
PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 1

B.TECH IV-1SEM(CSE)
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

15A05703 MOBILE APPLICATION DEVELOPMENT

Course Objectives: To understand fundamentals of android operating systems.• Illustrate the various components,

layouts and views in creating android• applications To understand fundamentals of android programming.• Course

Outcomes: Create data sharing with different applications and sending and intercepting• SMS. Develop applications

using services and publishing android applications.• To demonstrate their skills of using Android software

development tools•

Unit 1: Introduction to Android: The Android 4.1 jelly Bean SDK, Understanding the Android Software Stack, installing

the Android SDK, Creating Android Virtual Devices, Creating the First Android Project, Using the Text view Control,

Using the Android Emulator, The Android Debug Bridge(ADB), Launching Android Applications on a Handset.

Unit 2: Basic Widgets: Understanding the Role of Android Application Components, Understanding the Utility of

Android API, Overview of the Android Project Files, Understanding Activities, Role of the Android Manifest File,

Creating the User Interface, Commonly Used Layouts and Controls, Event Handling, Displaying Messages Through

Toast, Creating and Starting an Activity, Using the Edit Text Control, Choosing Options with Checkbox, Choosing

Mutually Exclusive Items Using Radio Buttons

 Unit 3: Building Blocks for Android Application Design: Introduction to Layouts, Linear Layout, Relative Layout,

Absolute Layout, Using Image View, Frame Layout, Table Layout, Grid Layout, Adapting to Screen orientation.

Utilizing Resources and Media Resources, Creating Values Resources, Using Drawable Resources, Switching States

with Toggle Buttons, Creating an Images Switcher Application, Scrolling Through Scroll View, playing Audio, Playing

Video, All Displaying Progress with Progress Bar, Using Assets.

Unit 4: Using Selection widgets and Debugging: Using List View, Using the Spinner control, Using the GridView

Control, Creating an Image Gallery Using the ViewPager Control, Using the Debugging Tool: Dalvik Debug Monitor

Service(DDMS), Debugging Application, Using the Debug Perspective. Displaying And Fetching Information Using

Dialogs and Fragments: What Are Dialogs?, Selecting the Date and Time in One Application, Fragments, Creating

Fragments with java Code, Creating Special Fragments

Unit 5: Building Menus and Storing Data: Creating Interface Menus and Action Bars, Menus and Their Types, Creating

Menus Through XML, Creating Menus Through Coding, Applying a Context Menu to a List View, Using the Action Bar,

Replacing a Menu with the Action Bar, Creating a Tabbed Action Bar, Creating a Drop-Down List Action Bar Using

Databases: Using the SQLiteOpenHelperclasss, Accessing Databases with the ADB, Creating a Data Entry Form,

Communicating with SMS and Emails: Understanding Broadcast Receivers, Using the Notification System, Sending

SMS Messages with Java Code, Receiving SMS Messages, Sending Email, Working With Telephony Manager.

Text Books 1. Android Programming by B.M Harwani, Pearson Education, 2013.

References Text Books: 1. Android application Development for Java Programmers, James C Sheusi, Cengage

Learning 2. Android In Action by w.Frank Ableson, Robi Sen, Chris King, C. Enrique Ortiz., Dreamtech. 3.

Professional Android 4 applications development, Reto Meier, Wiley India, 2012. 4. Beginning Android 4

applications development, Wei- Meng Lee, Wiley India,2013

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 2

UNIT-I
Q1. EXPLAIN THE FEATURES AND BENEFITS OF ANDROID OS?
Android is a complete set of software for mobile devices such as tablet computers, notebooks, smartphones,
electronic book readers, set-top boxes etc.

• It contains a linux-based Operating System, middleware and key mobile applications.

• It can be thought of as a mobile operating system. But it is not limited to mobile only. It is currently used in

various devices such as mobiles, tablets, televisions etc.

• Android is a software package and linux based operating system for mobile devices such as tablet computers

and smartphones.

• It is developed by Google and later the OHA (Open Handset Alliance). Java language is mainly used to write

the android code even though other languages can be used.

• The goal of android project is to create a successful real-world product that improves the mobile experience

for end users.

• There are many code names of android such as Lollipop, Kitkat, Jelly Bean, Ice cream Sandwich, Froyo, Ecliar,

Donut etc which is covered in next page.

What is Open Handset Alliance (OHA)
It's a consortium of 84 companies such as google, samsung, AKM, synaptics, KDDI, Garmin, Teleca, Ebay, Intel etc.
It was established on 5th November, 2007, led by Google. It is committed to advance open standards, provide
services and deploy handsets using the Android Plateform.
Features of Android
After learning what is android, let's see the features of android. The important features of android are given below:
1) It is open-source.
2) Anyone can customize the Android Platform.
3) There are a lot of mobile applications that can be chosen by the consumer.
4) It provides many interesting features like weather details, opening screen, live RSS (Really Simple Syndication)
feeds etc.
It provides support for messaging services(SMS and MMS), web browser, storage (SQLite), connectivity (GSM, CDMA,
Blue Tooth, Wi-Fi etc.), media, handset layout etc.
Advantages:

• Android is a Linux based open-source operating system, it can be developed by anyone
• Easy access to android apps
• You can replace the battery and mass storage, disk drive and UDB option
• Its supports all Google services
• The operating system is able to inform you of a new SMS and Emails or latest updates.
• It supports Multitasking
• Android phone can also function as a router to share internet
• It’s free to customize
• Can install a modified ROM
• Its supports 2D and 3D graphics

Categories of Android applications
There are many android applications in the market. The top categories are:

o Entertainment
o Tools
o Communication
o Productivity
o Personalization

o Music and Audio
o Social
o Media and Video
o Travel and Local etc.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 3

Q2. WRITE SHORT NOTES ON HISTORICAL DEVELOPMENTS AND VERSIONS OF ANDROID?
History of Android
The history and versions of android are interesting to know. The code names of android ranges from A to J
currently, such as Aestro, Blender, Cupcake, Donut, Eclair, Froyo, Gingerbread, Honeycomb, Ice Cream
Sandwitch, Jelly Bean, KitKat and Lollipop. Let's understand the android history in a sequence.
1) Initially, Andy Rubin founded Android Incorporation in Palo Alto, California, United States in October, 2003.
2) In 17th August 2005, Google acquired android Incorporation. Since then, it is in the subsidiary of Google
Incorporation.
3) The key employees of Android Incorporation are Andy Rubin, Rich Miner, Chris White and Nick Sears.
4) Originally intended for camera but shifted to smart phones later because of low market for camera only.
5) Android is the nick name of Andy Rubin given by coworkers because of his love to robots.
6) In 2007, Google announces the development of android OS.
7) In 2008, HTC launched the first android mobile.

Android Versions, Codename and API
Let's see the android versions, codenames and API Level provided by Google.

Version Code name API Level

1.5 Cupcake 3

1.6 Donut 4

2.1 Eclair 7

2.2 Froyo 8

2.3 Gingerbread 9 and 10

3.1 and 3.3 Honeycomb 12 and 13

4.0 Ice Cream
Sandwitch

15

4.1, 4.2 and
4.3

Jelly Bean 16, 17
and 18

4.4 KitKat 19

5.0 Lollipop 21

6.0 Marshmallow 23

7.0 Nougat 24-25

8.0 Oreo 26-27

• Android 9.0, Pie: August 6, 2018

• Android 10.0: September 3, 2019

• Android 11.0: September 8, 2020

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 4

Q3. EXPLAIN ANDROID ARCHITECHURE? OR BASIC BUILDING BLOCK OF OR KERNAL OF ANDROID?
Android Architecture
Android architecture or Android software stack is categorized into five parts:

1. linux kernel
2. native libraries (middleware),
3. Android Runtime
4. Application Framework
5. Applications

Let's see the android architecture first.

1) Linux kernel
It is the heart of android architecture that exists at the root of android architecture. Linux kernel is responsible
for device drivers, power management, memory management, device management and resource access.
2) Native Libraries
On the top of linux kernel, their are Native libraries such as WebKit, OpenGL, FreeType, SQLite, Media, C
runtime library (libc) etc.
The WebKit library is responsible for browser support, SQLite is for database, FreeType for font support, Media
for playing and recording audio and video formats.
3) Android Runtime
In android runtime, there are core libraries and DVM (Dalvik Virtual Machine) which is responsible to run
android application. DVM is like JVM but it is optimized for mobile devices. It consumes less memory and
provides fast performance.
4) Android Framework
On the top of Native libraries and android runtime, there is android framework. Android framework
includes Android API's such as UI (User Interface), telephony, resources, locations, Content Providers (data)
and package managers. It provides a lot of classes and interfaces for android application development.
5) Applications
On the top of android framework, there are applications. All applications such as home, contact, settings,
games, browsers are using android framework that uses android runtime and libraries. Android runtime and
native libraries are using linux kernal.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 5

Q5. EXPLAIN BASIC BUILDING BLOCKS OF ANDROID?
Android Core Building Blocks

An android component is simply a piece of code that has a well defined life cycle e.g. Activity, Receiver, Service
etc.
The core building blocks or fundamental components of android are activities, views, intents, services, content
providers, fragments and AndroidManifest.xml.
Activity
An activity is a class that represents a single screen. It is like a Frame in AWT.
View
A view is the UI element such as button, label, text field etc. Anything that you see is a view.
Intent
Intent is used to invoke components. It is mainly used to:

o Start the service
o Launch an activity
o Display a web page
o Display a list of contacts
o Broadcast a message
o Dial a phone call etc.

For example, you may write the following code to view the webpage.
1. Intent intent=new Intent(Intent.ACTION_VIEW);
2. intent.setData(Uri.parse("http://www.javatpoint.com"));
3. startActivity(intent);

Service
Service is a background process that can run for a long time.
There are two types of services local and remote. Local service is accessed from within the application whereas
remote service is accessed remotely from other applications running on the same device.
Content Provider
Content Providers are used to share data between the applications.
Fragment
Fragments are like parts of activity. An activity can display one or more fragments on the screen at the same
time.
AndroidManifest.xml
It contains informations about activities, content providers, permissions etc. It is like the web.xml file in Java EE.
Android Virtual Device (AVD)
It is used to test the android application without the need for mobile or tablet etc. It can be created in different
configurations to emulate different types of real devices.

