of the tool are left toward the head stock; positive (+) movements are right towards the tailstock.

| Experiment No. | Date: |  |  |  |  |  |  |
|----------------|-------|--|--|--|--|--|--|
|----------------|-------|--|--|--|--|--|--|

# X AXIS:-

The X axis is 90 degrees from the Z axis (perpendicular to the Z axis). Minus (-) movements of the tool are toward the center-line of rotation, and positive (+) movements are away from the center –line of rotation.

#### X: X AXIS COMMAND:-

The X word is programmed as a diameter which is used to command a change in position perpendicular to the spindle center-line.

# **U: X AXIS COMMAND:-**

The U word is an incremental distance (diameter value) which is used to command a change in position perpendicular to the spindle center-line. The movement is the programmed value.

#### **Z: Z AXIS COMMAND:-**

The Z word is an absolute dimension which is used is used to command a change in position parallel to the spindle center-line.

# W: Z AXIS COMMAND:-

The W word is an incremental distance which is used to command a change of position parallel to the spindle center-line.

Do not program X & U or Z & W in the same block. If an X axis command calls for no movement it may be omitted.

#### X, U or P: DWELL:-

The X word is used with G04 to command a dwell in seconds.

The P word is used with G04 to command a dwell in milliseconds.

# I WORD:-

For arc programming (G02 or G03), the K Value (with sign) is programmed to define the incremental distance parallel to the Z axis, between the start of the arc and the arc center.

#### K WORD:-

For arc programming (G02 or G03), the K value (with sign) is programmed to define the incremental distance parallel to the Z axis, between the start of the arc and the arc center.

| Experiment No. Date | ate: |
|---------------------|------|
|---------------------|------|

The maximum arc for I & K programming is limited to the quadrant. If I or K is zero, it must be omitted.

# F WORD:-

- a) In G99 mode the F word is used to command feed/rev.
- **b**) In G98 mode the F word is used to command feed/min.
- c) In G32 mode the F word specifies the lead (pitch) of the thread.

# P WORD:-

- a) Used in automatic cycles to define the first block of a contour.
- **b**) Used with M98 to define a subroutine number.

# Q WORD:-

Q words are used in automatic cycles to define the last block of a contour.

# **R WORD:-**

For circular interpolation (G02 or G03) the R word defines the arc radius from the center of the tool nose radius (G40 active) - or the actual radius required (G41/G42 active).

# S WORD:-

- a) In the constant surface speed mode (G96) the four digit S word is used to command the required surface speed in either feet or meters per minute.
- **b**) In the direct R.P.M mode (G97), the four digit S word is used to command the spindle speeds incrementally, in R.P.M between the ranges available for the machine.
- c) Prior to entering constant surface speed mode (G96) the S word is used to specify a speed constraint, the maximum speed you wish the spindle to run at. To set this restraint the S word is programmed in conjunction with the G50 word.

# T WORD:-

The T words are used in conjunction with "M06". Those are used to call up the required tool on an automatic indexing turret machine, and to activate its tool offsets.

# M WORD:-

An M word is used to initiate auxiliary functions particular to the machine. One M code can be programmed with in one program block together with other part program information.