Q6. WRITE SHORT NOTES ON ANDROID EMULATOR. HOW TO INSTALL AND WORK WITH ANDROID
EMULATOR?
Android Emulator
The Android emulator is an Android Virtual Device (AVD), which represents a specific Android device. We can
use the Android emulator as a target device to execute and test our Android application on our PC. The Android
emulator provides almost all the functionality of a real device. We can get the incoming phone calls and text
messages. It also gives the location of the device and simulates different network speeds. Android emulator
simulates rotation and other hardware sensors. It accesses the Google Play store, and much more.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 6

The android emulator has all of the hardware and software features like mobile device except phone calls. It
provides a variety of navigation and control keys. It also provides a screen to display your application. The
emulators utilize the android virtual device configurations. Once your application is running on it, it can use
services of the android platform to help other applications, access the network, play audio, video, store and
retrieve the data.

Testing Android applications on emulator are sometimes faster and easier than doing on a real device. For
example, we can transfer data faster to the emulator than to a real device connected through USB.
The Android emulator comes with predefined configurations for several Android phones, Wear OS, tablet,
Android TV devices.
Requirement and recommendations
The Android emulator takes additional requirements beyond the basic system requirement for Android Studio.
These requirements are given below:

o SDK Tools 26.1.1 or higher
o 64-bit processor
o Windows: CPU with UG (unrestricted guest) support
o HAXM 6.2.1 or later (recommended HAXM 7.2.0 or later)

Install the emulator
The Android emulator is installed while installing the Android Studio. However some components of emulator
may or may not be installed while installing Android Studio. To install the emulator component, select
the Android Emulator component in the SDK Tools tab of the SDK Manager.
Run an Android app on the Emulator
We can run an Android app form the Android Studio project, or we can run an app which is installed on the
Android Emulator as we run any app on a device.

Q7. WRITE SHORT NOTES ON ANDROID DEBUG BRIDGE(ADB)?

Android Debug Bridge (adb)

Android Debug Bridge (adb) is a versatile command-line tool that lets you communicate with a device. The adb
command facilitates a variety of device actions, such as installing and debugging apps, and it provides access to
a Unix shell that you can use to run a variety of commands on a device. It is a client-server program that
includes three components:

• A client, which sends commands. The client runs on your development machine. You can invoke a client from a
command-line terminal by issuing an adb command.

• A daemon (adbd), which runs commands on a device. The daemon runs as a background process on each
device.

• A server, which manages communication between the client and the daemon. The server runs as a background
process on your development machine.
adb is included in the Android SDK Platform-Tools package. You can download this package with the SDK
Manager, which installs it at android_sdk/platform-tools/. Or if you want the standalone Android SDK Platform-
Tools package, you can download it here.
For information on connecting a device for use over ADB, including how to use the Connection Assistant to
troubleshoot common problems, see Run apps on a hardware device.
How adb works

When you start an adb client, the client first checks whether there is an adb server process already running. If
there isn't, it starts the server process. When the server starts, it binds to local TCP port 5037 and listens for
commands sent from adb clients—all adb clients use port 5037 to communicate with the adb server.

https://developer.android.com/studio/intro/update#sdk-manager
https://developer.android.com/studio/intro/update#sdk-manager
https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/run/device

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 7

The server then sets up connections to all running devices. It locates emulators by scanning odd-numbered
ports in the range 5555 to 5585, the range used by the first 16 emulators. Where the server finds an adb
daemon (adbd), it sets up a connection to that port. Note that each emulator uses a pair of sequential ports —
an even-numbered port for console connections and an odd-numbered port for adb connections. For example:

Emulator 1, console: 5554
Emulator 1, adb: 5555
Emulator 2, console: 5556
Emulator 2, adb: 5557
and so on...

As shown, the emulator connected to adb on port 5555 is the same as the emulator whose console listens on
port 5554.

Once the server has set up connections to all devices, you can use adb commands to access those devices.
Because the server manages connections to devices and handles commands from multiple adb clients, you can
control any device from any client (or from a script).

To use adb with a device connected over USB, you must enable USB debugging in the device system settings,
under Developer options.

On Android 4.2 and higher, the Developer options screen is hidden by default. To make it visible, go to Settings
> About phone and tap Build number seven times. Return to the previous screen to find Developer options at
the bottom.

On some devices, the Developer options screen might be located or named differently.

Q8. WRITE ABOUT ANDROID STUDIO INSTALLATION PROCESS ?
Install Android
Android supports java, c++, c# etc. language to develop android applications. Java is the officially supported
language for android. All the android examples of this site is developed using Java language and Eclipse IDE.
Here, we are going to tell you, the required softwares to develop android applications using Eclipse IDE.
There are two ways to install android.

1. By ADT Bundle
2. By Setup Eclipse Manually

1) By Android Studio
It is the simplest technique to install required software for android application. It includes:

o Eclipse IDE
o Android SDK
o Eclipse Plugin

If you download the Android Studio from android site, you don't need to have eclipse IDE, android SDK and
eclipse Plugin because it is already included in Android Studio.
If you have downloaded the Android Studio, unjar it, go to eclipse IDE and start the eclipse by clicking on the
eclipse icon. You don't need to do any extra steps here.
2) By set up eclipse manually
setting up android in eclipse manually.
 Let's see the list of software required to setup android for eclipse IDE manually.

1. Install the JDK
2. Download and install the Eclipse for developing android application
3. Download and Install the android SDK
4. Intall the ADT plugin for eclipse
5. Configure the ADT plugin
6. Create the AVD
7. Create the hello android application

1) Install the Java Development Kit (JDK)
For creating android application, JDK must be installed if you are developing the android application with Java
language. download the JDK

http://www.oracle.com/technetwork/java/javase/downloads/index.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 8

2) Download and install the Eclipse IDE
For developing the android application using eclipse IDE, you need to install the Eclipse. you can download it
from this location download the Eclipse. Eclipse classic version is recommended but we are using the Eclipse
IDE for JavaEE Developers.
3) Download and install the android SDK
First of all, download the android SDK. In this example we have installed the android SDK for windows (.exe
version).
Now double click on the exe file, it will be installed. I am using the android 2.2 version here.
4) Download the ADT plugin for eclipse
ADT (Android Development Tools) is required for developing the android application in the eclipse IDE. It is the
plugin for Eclipse IDE that is designed to provide the integrated environment.
For downloading the ADT, you need to follow these steps:
1) Start the eclipse IDE, then select Help > Install new software...
2) In the work with combo box, write https://dl-ssl.google.com/android/eclipse/

3) select the checkbox next to Developer Tools and click next
4) You will see, a list of tools to be downloaded here, click next
5) click finish
6) After completing the installation, restart the eclipse IDE
5) Configuring the ADT plugin
After the installing ADT plugin, now tell the eclipse IDE for your android SDK location. To do so:

1. Select the Window menu > preferences
2. Now select the android from the left panel. Here you may see a dialog box asking if you want to send

the statistics to the google. Click proceed.
3. Click on the browse button and locate your SDK directory e.g. my SDK location is C:\Program

Files\Android\android-sdk .
4. Click the apply button then OK.

6) Create an Android Virtual Device (AVD)
For running the android application in the Android Emulator, you need to create and AVD. For creating the
AVD:

1. Select the Window menu > AVD Manager
2. Click on the new button, to create the AVD
3. Now a dialog appears, write the AVD name e.g. myavd. Now choose the target android version e.g.

android2.2.
4. click the create AVD

7) create and run the simple android example

http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 9

Q9. EXPLAIN HOW A SIMPLE ANDROID APPLICATIONS ARE DEVELOPED USING ANDRIOD STUDIO?
How to make android apps
In this page, you will know how to create the simple hello android application. We are creating the simple
example of android using the Eclipse IDE. For creating the simple example:

1. Create the new android project
2. Write the message (optional)
3. Run the android application

Hello Android Example
You need to follow the 3 steps mentioned above for creating the Hello android application.
1) Create the New Android project
For creating the new android studio project:
) Select Start a new Android Studio project

2) Provide the following information: Application name, Company domain, Project location and Package name
of application and click next.

3) Select the API level of application and click next.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 10

4) Select the Activity type (Empty Activity).

5) Provide the Activity Name and click finish.

After finishing the Activity configuration, Android Studio auto generates the activity class and other required
configuration files.
Now an android project has been created. You can explore the android project and see the simple program, it
looks like this:

2) Write the message
File: activity_main.xml

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 11

Android studio auto generates code for activity_main.xml file. You may edit this file according to your
requirement.

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="first.javatpoint.com.welcome.MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello Android!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>
}

File: MainActivity.java
package first.javatpoint.com.welcome;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

3) Run the android application
To run the android application, click the run icon on the toolbar or simply press Shift + F10.

The android emulator might take 2 or 3 minutes to boot. So please have patience. After booting the emulator,
the android studio installs the application and launches the activity. You will see something like this:

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 12

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 13

UNIT-II
Q1. EXPLAIN ANDROID APPLICATION COMPONENTS IN DETIAL?
ANDROID APPLICATION COMPONENTS:

Application components are the essential building blocks of an Android application. These components are
loosely coupled by the application manifest file AndroidManifest.xml that describes each component of the
application and how they interact.

There are following four main components that can be used within an Android application −

Sr.No Components & Description

1 Activities : They dictate the UI and handle the user interaction to the smart phone
screen.

2 Services: They handle background processing associated with an application.

3 Broadcast Receivers : They handle communication between Android OS and
applications.

4 Content Providers : They handle data and database management issues.

Activities

An activity represents a single screen with a user interface,in-short Activity performs actions on the screen.
For example, an email application might have one activity that shows a list of new emails, another activity to
compose an email, and another activity for reading emails. If an application has more than one activity, then
one of them should be marked as the activity that is presented when the application is launched.

An activity is implemented as a subclass of Activity class as follows −

public class MainActivity extends Activity {
}

Services

A service is a component that runs in the background to perform long-running operations. For example, a
service might play music in the background while the user is in a different application, or it might fetch data
over the network without blocking user interaction with an activity.

A service is implemented as a subclass of Service class as follows −

public class MyService extends Service {
}

Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other applications or from the system. For
example, applications can also initiate broadcasts to let other applications know that some data has been
downloaded to the device and is available for them to use, so this is broadcast receiver who will intercept this
communication and will initiate appropriate action.

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and each message is
broadcaster as an Intent object.

public class MyReceiver extends BroadcastReceiver {
 public void onReceive(context,intent){}
}

Content Providers

A content provider component supplies data from one application to others on request. Such requests are
handled by the methods of the ContentResolver class. The data may be stored in the file system, the database
or somewhere else entirely.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 14

A content provider is implemented as a subclass of ContentProvider class and must implement a standard set
of APIs that enable other applications to perform transactions.

public class MyContentProvider extends ContentProvider {
 public void onCreate(){}
}

We will go through these tags in detail while covering application components in individual chapters.

Additional Components

There are additional components which will be used in the construction of above mentioned entities, their
logic, and wiring between them. These components are −

S.No Components & Description

1 Fragments : Represents a portion of user interface in an Activity.

2 Views : UI elements that are drawn on-screen including buttons, lists
forms etc.

3 Layouts :View hierarchies that control screen format and appearance of
the views.

4 Intents :Messages wiring components together.

5 Resources :External elements, such as strings, constants and drawable
pictures.

6 Manifest :Configuration file for the application.

Q2. EXPLAIN ABOUT ANDROID ACTIVITY LIFECYCLE?

Android Activity Lifecycle
An activity represents a single screen with a user interface just like window or frame of Java. Android activity is
the subclass of ContextThemeWrapper class.
Android Activity Lifecycle is controlled by 7 methods of android.app.Activity class.

An activity is the single screen in android. It is like window or frame of Java. By the help of activity, you can
place all your UI components or widgets in a single screen.

The 7 lifecycle method of Activity describes how activity will behave at different states.

Android Activity Lifecycle methods
Let's see the 7 lifecycle methods of android activity.

Method Description

onCreate called when activity is first created.

onStart called when activity is becoming visible to the user.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 15

onResume called when activity will start interacting with the user.

onPause called when activity is not visible to the user.

onStop called when activity is no longer visible to the user.

onRestart called after your activity is stopped, prior to start.

onDestroy called before the activity is destroyed.

File: activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="example.javatpoint.com.activitylifecycle.MainActivity">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
 </android.support.constraint.ConstraintLayout>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 16

File: MainActivity.java
package com.example.helloandroid;
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.widget.TextView;
public class MainActivity extends Activity {//(1)
 @Override
 protected void onCreate(Bundle savedInstanceState) {//(2)
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);//(3)
 }
 public boolean onCreateOptionsMenu(Menu menu) {//(4)
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
}

(1) Activity is a java class that creates and default window on the screen where we can place different
components such as Button, EditText, TextView, Spinner etc. It is like the Frame of Java AWT.
It provides life cycle methods for activity such as onCreate, onStop, OnResume etc.
(2) The onCreate method is called when Activity class is first created.
(3) The setContentView(R.layout.activity_main) gives information about our layout resource. Here, our
layout resources are defined in activity_main.xml file.

activity_main.xml

<RelativeLayout xmlns:androclass="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world" />
</RelativeLayout>
As you can see, a textview is created by the framework automatically. But the message for this string is
defined in the strings.xml file. The @string/hello_world provides information about the textview message.
The value of the attribute hello_world is defined in the strings.xml file.

strings.xml
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">helloandroid</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
</resources>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 17

Generated R.java file

It is the auto-generated file that contains IDs for all the resources of res directory. It is generated by
aapt(Android Asset Packaging Tool). Whenever you create any component on activity_main, a corresponding ID
is created in the R.java file which can be used in the Java Source file later.

File: R.java

package com.example.helloandroid;
public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class id {
 public static final int menu_settings=0x7f070000;
 }
 public static final class layout {
 public static final int activity_main=0x7f030000;
 }
 public static final class menu {
 public static final int activity_main=0x7f060000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 public static final int hello_world=0x7f040001;
 public static final int menu_settings=0x7f040002;
 }
 public static final class style {
 public static final int AppBaseTheme=0x7f050000;
 /** Application theme.
 All customizations that are NOT specific to a particular API-level can go here.
 */
 public static final int AppTheme=0x7f050001;
 }
}

APK File
An apk file is created by the framework automatically. If you want to run the android application on the mobile,
transfer and install it.
Resources
It contains resource files including activity_main, strings, styles etc.
Manifest file
It contains information about package including components such as activities, services, content providers etc.

Q3. WRITE SHORT NOTES ON DVM?

Dalvik Virtual Machine | DVM
As we know the modern JVM is high performance and provides excellent memory management. But it needs to
be optimized for low-powered handheld devices as well.
The Dalvik Virtual Machine (DVM) is an android virtual machine optimized for mobile devices. It optimizes the
virtual machine for memory, battery life and performance.
Dalvik is a name of a town in Iceland. The Dalvik VM was written by Dan Bornstein.
The Dex compiler converts the class files into the .dex file that run on the Dalvik VM. Multiple class files are
converted into one dex file.
Let's see the compiling and packaging process from the source file:

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 18

The javac tool compiles the java source file into the class file.
The dx tool takes all the class files of your application and generates a single .dex file. It is a platform-specific
tool.
The Android Assets Packaging Tool (aapt) handles the packaging process.

Q5. WRITE S ABOUT ESSENTILAL ELEMENTS IN ANDROIDMANIFEST.XML FILE?

AndroidManifest.xml file in android
The AndroidManifest.xml file contains information of your package, including components of the application
such as activities, services, broadcast receivers, content providers etc.
It performs some other tasks also:

o It is responsible to protect the application to access any protected parts by providing the permissions.
o It also declares the android api that the application is going to use.
o It lists the instrumentation classes. The instrumentation classes provides profiling and other

informations. These informations are removed just before the application is published etc.
This is the required xml file for all the android application and located inside the root directory.

A simple AndroidManifest.xml file looks like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.javatpoint.hello"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/title_activity_main" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Elements of the AndroidManifest.xml file
The elements used in the above xml file are described below.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 19

<manifest>

manifest is the root element of the AndroidManifest.xml file. It has package attribute that describes the
package name of the activity class.
<application>

application is the subelement of the manifest. It includes the namespace declaration. This element contains
several subelements that declares the application component such as activity etc.
The commonly used attributes are of this element are icon, label, theme etc.
android:icon represents the icon for all the android application components.
android:label works as the default label for all the application components.
android:theme represents a common theme for all the android activities.
<activity>

activity is the subelement of application and represents an activity that must be defined in the
AndroidManifest.xml file. It has many attributes such as label, name, theme, launchMode etc.
android:label represents a label i.e. displayed on the screen.
android:name represents a name for the activity class. It is required attribute.
<intent-filter>

intent-filter is the sub-element of activity that describes the type of intent to which activity, service or
broadcast receiver can respond to.
<action>

It adds an action for the intent-filter. The intent-filter must have at least one action element.

Q6. WRITE SHORT NOTES ON ANDROID WIDGETS?

Android Widgets
There are given a lot of android widgets with simplified examples such as Button, EditText,
AutoCompleteTextView, ToggleButton, DatePicker, TimePicker, ProgressBar etc.
Android widgets are easy to learn. The widely used android widgets with examples are given below:
Android Button : to perform event handling on button click.
Android Toast : Displays information for the short duration of time.
Custom Toast : We are able to customize the toast, such as we can display image on the toast for a short
period of time
ToggleButton : It has two states ON/OFF.
CheckBox : for the application of simple food ordering checking with multiple options through checkbox
AlertDialog : AlertDialog displays a alert dialog containing the message with OK and Cancel buttons.
Spinner : Spinner displays the multiple options, but only one can be selected at a time.
AutoCompleteTextView : simple example of AutoCompleteTextView.
RatingBar : RatingBar displays the rating bar.
DatePicker : Datepicker displays the datepicker dialog that can be used to pick the date.
TimePicker : TimePicker displays the timepicker dialog that can be used to pick the time.
ProgressBar : ProgressBar displays progress task.

Q7. EXPLAIN DEVELOPING AN APPLICATION USING ANDROID BUTTON WITH LISTNER CLASS?

Android Button Example

https://www.javatpoint.com/android-working-with-button
https://www.javatpoint.com/android-toast-example
https://www.javatpoint.com/android-custom-toast-example
https://www.javatpoint.com/android-togglebutton-example
https://www.javatpoint.com/android-checkbox-example
https://www.javatpoint.com/android-alert-dialog-example
https://www.javatpoint.com/android-spinner-example
https://www.javatpoint.com/android-autocompletetextview-example
https://www.javatpoint.com/android-rating-bar-example
https://www.javatpoint.com/android-datepicker-example
https://www.javatpoint.com/android-timepicker-example
https://www.javatpoint.com/android-progressbar-example

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 20

Android Button represents a push-button. The android.widget.Button is subclass of TextView class and
CompoundButton is the subclass of Button class.
There are different types of buttons in android such as RadioButton, ToggleButton, CompoundButton etc.

Android Button Example with Listener

Here, we are going to create two textfields and one button for sum of two numbers. If user clicks button, sum
of two input values is displayed on the Toast.
We can perform action on button using different types such as calling listener on button or adding onClick
property of button in activity's xml file.

button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 //code
 }
});

<Button
 android:onClick="methodName"
/>

Drag the component or write the code for UI in activity_main.xml
First of all, drag 2 textfields from the Text Fields palette and one button from the Form Widgets palette as
shown in the following figure.