|            | S       | VR ENGINEERING COLLEGE                                                          |
|------------|---------|---------------------------------------------------------------------------------|
| Experim    | ent No. | Date:                                                                           |
| M- CODE    | LIST FO | R DENFORD FANUC LATHES:-                                                        |
| All        | M Codes | marked with an asterisk will be executed at the end of a block (i.e., after the |
| axis mover | nent).  |                                                                                 |
| *          | M00     | PROGRAM STOP                                                                    |
| *          | M01     | OPTIONAL STOP                                                                   |
| *          | M02     | PROGRAM RESET                                                                   |
|            | M03     | SPINDLE FORWARD                                                                 |
|            | M04     | SPINDLE REVERSE                                                                 |
| *          | M05     | SPINDLE STOP                                                                    |
|            | M06     | AUTO TOOL CHANGE                                                                |
|            | M07     | COOLANT "B" ON                                                                  |
|            | M08     | COOLANT "A" ON                                                                  |
| *          | M09     | COOLANT OFF                                                                     |
|            | M10     | CHUCK OPEN                                                                      |
|            | M11     | CHUCK CLOSE                                                                     |
|            | M13     | SPINDLE FORWARD & COOLANT ON                                                    |
|            | M14     | SPINDLE REVERSE & COOLANT ON                                                    |
|            | M15     | PROGRAM INPUT USING."MIN P" (SPECIAL FUNCTION)                                  |
|            | M16     | SPECIALTOOL CALL (TOOL CALL IGNORES TURRET)                                     |
|            | M19     | SPINDLE ORIENTATE                                                               |
|            | M20     | SPINDLE INDEX A                                                                 |
|            | M21     | SPINDLE INDEX 2A                                                                |
|            | M22     | SPINDLE INDEX 3A                                                                |
|            | M23     | SPINDLE INDEX 4A                                                                |
|            | M25     | QUILL EXTEND                                                                    |
|            | M26     | QUILL RETRACT                                                                   |
|            | M29     | SELECT "DNC" MODE                                                               |
|            |         | Page 48                                                                         |

| SVR ENGINEERING COLLEGE |                                                 |  |  |  |  |
|-------------------------|-------------------------------------------------|--|--|--|--|
| Experiment No. [        | Date:                                           |  |  |  |  |
| M30                     | PROGRAM RESET & REWIND                          |  |  |  |  |
| M30                     | INCREMENT PARTS COUNTER                         |  |  |  |  |
| M37                     | DOOR OPEN TO STOP                               |  |  |  |  |
| M38                     | DOOR OPEN                                       |  |  |  |  |
| M39                     | DOOR CLOSE                                      |  |  |  |  |
| M40                     | PARTS CATCHER EXTEND                            |  |  |  |  |
| M41                     | PARTS CATCHER RETRACT                           |  |  |  |  |
| M43                     | SWARF CONVEYOR FORWARD                          |  |  |  |  |
| M44                     | SWARF CONVEYOR REVERSE                          |  |  |  |  |
| M45                     | SWARF CONVEYOR STOP                             |  |  |  |  |
| M48                     | LOCK % FEED AND % SPEED AT 100%                 |  |  |  |  |
| M49                     | CANCEL M48 (DEFAILT)                            |  |  |  |  |
| M50                     | WAIT FOR AXIS IN POSITION SIGNAL (CANCELS       |  |  |  |  |
|                         | CONTINUOUS PATH)                                |  |  |  |  |
| M51                     | CANCEL M50 (DEFAILT)                            |  |  |  |  |
| M52                     | PULL-OUT IN THREADING = 90 DEGRESS (DEFAILT)    |  |  |  |  |
| M53                     | CANCEL M52                                      |  |  |  |  |
| M54                     | DISABLE SPINDLE FLUCTUATION TESTING (DEFAILT)   |  |  |  |  |
| M56                     | SELECT INTERNAL CHUCKING (FROM PLC EDITION "F") |  |  |  |  |
| M57                     | SELECT EXTERNAL CHUCKING (FROM PLC EDITION "F") |  |  |  |  |
| M62                     | AUX.1 ON                                        |  |  |  |  |
| M63                     | AUX.2 ON                                        |  |  |  |  |
| M64                     | AUX.1 OFF                                       |  |  |  |  |
| M65                     | AUX.2 OFF                                       |  |  |  |  |
| M98                     | SUB PROGRAM CALL                                |  |  |  |  |
| M99                     | SUB PROGRAM END                                 |  |  |  |  |
|                         |                                                 |  |  |  |  |
|                         |                                                 |  |  |  |  |