The generated code for the ui components will be like this:
File: activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="example.javatpoint.com.sumoftwonumber.MainActivity">

 <EditText
 android:id="@+id/editText1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 21

 android:layout_centerHorizontal="true"
 android:layout_marginTop="61dp"
 android:ems="10"
 android:inputType="number"
 tools:layout_editor_absoluteX="84dp"
 tools:layout_editor_absoluteY="53dp" />

 <EditText
 android:id="@+id/editText2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="32dp"
 android:ems="10"
 android:inputType="number"
 tools:layout_editor_absoluteX="84dp"
 tools:layout_editor_absoluteY="127dp" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText2"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="109dp"
 android:text="ADD"
 tools:layout_editor_absoluteX="148dp"
 tools:layout_editor_absoluteY="266dp" />
</RelativeLayout>

Activity class
Now write the code to display the sum of two numbers.

File: MainActivity.java

package example.javatpoint.com.sumoftwonumber;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {
 private EditText edittext1, edittext2;
 private Button buttonSum;

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 addListenerOnButton();
 }

 public void addListenerOnButton() {

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 22

 edittext1 = (EditText) findViewById(R.id.editText1);
 edittext2 = (EditText) findViewById(R.id.editText2);
 buttonSum = (Button) findViewById(R.id.button);

 buttonSum.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String value1=edittext1.getText().toString();
 String value2=edittext2.getText().toString();
 int a=Integer.parseInt(value1);
 int b=Integer.parseInt(value2);
 int sum=a+b;
 Toast.makeText(getApplicationContext(),String.valueOf(sum), Toast.LENGTH_LONG).show();
 }
 });
 }
}

Q8. EXPLAIN DEVELOPING AN APPLICATION USING ANDROID CHECKBOX?

Android CheckBox Example

Android CheckBox is a type of two state button either checked or unchecked.
There can be a lot of usage of checkboxes. For example, it can be used to know the hobby of the user,
activate/deactivate the specific action etc.
Android CheckBox class is the subclass of CompoundButton class.
Android CheckBox class
The android.widget.CheckBox class provides the facility of creating the CheckBoxes.
Methods of CheckBox class
There are many inherited methods of View, TextView, and Button classes in the CheckBox class. Some of them
are as follows:

Method Description

public boolean isChecked() Returns true if it is checked otherwise false.

public void setChecked(boolean status) Changes the state of the CheckBox.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 23

Output:

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 24

Android CheckBox Example
activity_main.xml

Drag the three checkboxes and one button for the layout. Now the activity_main.xml file will look like this:

File: activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="example.javatpoint.com.checkbox.MainActivity">

 <CheckBox
 android:id="@+id/checkBox"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="144dp"
 android:layout_marginTop="68dp"
 android:text="Pizza"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <CheckBox
 android:id="@+id/checkBox2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="144dp"
 android:layout_marginTop="28dp"
 android:text="Coffee"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/checkBox" />

 <CheckBox
 android:id="@+id/checkBox3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="144dp"
 android:layout_marginTop="28dp"
 android:text="Burger"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/checkBox2" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="144dp"
 android:layout_marginTop="184dp"
 android:text="Order"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/checkBox3" />

</android.support.constraint.ConstraintLayout>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 25

Activity class

Let's write the code to check which toggle button is ON/OFF.
File: MainActivity.java

package example.javatpoint.com.checkbox;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {
 CheckBox pizza,coffe,burger;
 Button buttonOrder;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 addListenerOnButtonClick();
 }
 public void addListenerOnButtonClick(){
 //Getting instance of CheckBoxes and Button from the activty_main.xml file
 pizza=(CheckBox)findViewById(R.id.checkBox);
 coffe=(CheckBox)findViewById(R.id.checkBox2);
 burger=(CheckBox)findViewById(R.id.checkBox3);
 buttonOrder=(Button)findViewById(R.id.button);

 //Applying the Listener on the Button click
 buttonOrder.setOnClickListener(new View.OnClickListener(){

 public void onClick(View view) {
 int totalamount=0;
 StringBuilder result=new StringBuilder();
 result.append("Selected Items:");
 if(pizza.isChecked()){
 result.append("\nPizza 100Rs");
 totalamount+=100;
 }
 if(coffe.isChecked()){
 result.append("\nCoffe 50Rs");
 totalamount+=50;
 }
 if(burger.isChecked()){
 result.append("\nBurger 120Rs");
 totalamount+=120;
 }
 result.append("\nTotal: "+totalamount+"Rs");
 //Displaying the message on the toast
 Toast.makeText(getApplicationContext(), result.toString(), Toast.LENGTH_LONG).show();
 }

 });
 } }

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 26

Output:

Q9. EXPLAIN DEVLOPING AN APPLICATION USING ANDROID CUSTOM CHECKBOX?

Android Custom CheckBox
Android provides facility to customize the UI of view elements rather than default.
You are able to create custom CheckBox in android. So, you can add some different images of checkbox on the
layout.

Example of Custom CheckBox
In this example, we create both default as well as custom checkbox. Add the following code in
activity_main.xml file.

activity_main.xml
File: activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="example.javatpoint.com.customcheckbox.MainActivity">
 <TextView
 android:id="@+id/textView1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:textSize="25dp"
 android:text="Default Check Box"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New CheckBox"
 android:id="@+id/checkBox"
 android:layout_below="@+id/textView1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="46dp" />

 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New CheckBox"
 android:id="@+id/checkBox2"
 android:layout_below="@+id/checkBox"
 android:layout_alignLeft="@+id/checkBox"
 android:layout_alignStart="@+id/checkBox" />

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 27

 <View
 android:layout_width="fill_parent"
 android:layout_height="1dp"
 android:layout_marginTop="200dp"
 android:background="#B8B894"
 android:id="@+id/viewStub" />

 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="CheckBox 1"
 android:id="@+id/checkBox3"
 android:button="@drawable/customcheckbox"
 android:layout_below="@+id/viewStub"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="58dp" />

 <CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="CheckBox 2"
 android:id="@+id/checkBox4"
 android:button="@drawable/customcheckbox"
 android:layout_below="@+id/checkBox3"
 android:layout_alignLeft="@+id/checkBox3"
 android:layout_alignStart="@+id/checkBox3" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 android:textSize="25dp"
 android:text="Custom Check Box"
 android:id="@+id/textView"
 android:layout_alignTop="@+id/viewStub"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Checked"
 android:id="@+id/button"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true" />

</RelativeLayout>
Now implement a selector in another file (checkbox.xml) under drawable folder which customizes the
checkbox.

checkbox.xml
File: checkbox.xml
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_checked="true" android:drawable="@drawable/checked" />

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 28

 <item android:state_checked="false" android:drawable="@drawable/unchecked"/>
1. </selector>

Activity class
File: MainActivity.java

package example.javatpoint.com.customcheckbox;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {
 CheckBox cb1,cb2;
 Button button;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 cb1=(CheckBox)findViewById(R.id.checkBox3);
 cb2=(CheckBox)findViewById(R.id.checkBox4);
 button=(Button)findViewById(R.id.button);

 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 StringBuilder sb=new StringBuilder("");

 if(cb1.isChecked()){
 String s1=cb1.getText().toString();
 sb.append(s1);
 }
 if(cb2.isChecked()){
 String s2=cb2.getText().toString();
 sb.append("\n"+s2);
 }
 if(sb!=null && !sb.toString().equals("")){
 Toast.makeText(getApplicationContext(), sb, Toast.LENGTH_LONG).show();
 }
 else{
 Toast.makeText(getApplicationContext(),"Nothing Selected", Toast.LENGTH_LONG).show();
 }

 } });
 } }

Output

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 29

Q10. EXPLAIN ABOUT USERINTERFACE LAYOUTS?HOW LAYOUTS CAN BE DESINGED IN ANDROID?
OR EXPLAIN ABOUT VIEW OBJECT .HOW A VIEW OBJECT CAN FUNCTION IN ANDROID?

Android - UI Layouts
The basic building block for user interface is a View object which is created from the View class and occupies a
rectangular area on the screen and is responsible for drawing and event handling. View is the base class for
widgets, which are used to create interactive UI components like buttons, text fields, etc.
The ViewGroup is a subclass of View and provides invisible container that hold other Views or other
ViewGroups and define their layout properties.
At third level we have different layouts which are subclasses of ViewGroup class and a typical layout defines
the visual structure for an Android user interface and can be created either at run time
using View/ViewGroup objects or you can declare your layout using simple XML file main_layout.xml which is
located in the res/layout folder of your project.

A View is an object that draws something on the screen that the user can interact with and a ViewGroup is an
object that holds other View (and ViewGroup) objects in order to define the layout of the user interface.

You define your layout in an XML file which offers a human-readable structure for the layout, similar to HTML.
For example, a simple vertical layout with a text view and a button looks like this −

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="I am a TextView" />

 <Button android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="I am a Button" />
</LinearLayout>

Layout params

This is more about creating your GUI based on layouts defined in XML file. A layout may contain any type of
widgets such as buttons, labels, textboxes, and so on. Following is a simple example of XML file having
LinearLayout −

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 30

 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This is a TextView" />

 <Button android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This is a Button" />

 <!-- More GUI components go here -->

</LinearLayout>

Once your layout has created, you can load the layout resource from your application code, in
your Activity.onCreate() callback implementation as shown below –

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
}

Android Layout Types
There are number of Layouts provided by Android which you will use in almost all the Android applications to
provide different view, look and feel.

Sr.No Layout & Description

1 Linear Layout : LinearLayout is a view group that aligns all children in a single direction, vertically or
horizontally.