| SVR ENGIN              | SVR ENGINEERING COLLEGE |  |  |  |  |
|------------------------|-------------------------|--|--|--|--|
| Experiment No.         | Date:                   |  |  |  |  |
| <u>8.F</u>             | ACING CYCLE             |  |  |  |  |
| [BILLET X25 Z70]       |                         |  |  |  |  |
| G21 G98;               |                         |  |  |  |  |
| G28 U0W0;              |                         |  |  |  |  |
| M06 T1 ;( FACING TOOL) |                         |  |  |  |  |
| M03 S1200;             |                         |  |  |  |  |
| G00 X26 Z0;            |                         |  |  |  |  |
| G94 X0 Z-0.5 F50;      |                         |  |  |  |  |
| Z-1.0                  |                         |  |  |  |  |
| Z-1.5                  |                         |  |  |  |  |
| Z-2.0                  |                         |  |  |  |  |
| Z-2.5                  |                         |  |  |  |  |
| Z-3.0                  |                         |  |  |  |  |
| Z-3.5                  |                         |  |  |  |  |
| Z-4.0                  |                         |  |  |  |  |
| Z-4.5                  |                         |  |  |  |  |
| Z-5.0                  |                         |  |  |  |  |
| Z-5.5                  |                         |  |  |  |  |
| Z-6.0                  |                         |  |  |  |  |
| Z-6.5                  |                         |  |  |  |  |
| Z-7.0                  |                         |  |  |  |  |
| Z-7.5                  |                         |  |  |  |  |
| Z-8.0                  |                         |  |  |  |  |
| Z-8.5                  |                         |  |  |  |  |
| Z-9.0                  |                         |  |  |  |  |
| Z-9.5                  |                         |  |  |  |  |
| Z-10.0                 |                         |  |  |  |  |
| G28 U0W0;              |                         |  |  |  |  |
| M05;                   |                         |  |  |  |  |
| M30;                   |                         |  |  |  |  |
|                        |                         |  |  |  |  |
|                        |                         |  |  |  |  |
|                        |                         |  |  |  |  |
|                        |                         |  |  |  |  |



| SVR ENG                | SVR ENGINEERING COLLEGE |  |  |  |  |  |
|------------------------|-------------------------|--|--|--|--|--|
| Experiment No.         | Date:                   |  |  |  |  |  |
| <u>9</u>               | D.TURNING CYCLE         |  |  |  |  |  |
| [BILLET X28 Z70]       |                         |  |  |  |  |  |
| G21 G98;               |                         |  |  |  |  |  |
| G28 U0W0;              |                         |  |  |  |  |  |
| M06 T1 ;( FACING TOOL) |                         |  |  |  |  |  |
| M03 S1000;             |                         |  |  |  |  |  |
| G00 X25 Z1;            |                         |  |  |  |  |  |
| G94 X24 Z45 F50;       |                         |  |  |  |  |  |
| X23                    |                         |  |  |  |  |  |
| X22                    |                         |  |  |  |  |  |
| X21                    |                         |  |  |  |  |  |
| X20                    |                         |  |  |  |  |  |
| X19 Z-40               |                         |  |  |  |  |  |
| X18                    |                         |  |  |  |  |  |
| X17                    |                         |  |  |  |  |  |
| X16                    |                         |  |  |  |  |  |
| X15                    |                         |  |  |  |  |  |
| X14 Z-20               |                         |  |  |  |  |  |
| X13                    |                         |  |  |  |  |  |
| X12                    |                         |  |  |  |  |  |
| X11                    |                         |  |  |  |  |  |
| X10                    |                         |  |  |  |  |  |
| G28 U0W0;              |                         |  |  |  |  |  |
| M05;                   |                         |  |  |  |  |  |
| M30;                   |                         |  |  |  |  |  |
|                        |                         |  |  |  |  |  |
|                        |                         |  |  |  |  |  |
|                        |                         |  |  |  |  |  |



| SVR ENGINEERING COLLEGE              |                                                          |  |  |  |
|--------------------------------------|----------------------------------------------------------|--|--|--|
| Experiment No.                       | Date:                                                    |  |  |  |
| 10.LINEAR ANI                        | O CIRCULAR INTERPOLATION                                 |  |  |  |
| AIM: To write a program to obtain li | near and circular interpolation on the given work piece. |  |  |  |
| SOFTWARE REQUIRED: CNC XMII          | LL Software with FANUC Language.                         |  |  |  |
| PROGRAM: G21 G94                     |                                                          |  |  |  |
| G91 G28 Z0                           |                                                          |  |  |  |
| G28 X0 Y0                            |                                                          |  |  |  |
| M06 T06                              |                                                          |  |  |  |
| M03 S1300                            |                                                          |  |  |  |
| G90 G00 X0 Y0 Z5                     |                                                          |  |  |  |
| G90 G01 X0 Y0                        |                                                          |  |  |  |
| X30                                  |                                                          |  |  |  |
| G03 X54 R12                          |                                                          |  |  |  |
| G01 X82                              |                                                          |  |  |  |
| G02 X108 R13                         |                                                          |  |  |  |
| G01 X123                             |                                                          |  |  |  |
| X80 Y45                              |                                                          |  |  |  |
| X40                                  |                                                          |  |  |  |
| Y75                                  |                                                          |  |  |  |
| G03 X35 Y80 R5                       |                                                          |  |  |  |
| G01 X20                              |                                                          |  |  |  |
| G03 X0 Y80 R10                       |                                                          |  |  |  |
| G01 Y0                               |                                                          |  |  |  |
| M30                                  |                                                          |  |  |  |
|                                      |                                                          |  |  |  |
|                                      |                                                          |  |  |  |
|                                      |                                                          |  |  |  |
|                                      |                                                          |  |  |  |



| S                    | VR ENG        | GINEERING (               | COLLEGE                  |
|----------------------|---------------|---------------------------|--------------------------|
| Experiment No.       |               | Date:                     |                          |
|                      |               | 11.ENGRAVE                |                          |
| AIM: To write a prog | ram to engrav | ve the letters "SVREC" of | on the given work piece. |
| SOFTWARE REQU        | IRED: CNC     | XMILL Software with H     | FANUC Language.          |
| PROGRAM:             |               |                           |                          |
| G21 G94              |               |                           |                          |
| G91 G28 Z0           |               |                           |                          |
| G28 X0 Y0            |               |                           |                          |
| M06 T06              |               |                           |                          |
| M03 S1300            |               |                           |                          |
| G90 G00 X0 Y0 Z5     |               |                           |                          |
| [S]                  |               |                           |                          |
| G00 X2 Y30           |               |                           |                          |
| G01 Z-1 F60          |               |                           |                          |
| G01 X10 Y30          |               |                           |                          |
| G03 X15 Y35 R5       |               |                           |                          |
| G01 X15 Y 37.5       |               |                           |                          |
| G03 X10 Y42.5 R5     |               |                           |                          |
| G01 X07 Y42.5        |               |                           |                          |
| G02 X2 Y47.5 R5      |               |                           |                          |
| G01 X2 Y50           |               |                           |                          |
| G02 X7 Y55 R5        |               |                           |                          |
| G01 X15 Y55          |               |                           |                          |
| G00 Z2               |               |                           |                          |
| [V]                  |               |                           |                          |
| G00 X20 Y55          |               |                           |                          |
| G01 Z-1 F60          |               |                           |                          |
| G01 X27.5 Y30        |               |                           |                          |
| CO1 V22 VEE          |               |                           |                          |

| SVR ENGINEERING COLLEGE |       |
|-------------------------|-------|
| Experiment No.          | Date: |
| G00 Z2                  |       |
| [E]                     |       |
| G00 X69 Y55             |       |
| G01 Z-1F60              |       |
| G01 X56 Y55             |       |
| G01 X56 Y42.5           |       |
| G01 X69 Y42.5           |       |
| G01 X56 Y42.5           |       |
| G01 X56 Y30             |       |
| G01 X69 Y30             |       |
| G00 Z2                  |       |
| G91 G28 Z0              |       |
| G28 X0Y0                |       |
| M05                     |       |
| M30                     |       |
|                         |       |