2 Relative Layout: RelativeLayout is a view group that displays child views in relative positions.

3 Table Layout: TableLayout is a view that groups views into rows and columns.

4 Absolute Layout: AbsoluteLayout enables you to specify the exact location of its children.

5 Frame Layout :The FrameLayout is a placeholder on screen that you can use to display a single view.

6 List View : ListView is a view group that displays a list of scrollable items.

7 Grid View : GridView is a ViewGroup that displays items in a two-dimensional, scrollable grid.

Layout Attributes
Each layout has a set of attributes which define the visual properties of that layout. There are few common
attributes among all the layouts and their are other attributes which are specific to that layout. Following are
common attributes and will be applied to all the layouts:

Sr.No Attribute & Description

1 android:id : This is the ID which uniquely identifies the view.

2 android:layout_width : This is the width of the layout.

3 android:layout_height : This is the height of the layout

4 android:layout_marginTop : This is the extra space on the top side of the layout.

5 android:layout_marginBottom : This is the extra space on the bottom side of the layout.

6 android:layout_marginLeft : This is the extra space on the left side of the layout.

7 android:layout_marginRight : This is the extra space on the right side of the layout.

8 android:layout_gravity : This specifies how child Views are positioned.

https://www.tutorialspoint.com/android/android_linear_layout.htm
https://www.tutorialspoint.com/android/android_relative_layout.htm
https://www.tutorialspoint.com/android/android_table_layout.htm
https://www.tutorialspoint.com/android/android_absolute_layout.htm
https://www.tutorialspoint.com/android/android_frame_layout.htm
https://www.tutorialspoint.com/android/android_list_view.htm
https://www.tutorialspoint.com/android/android_grid_view.htm

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 31

9 android:layout_weight : This specifies how much of the extra space in the layout should be allocated to
the View.

10 android:layout_x : This specifies the x-coordinate of the layout.

11 android:layout_y : This specifies the y-coordinate of the layout.

12 android:layout_width : This is the width of the layout.

13 android:paddingLeft : This is the left padding filled for the layout.

14 android:paddingRight : This is the right padding filled for the layout.

15 android:paddingTop : This is the top padding filled for the layout.

16 android:paddingBottom : This is the bottom padding filled for the layout.

Here width and height are the dimension of the layout/view which can be specified in terms of dp (Density-
independent Pixels), sp (Scale-independent Pixels), pt (Points which is 1/72 of an inch), px(Pixels), mm (
Millimeters) and finally in (inches).
You can specify width and height with exact measurements but more often, you will use one of these
constants to set the width or height −

• android:layout_width=wrap_content tells your view to size itself to the dimensions required by its
content.

• android:layout_width=fill_parent tells your view to become as big as its parent view.
Gravity attribute plays important role in positioning the view object and it can take one or more (separated by
'|') of the following constant values.

Constant Value Description

top 0x30 Push object to the top of its container, not changing its size.

bottom 0x50 Push object to the bottom of its container, not changing its size.

left 0x03 Push object to the left of its container, not changing its size.

right 0x05 Push object to the right of its container, not changing its size.

center_vertical 0x10 Place object in the vertical center of its container, not changing its size.

fill_vertical 0x70 Grow the vertical size of the object if needed so it completely fills its
container.

center_horizontal 0x01 Place object in the horizontal center of its container, not changing its size.

fill_horizontal 0x07 Grow the horizontal size of the object if needed so it completely fills its
container.

center 0x11 Place the object in the center of its container in both the vertical and
horizontal axis, not changing its size.

fill 0x77 Grow the horizontal and vertical size of the object if needed so it completely
fills its container.

clip_vertical 0x80 Additional option that can be set to have the top and/or bottom edges of the
child clipped to its container's bounds. The clip will be based on the vertical
gravity: a top gravity will clip the bottom edge, a bottom gravity will clip the
top edge, and neither will clip both edges.

clip_horizontal 0x08 Additional option that can be set to have the left and/or right edges of the
child clipped to its container's bounds. The clip will be based on the horizontal
gravity: a left gravity will clip the right edge, a right gravity will clip the left
edge, and neither will clip both edges.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 32

start 0x00800003 Push object to the beginning of its container, not changing its size.

end 0x00800005 Push object to the end of its container, not changing its size.

View Identification
A view object may have a unique ID assigned to it which will identify the View uniquely within the tree. The
syntax for an ID, inside an XML tag is −
android:id="@+id/my_button"
Following is a brief description of @ and + signs −

• The at-symbol (@) at the beginning of the string indicates that the XML parser should parse and
expand the rest of the ID string and identify it as an ID resource.

• The plus-symbol (+) means that this is a new resource name that must be created and added to our
resources. To create an instance of the view object and capture it from the layout, use the following −

• Button myButton = (Button) findViewById(R.id.my_button);

Q11. EXPLAIN ABOUT USERINTERFACE CONTROLS?HOW UI CONTROLS CAN BE USED IN ANDROID?
Input controls are the interactive components in user interface. Android provides a wide variety of controls you
can use in your UI, such as buttons, text fields, seek bars, check box, zoom buttons, toggle buttons, and many
more.

Android UI Controls

There are number of UI controls provided by Android that allow you to build the graphical user interface for
your app.

Sr.No. UI Control & Description

1 TextView : This control is used to display text to the user.

2 EditText: EditText is a predefined subclass of TextView that includes rich editing capabilities.

3 AutoCompleteTextView : The AutoCompleteTextView is a view that is similar to EditText, except
that it shows a list of completion suggestions automatically while the user is typing.

4 Button : A push-button that can be pressed, or clicked, by the user to perform an action.

5 ImageButton : An ImageButton is an AbsoluteLayout which enables you to specify the exact
location of its children. This shows a button with an image (instead of text) that can be pressed or
clicked by the user.

6 CheckBox :An on/off switch that can be toggled by the user. You should use check box when
presenting users with a group of selectable options that are not mutually exclusive.

7 ToggleButton: An on/off button with a light indicator.

8 RadioButton :The RadioButton has two states: either checked or unchecked.

9 RadioGroup :A RadioGroup is used to group together one or more RadioButtons.

10 ProgressBar :The ProgressBar view provides visual feedback about some ongoing tasks, such as
when you are performing a task in the background.

11 Spinner :A drop-down list that allows users to select one value from a set.

12 TimePicker :The TimePicker view enables users to select a time of the day, in either 24-hour mode
or AM/PM mode.

https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_autocompletetextview_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_imagebutton_control.htm
https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_togglebutton_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm
https://www.tutorialspoint.com/android/android_progressbar.htm
https://www.tutorialspoint.com/android/android_spinner_control.htm
https://www.tutorialspoint.com/android/android_timepicker_control.htm

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 33

13 DatePicker :The DatePicker view enables users to select a date of the day.

Creating UI Controls

Input controls are the interactive components in your app's user interface. Android provides a wide variety of
controls you can use in your UI, such as buttons, text fields, seek bars, check box, zoom buttons, toggle
buttons, and many more.

As explained in previous chapter, a view object may have a unique ID assigned to it which will identify the
View uniquely within the tree. The syntax for an ID, inside an XML tag is −

android:id="@+id/text_id"

To create a UI Control/View/Widget you will have to define a view/widget in the layout file and assign it a
unique ID as follows −

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView android:id="@+id/text_id"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="I am a TextView" />
</LinearLayout>

Then finally create an instance of the Control object and capture it from the layout, use the following

TextView myText = (TextView) findViewById(R.id.text_id);

Q12. EXPLAIN ABOUT EVENT HANDLING? HOW EVENT HANDLIG CAN BE DONE IN ANDROID?

Android - Event Handling
Events are a useful way to collect data about a user's interaction with interactive components of
Applications. Like button presses or screen touch etc. The Android framework maintains an event queue as
first-in, first-out (FIFO) basis. You can capture these events in your program and take appropriate action as per
requirements.
There are following three concepts related to Android Event Management −

• Event Listeners − An event listener is an interface in the View class that contains a single callback
method. These methods will be called by the Android framework when the View to which the listener
has been registered is triggered by user interaction with the item in the UI.

• Event Listeners Registration − Event Registration is the process by which an Event Handler gets
registered with an Event Listener so that the handler is called when the Event Listener fires the event.

• Event Handlers − When an event happens and we have registered an event listener for the event, the
event listener calls the Event Handlers, which is the method that actually handles the event.

Event Listeners & Event Handlers

Event Handler Event Listener & Description

onClick()
OnClickListener() : This is called when the user either clicks or touches or focuses upon
any widget like button, text, image etc. You will use onClick() event handler to handle
such event.

onLongClick()
OnLongClickListener() : This is called when the user either clicks or touches or focuses
upon any widget like button, text, image etc. for one or more seconds. You will use
onLongClick() event handler to handle such event.

https://www.tutorialspoint.com/android/android_datepicker_control.htm

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 34

onFocusChange()
OnFocusChangeListener() : This is called when the widget looses its focus ie. user goes
away from the view item. You will use onFocusChange() event handler to handle such
event.

onKey()
OnFocusChangeListener() : This is called when the user is focused on the item and
presses or releases a hardware key on the device. You will use onKey() event handler to
handle such event.

onTouch()
OnTouchListener() : This is called when the user presses the key, releases the key, or
any movement gesture on the screen. You will use onTouch() event handler to handle
such event.

onMenuItemClick() OnMenuItemClickListener() :This is called when the user selects a menu item. You will
use onMenuItemClick() event handler to handle such event.

onCreateContextMenu() onCreateContextMenuItemListener() : This is called when the context menu is being
built(as the result of a sustained "long click)

There are many more event listeners available as a part of View class like OnHoverListener, OnDragListener
etc which may be needed for your application. So I recommend to refer official documentation for Android
application development in case you are going to develop a sophisticated apps.
Event Listeners Registration

Event Registration is the process by which an Event Handler gets registered with an Event Listener so that the
handler is called when the Event Listener fires the event. Though there are several tricky ways to register your
event listener for any event, but I'm going to list down only top 3 ways, out of which you can use any of them
based on the situation.

• Using an Anonymous Inner Class
• Activity class implements the Listener interface.
• Using Layout file activity_main.xml to specify event handler directly.

Below section will provide you detailed examples on all the three scenarios −

An Example of Event Handling using Touch Mode Event

Touch Mode

Users can interact with their devices by using hardware keys or buttons or touching the screen.Touching the
screen puts the device into touch mode. The user can then interact with it by touching the on-screen virtual
buttons, images, etc.You can check if the device is in touch mode by calling the View class’s isInTouchMode()
method.
Focus

A view or widget is usually highlighted or displays a flashing cursor when it’s in focus. This indicates that it’s
ready to accept input from the user.

• isFocusable() − it returns true or false
• isFocusableInTouchMode() − checks to see if the view is focusable in touch mode. (A view may be

focusable when using a hardware key but not when the device is in touch mode)

• android:foucsUp="@=id/button_l"

onTouchEvent()

public boolean onTouchEvent(motionEvent event){
 switch(event.getAction()){
 case TOUCH_DOWN:
 Toast.makeText(this,"you have clicked down Touch button",Toast.LENTH_LONG).show();
 break();

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 35

 case TOUCH_UP:
 Toast.makeText(this,"you have clicked up touch button",Toast.LENTH_LONG).show();
 break;

 case TOUCH_MOVE:
 Toast.makeText(this,"you have clicked move touch button"Toast.LENTH_LONG).show();
 break;
 }
 return super.onTouchEvent(event) ;
}

Event Handling Examples

Event Listeners Registration Using an Anonymous Inner Class

Here you will create an anonymous implementation of the listener and will be useful if each class is applied to
a single control only and you have advantage to pass arguments to event handler. In this approach event
handler methods can access private data of Activity. No reference is needed to call to Activity.

But if you applied the handler to more than one control, you would have to cut and paste the code for the
handler and if the code for the handler is long, it makes the code harder to maintain.

Following are the simple steps to show how we will make use of separate Listener class to register and capture
click event. Similar way you can implement your listener for any other required event type.

Step Description

1 You will use Android studio IDE to create an Android application and name it as myapplication under a
package com.example.myapplication as explained in the Hello World Example chapter.

2 Modify src/MainActivity.java file to add click event listeners and handlers for the two buttons defined.

3 Modify the detault content of res/layout/activity_main.xml file to include Android UI controls.

4 No need to declare default string constants.Android studio takes care default constants.

5 Run the application to launch Android emulator and verify the result of the changes done in the aplication.

Q13. EXPLAIN ABOUT message Communication? HOW user can message or notifications can be done IN
ANDROID? (OR) How alert message can be performed using Toast Class?

Android - Notifications
A notification is a message you can display to the user outside of your application's normal UI. When you tell
the system to issue a notification, it first appears as an icon in the notification area. To see the details of the
notification, the user opens the notification drawer. Both the notification area and the notification drawer are
system-controlled areas that the user can view at any time.

Android Toast class provides a handy way to show users alerts but problem is that these alerts are not
persistent which means alert flashes on the screen for a few seconds and then disappears.

To see the details of the notification, you will have to select the icon which will display notification drawer
having detail about the notification. While working with emulator with virtual device, you will have to click
and drag down the status bar to expand it which will give you detail as follows. This will be just 64 dp tall and
called normal view.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 36

Above expanded form can have a Big View which will have additional detail about the notification. You can
add upto six additional lines in the notification. The following screen shot shows such notification.

Create and Send Notifications

You have simple way to create a notification. Follow the following steps in your application to create a
notification −
Step 1 - Create Notification Builder

As a first step is to create a notification builder using NotificationCompat.Builder.build(). You will use
Notification Builder to set various Notification properties like its small and large icons, title, priority etc.

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this)

Step 2 - Setting Notification Properties
Once you have Builder object, you can set its Notification properties using Builder object as per your
requirement. But this is mandatory to set at least following −

• A small icon, set by setSmallIcon()
• A title, set by setContentTitle()
• Detail text, set by setContentText()

mBuilder.setSmallIcon(R.drawable.notification_icon);
mBuilder.setContentTitle("Notification Alert, Click Me!");
mBuilder.setContentText("Hi, This is Android Notification Detail!");

You have plenty of optional properties which you can set for your notification. To learn more about them, see
the reference documentation for NotificationCompat.Builder.

Step 3 - Attach Actions

This is an optional part and required if you want to attach an action with the notification. An action allows
users to go directly from the notification to an Activity in your application, where they can look at one or more
events or do further work.

The action is defined by a PendingIntent containing an Intent that starts an Activity in your application. To
associate the PendingIntent with a gesture, call the appropriate method of NotificationCompat.Builder. For
example, if you want to start Activity when the user clicks the notification text in the notification drawer, you
add the PendingIntent by calling setContentIntent().

A PendingIntent object helps you to perform an action on your applications behalf, often at a later time,
without caring of whether or not your application is running.

We take help of stack builder object which will contain an artificial back stack for the started Activity. This
ensures that navigating backward from the Activity leads out of your application to the Home screen.

Intent resultIntent = new Intent(this, ResultActivity.class);
TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 37

stackBuilder.addParentStack(ResultActivity.class);

// Adds the Intent that starts the Activity to the top of the stack
stackBuilder.addNextIntent(resultIntent);
PendingIntent resultPendingIntent = stackBuilder.getPendingIntent(0,PendingIntent.FLAG_UPDATE_CURRENT);
mBuilder.setContentIntent(resultPendingIntent);
Step 4 - Issue the notification

Finally, you pass the Notification object to the system by calling NotificationManager.notify() to send your
notification. Make sure you call NotificationCompat.Builder.build() method on builder object before notifying
it. This method combines all of the options that have been set and return a new Notification object.

NotificationManager mNotificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

// notificationID allows you to update the notification later on.
mNotificationManager.notify(notificationID, mBuilder.build());

The NotificationCompat.Builder Class

The NotificationCompat.Builder class allows easier control over all the flags, as well as help constructing the
typical notification layouts. Following are few important and most frequently used methods available as a part
of NotificationCompat.Builder class.

Sr.No. Constants & Description

1
Notification build(): Combine all of the options that have been set and return a new Notification object.

2
NotificationCompat.Builder setAutoCancel (boolean autoCancel) : Setting this flag will make it so the
notification is automatically canceled when the user clicks it in the panel.

3
NotificationCompat.Builder setContent (RemoteViews views) :Supply a custom RemoteViews to use
instead of the standard one.

4
NotificationCompat.Builder setContentInfo (CharSequence info) :Set the large text at the right-hand side
of the notification.

5
NotificationCompat.Builder setContentIntent (PendingIntent intent) :Supply a PendingIntent to send
when the notification is clicked.

6
NotificationCompat.Builder setContentText (CharSequence text) :Set the text (second row) of the
notification, in a standard notification.

7
NotificationCompat.Builder setContentTitle (CharSequence title) :Set the text (first row) of the
notification, in a standard notification.

8
NotificationCompat.Builder setDefaults (int defaults) : Set the default notification options that will be
used.

9
NotificationCompat.Builder setLargeIcon (Bitmap icon): Set the large icon that is shown in the ticker and
notification.

10
NotificationCompat.Builder setNumber (int number): Set the large number at the right-hand side of the
notification.

11
NotificationCompat.Builder setOngoing (boolean ongoing) :Set whether this is an ongoing notification.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 38

12
NotificationCompat.Builder setSmallIcon (int icon) :Set the small icon to use in the notification layouts.

13
NotificationCompat.Builder setStyle (NotificationCompat.Style style) :Add a rich notification style to be
applied at build time.

14
NotificationCompat.Builder setTicker (CharSequence tickerText): Set the text that is displayed in the
status bar when the notification first arrives.

15
NotificationCompat.Builder setVibrate (long[] pattern): Set the vibration pattern to use.

16
NotificationCompat.Builder setWhen (long when) :Set the time that the event occurred. Notifications in
the panel are sorted by this time.

Example

Following example shows the functionality of a Android notification using a NotificationCompat.Builder Class
which has been introduced in Android 4.1.

Step Description

1 You will use Android studio IDE to create an Android application and name it as tutorialspoint under a
package com.example.notificationdemo.

2 Modify src/MainActivity.java file and add the code to notify(""), if user click on the button,it will call android
notification service.

3 Create a new Java file src/NotificationView.java, which will be used to display new layout as a part of new
activity which will be started when user will click any of the notifications

4 Modify layout XML file res/layout/activity_main.xml to add Notification button in relative layout.

5 Create a new layout XML file res/layout/notification.xml. This will be used as layout file for new activity which
will start when user will click any of the notifications.

6 No need to change default string constants. Android studio takes care of default string constants

7 Run the application to launch Android emulator and verify the result of the changes done in the application.

Following is the content of the modified main activity
file src/com.example.notificationdemo/MainActivity.java. This file can include each of the fundamental
lifecycle methods.

package com.example.notificationdemo;

import android.app.Activity;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.support.v4.app.NotificationCompat;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class MainActivity extends Activity {
 Button b1;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 39

 setContentView(R.layout.activity_main);

 b1 = (Button)findViewById(R.id.button);
 b1.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 addNotification();
 }
 });
 }

 private void addNotification() {
 NotificationCompat.Builder builder =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.drawable.abc)
 .setContentTitle("Notifications Example")
 .setContentText("This is a test notification");

 Intent notificationIntent = new Intent(this, MainActivity.class);
 PendingIntent contentIntent = PendingIntent.getActivity(this, 0, notificationIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);
 builder.setContentIntent(contentIntent);

 // Add as notification
 NotificationManager manager = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
 manager.notify(0, builder.build());
 }
}

Following will be the content of res/layout/notification.xml file –

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="400dp"
 android:text="Hi, Your Detailed notification view goes here...." />
</LinearLayout>

Following is the content of the modified main activity
file src/com.example.notificationdemo/NotificationView.java.

package com.example.notificationdemo;

import android.os.Bundle;
import android.app.Activity;

public class NotificationView extends Activity{
 @Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 setContentView(R.layout.notification);
 }
}

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 40

Following will be the content of res/layout/activity_main.xml file –

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="MainActivity">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Notification Example"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:textSize="30dp" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Tutorials point "
 android:textColor="#ff87ff09"
 android:textSize="30dp"
 android:layout_below="@+id/textView1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="48dp" />

 <ImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageButton"
 android:src="@drawable/abc"
 android:layout_below="@+id/textView2"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="42dp" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Notification"
 android:id="@+id/button"
 android:layout_marginTop="62dp"
 android:layout_below="@+id/imageButton"
 android:layout_centerHorizontal="true" />
 </RelativeLayout>

Following will be the content of res/values/strings.xml to define two new constants –

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="action_settings">Settings</string>
 <string name="app_name">tutorialspoint </string>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 41

</resources>

Following is the default content of AndroidManifest.xml −

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.notificationdemo" >

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name="com.example.notificationdemo.MainActivity"
 android:label="@string/app_name" >

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 </activity>

 <activity android:name=".NotificationView"
 android:label="Details of notification"
 android:parentActivityName=".MainActivity">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value=".MainActivity"/>
 </activity>

 </application>
</manifest>

Q14. EXPLAIN ABOUT RADIO BUTTONS? EXPLAIN WITH AN EXAMPLE HOW RADIO BUTTION CAN BE USED?

Android RadioButton
RadioButton is a two states button which is either checked or unchecked. If a single radio button is unchecked,
we can click it to make checked radio button. Once a radio button is checked, it cannot be marked as
unchecked by user.
RadioButton is generally used with RadioGroup. RadioGroup contains several radio buttons, marking one radio
button as checked makes all other radio buttons as unchecked.

Example of Radio Button
In this example, we are going to implement single radio button separately as well as radio button
in RadioGroup.

activity_main.xml
File: activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 42

 android:orientation="vertical"
 tools:context="example.javatpoint.com.radiobutton.MainActivity">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="30dp"
 android:gravity="center_horizontal"
 android:textSize="22dp"
 android:text="Single Radio Buttons" />
 <!-- Default RadioButtons -->
 <RadioButton
 android:id="@+id/radioButton1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Radio Button 1"
 android:layout_marginTop="20dp"

 android:textSize="20dp" />
 <RadioButton
 android:id="@+id/radioButton2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Radio Button 2"
 android:layout_marginTop="10dp"
 android:textSize="20dp" />

 <View
 android:layout_width="fill_parent"
 android:layout_height="1dp"
 android:layout_marginTop="20dp"
 android:background="#B8B894" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="30dp"
 android:gravity="center_horizontal"
 android:textSize="22dp"
 android:text="Radio button inside RadioGroup" />

 <!-- Customized RadioButtons -->

 <RadioGroup
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/radioGroup">

 <RadioButton
 android:id="@+id/radioMale"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 43

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=" Male"
 android:layout_marginTop="10dp"
 android:checked="false"
 android:textSize="20dp" />

 <RadioButton
 android:id="@+id/radioFemale"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text=" Female"
 android:layout_marginTop="20dp"
 android:checked="false"
 android:textSize="20dp" />
 </RadioGroup>
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Selected"
 android:id="@+id/button"
 android:onClick="onclickbuttonMethod"
 android:layout_gravity="center_horizontal" />
</LinearLayout>

Activity class
File: MainActivity.java

package example.javatpoint.com.radiobutton;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {
 Button button;
 RadioButton genderradioButton;
 RadioGroup radioGroup;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 radioGroup=(RadioGroup)findViewById(R.id.radioGroup);
 }
 public void onclickbuttonMethod(View v){
 int selectedId = radioGroup.getCheckedRadioButtonId();
 genderradioButton = (RadioButton) findViewById(selectedId);
 if(selectedId==-1){
 Toast.makeText(MainActivity.this,"Nothing selected", Toast.LENGTH_SHORT).show();
 }
 else{
 Toast.makeText(MainActivity.this,genderradioButton.getText(), Toast.LENGTH_SHORT).show();

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 44

 }

 }
}

Output

Q15. EXPLAIN WITH AN EXAMPLE HOW EDIT TEXT CONTROLL CAN BE DONE IN ANDROID?
Android EditText with Examples
In android, EditText is a user interface control which is used to allow the user to enter or modify the text. While
using EditText control in our android applications, we need to specify the type of data the text field can accept
using the inputType attribute.

For example, if it accept plain text, then we need to specify the inputType as “text”. In case if EditText field is
for password, then we need to specify the inputType as “textPassword”.

In android, EditText control is an extended version of TextView control with additional features and it is used
to allow users to enter input values. In android, we can create EditText control in two ways either in XML layout
file or create it in Activity file programmatically.

Create a EditText in Layout File
Following is the sample way to define EditText control in XML layout file in android application.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <EditText
 android:id="@+id/txtSub"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Subject"
 android:inputType="text"/>
</LinearLayout>
If you observe above code snippet, here we defined EditText control to accept plain text by using inpuType as
“text” in xml layout file.

Create EditText Control in Activity File
In android, we can create EditText control programmatically in an activity file to allow users to enter text based
on our requirements.

Following is the example of creating EditText control dynamically in an activity file.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 45

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 LinearLayout linearLayout = (LinearLayout) findViewById(R.id.linearlayout);
 EditText et = new EditText(this);
 et.setHint("Subject");
 linearLayout.addView(et);
 }
}

Set the Text of Android EditText

In android, we can set the text of EditText control either while declaring it in Layout file or by
using setText() method in Activity file.
Following is the example to set the text of TextView control while declaring it in XML Layout file.
<EditText
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Welcome to Tutlane" />

If you observe above example we used android:text property to the set required text for EditText control in
XML Layout file.
Following is another way to set the text of EditText control programmatically in activity file using setText()
method.

EditText et = (EditText)findViewById(R.id.editText1);
et.setText("Welcome to Tutlane");

If you observe above code snippet, we are finding the EditText control which we defined in XML layout file
using id property and setting the text using setText() method.

Get Text of Android EditText
In android, we can get the text of EditText control by using getText() method in Activity file.

Following is the example to get text of EditText control programmatically in activity file using getText() method.

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 EditText et = (EditText) findViewById(R.id.txtSub);
 String name = et.getText().toString();
 }
}

If you observe above code snippet, we are finding the EditText control which we defined in XML layout file
using id property and getting the text of EditText control using getText() method.

Android EditText Attributes

The following are some of the commonly used attributes related to EditText control in android applications.

Attribute Description

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 46

Attribute Description

android:id It is used to uniquely identify the control

android:gravity It is used to specify how to align the text like left, right, center, top,
etc.

android:text It is used to set the text.

android:hint It is used to display the hint text when text is empty

android:textColor It is used to change the color of the text.

android:textColorHint It is used to change the text color of hint text.

android:textSize It is used to specify the size of the text.

android:textStyle It is used to change the style (bold, italic, bolditalic) of text.

android:background It is used to set the background color for edit text control

android:ems It is used to make the textview be exactly this many ems wide.

android:width It makes the TextView be exactly this many pixels wide.

android:height It makes the TextView be exactly this many pixels tall.

android:maxWidth It is used to make the TextView be at most this many pixels wide.

android:minWidth It is used to make the TextView be at least this many pixels wide.

android:textAllCaps It is used to present the text in all CAPS

android:typeface It is used to specify the Typeface (normal, sans, serif, monospace)
for the text.

android:textColorHighlight It is used to change the color of text selection highlight.

android:inputType It is used to specify the type of text being placed in text fields.

android:fontFamily It is used to specify the fontFamily for the text.

android:editable If we set false, EditText won't allow us to enter or modify the text

Android EditText Control Example

Following is the example of using multiple EditText controls with different input types like password, phone,
etc. in LinearLayout to build an android application.

https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 47

Create a new android application using android studio and give names as EditTextExample. In case if you are
not aware of creating an app in android studio check this article Android Hello World App.

Now open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="40dp"
 android:orientation="vertical" android:id="@+id/linearlayout" >
 <EditText
 android:id="@+id/txtName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="25dp"
 android:ems="10"
 android:hint="Name"
 android:inputType="text"
 android:selectAllOnFocus="true" />
 <EditText
 android:id="@+id/txtPwd"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"
 android:hint="Password 0 to 9"
 android:inputType="numberPassword" />
 <EditText
 android:id="@+id/txtEmai"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"
 android:hint="Email"
 android:inputType="textEmailAddress" />
 <EditText
 android:id="@+id/txtDate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText3"
 android:ems="10"
 android:hint="Date"
 android:inputType="date" />
 <EditText
 android:id="@+id/txtPhone"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"
 android:hint="Phone Number"
 android:inputType="phone"
 android:textColorHint="#FE8DAB"/>
 <Button
 android:id="@+id/btnSend"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

https://www.tutlane.com/tutorial/android/android-hello-world-app-example

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 48

 android:text="submit"
 android:textSize="16sp"
 android:textStyle="normal|bold" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/resultView"
 android:layout_marginTop="25dp"
 android:textSize="15dp"/>
</LinearLayout>
If you observe above code we created multiple EditText controls with different inputTypes, such as password,
email address, date, phone number, plain text.

Once we are done with the creation of layout with required controls, we need to load the XML layout resource
from our activity onCreate() callback method, for that open main activity
file MainActivity.java from \java\com.tutlane.edittextexample path and write the code like as shown below.

MainActivity.java

package com.tutlane.edittextexample;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import org.w3c.dom.Text;

public class MainActivity extends AppCompatActivity {
 Button btnSubmit;
 EditText name, password, email, dob, phoneno;
 TextView result;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 name=(EditText)findViewById(R.id.txtName);
 password = (EditText)findViewById(R.id.txtPwd);
 email = (EditText)findViewById(R.id.txtEmai);
 dob = (EditText)findViewById(R.id.txtDate);
 phoneno= (EditText)findViewById(R.id.txtPhone);
 btnSubmit = (Button)findViewById(R.id.btnSend);
 result = (TextView)findViewById(R.id.resultView);
 btnSubmit.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (name.getText().toString().isEmpty() || password.getText().toString().isEmpty()
|| email.getText().toString().isEmpty() || dob.getText().toString().isEmpty()
 || phoneno.getText().toString().isEmpty()) {
 result.setText("Please Fill All the Details");
 } else {
 result.setText("Name - " + name.getText().toString() + " \n" + "Password -
" + password.getText().toString()
 + " \n" + "E-Mail - " + email.getText().toString() + " \n" + "DOB - " + dob.getText().toString()
 + " \n" + "Contact - " + phoneno.getText().toString());
 }

https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 49

 }
 });
 }
}
If you observe above code we are calling our layout using setContentView method in the form
of R.layout.layout_file_name in our activity file. Here our xml file name is activity_main.xml so we used file
name activity_main and we are getting the text of our EditText controls whenever we click on button.

Generally, during the launch of our activity, the onCreate() callback method will be called by the android
framework to get the required layout for an activity.

Output of Android EditText Example
When we run the above example using the android virtual device (AVD) we will get a result like as shown
below.

 If you observe the above result, the system displaying an appropriate on-screen keyboard for
each EditText control based on the defined inputType attribute and displayed a message if we click on the
button without entering details in fields.

Once we enter details in all fields and click on Button we will get a result like as shown below.
This is how we can use EditText control in android applications to allow the user to enter or modify the text
based on our requirements.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 50

UNIT-III

Android UI Layouts (Linear, Relative, Frame, Table, ListView, GridView, WebView)

Q1. EXPLAIN ABOUT UI LAYOUTS IN DETAIL?
In android, Layout is used to define the user interface for an app or activity and it will hold the UI elements that
will appear to the user. The user interface in the android app is made with a collection
of View and ViewGroup objects. Generally, the android apps will contain one or more activities and each
activity is one screen of the app. The activities will contain multiple UI components and those UI components
are the instances of View and ViewGroup subclasses.

The View is a base class for all UI components in android and it is used to create an interactive UI components
such as TextView, EditText, Checkbox, Radio Button, etc. and it responsible for event handling and drawing.

The ViewGroup is a subclass of View and it will act as a base class for layouts and layouts parameters.
The ViewGroup will provide an invisible containers to hold other Views or ViewGroups and to define the layout
properties.

In android, we can define a layouts in two ways, those are

• Declare UI elements in XML
• Instantiate layout elements at runtime

The android framework will allow us to use either or both of these methods to define our application’s UI.

Declare UI Elements in XML

In android, we can create layouts same like web pages in HTML by using default Views and ViewGroups in the
XML file. The layout file must contain only one root element, which must be a View or ViewGroup object. Once
we define the root element, then we can add additional layout objects or widgets as child elements to build the
View hierarchy that defines our layout.

Following is the example of defining a layout in an XML file (activity_main.xml) using LinearLayout to hold
a TextView, EditText, and Button.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/fstTxt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Enter Name"
 />
 <EditText
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10">
 </EditText>
 <Button
 android:id="@+id/getName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Get Name" />
</LinearLayout>

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-checkbox-with-examples
https://www.tutlane.com/tutorial/android/android-radiobutton-with-examples
https://www.tutlane.com/tutorial/android/android-view-and-viewgroup-with-examples
https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples
https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 51

We need to create a layout files in /res/layout project directory, then only the layout files will compile
properly.

Load XML Layout File from an Activity
Once we are done with the creation of layout, we need to load the XML layout resource from
our activity onCreate() callback method like as shown below

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
}
If you observe above code we are calling our layout using setContentView method in the form
of R.layout.layout_file_name. Here our xml file name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called by android framework to
get the required layout for an activity.

Instantiate Layout Elements at Runtime
If we want to instantiate layout elements at runtime, we need to create own
custom View and ViewGroup objects programmatically with required layouts.
Following is the example of creating a layout using LinearLayout to hold a TextView, EditText and Button in
an activity using custom View and ViewGroup objects programmatically.

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView textView1 = new TextView(this);
 textView1.setText("Name:");
 EditText editText1 = new EditText(this);
 editText1.setText("Enter Name");
 Button button1 = new Button(this);
 button1.setText("Add Name");
 LinearLayout linearLayout = new LinearLayout(this);
 linearLayout.addView(textView1);
 linearLayout.addView(editText1);
 linearLayout.addView(button1);
 setContentView(linearLayout);
 }
}
By creating a custom View and ViewGroup programmatically, we can define a layouts based on our
requirements in android applications.

Width and Height

When we define a layout using XML file we need to set width and height for
every View and ViewGroup element using layout_width and layout_height attributes.
Following is the example of setting width and height for View and ViewGroup elements in XML layout file.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/fstTxt"

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples
https://www.tutlane.com/tutorial/android/android-textview-with-examples
https://www.tutlane.com/tutorial/android/android-edittext-with-examples
https://www.tutlane.com/tutorial/android/android-button-with-examples
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 52

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Enter Name" />
</LinearLayout>
If you observe above example, we used different values to set layout_width and layout_height, those are

• match_parent
• wrap_content

If we set value match_parent, then the View or ViewGroup will try to match with parent width or height.
 If we set value wrap_content, then the View or ViewGroup will try to adjust its width or height based on the
content.

Android Layout Attributes

In android, like layout_width and layout_height we have a different type of attributes available
for View and ViewGroup objects to define the appearance of layouts based on our requirements.

The following are some of the common layout attributes used in the android application.

Attribute Description

android:id It is used to uniquely identify the view and ViewGroups

android:layout_width It is used to define the width for View and ViewGroup elements
in a layout

android:layout_height It is used to define the height for View and ViewGroup elements
in a layout

android:layout_marginLeft It is used to define the extra space in the left side for View and
ViewGroup elements in a layout

android:layout_marginRight It is used to define the extra space in right side for View and
ViewGroup elements in layout

android:layout_marginTop It is used to define the extra space on top for View and
ViewGroup elements in layout

android:layout_marginBottom It is used to define the extra space in the bottom side for View
and ViewGroup elements in a layout

android:paddingLeft It is used to define the left side padding for View and ViewGroup
elements in layout files

android:paddingRight It is used to define the right side padding for View and
ViewGroup elements in layout files

android:paddingTop It is used to define padding for View and ViewGroup elements in
layout files on top side

android:paddingBottom It is used to define the bottom side padding for View and
ViewGroup elements in layout files

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 53

Attribute Description

android:layout_gravity It is used to define how child Views are positioned

Android Layout Types

We have a different type of layouts available in android to implement user interface for our android
applications with different designs based on our requirements.
Following are the commonly used layouts in android applications to implement required designs.

• Linear Layout
• Relative Layout
• Frame Layout
• Table Layout
• Web View
• List View
• Grid View

Android Linear Layout
In android, LinearLayout is a ViewGroup subclass which is used to render all child View instances one by one
either in a horizontal direction or vertical direction based on the orientation property.
 Android Relative Layout
In android, RelativeLayout is a ViewGroup which is used to specify the position of child View instances relative
to each other (Child A to the left of Child B) or relative to the parent (Aligned to the top of a parent).
Android Frame Layout
In android, FrameLayout is a ViewGroup subclass which is used to specify the position of View instances it
contains on the top of each other to display only a single View inside the FrameLayout.
Android Table Layout
In android, TableLayout is a ViewGroup subclass which is used to display the child View elements in rows and
columns.
Android Web View
In android, WebView is a browser that is used to display the web pages as a part of our activity layout.
Android List View
In android, ListView is a ViewGroup which is used to display scrollable single column list of items.
Android Grid View
In android, GridView is a ViewGroup which is used to display items in a scrollable grid of columns and rows.

https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples
https://www.tutlane.com/tutorial/android/android-relativelayout-with-examples
https://www.tutlane.com/tutorial/android/android-framelayout-with-examples
https://www.tutlane.com/tutorial/android/android-tablelayout-with-examples
https://www.tutlane.com/tutorial/android/android-webview-with-examples
https://www.tutlane.com/tutorial/android/android-listview-with-examples
https://www.tutlane.com/tutorial/android/android-gridview-with-examples
https://www.tutlane.com/tutorial/android/android-linearlayout-with-examples
https://www.tutlane.com/tutorial/android/android-relativelayout-with-examples
https://www.tutlane.com/tutorial/android/android-framelayout-with-examples
https://www.tutlane.com/tutorial/android/android-tablelayout-with-examples
https://www.tutlane.com/tutorial/android/android-webview-with-examples
https://www.tutlane.com/tutorial/android/android-listview-with-examples
https://www.tutlane.com/tutorial/android/android-gridview-with-examples

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 54

Android LinearLayout with Examples
In android, LinearLayout is a ViewGroup subclass which is used to render all child View instances one by one
either in Horizontal direction or Vertical direction based on the orientation property.
 In android, we can specify the linear layout orientation using android:orientation attribute.

Following is the pictorial representation of linear layout in android applications.

In LinearLayout, the child View instances arranged one by one, so the horizontal list will have only one row of
multiple columns and vertical list will have one column of multiple rows.

Android LinearLayout Declaration
Following is the way we need to define the LinearLayout in android applications.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <!-- Add Child Views Here -->

</LinearLayout>
If you observe above code snippet, here we defined orientation as vertical, so this aligns all its child layout /
views vertically.

Android LinearLayout Example
Following is the example of creating a LinearLayout with different controls in android application.

Create a new android application using android studio and give names as LinearLayout. In case if you are not
aware of creating an app in android studio check this article Android Hello World App.

Now open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="20dp"
 android:paddingRight="20dp"
 android:orientation="vertical" >
 <EditText
 android:id="@+id/txtTo"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="To"/>
 <EditText
 android:id="@+id/txtSub"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Subject"/>

https://www.tutlane.com/tutorial/android/android-hello-world-app-example

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 55

 <EditText
 android:id="@+id/txtMsg"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:gravity="top"
 android:hint="Message"/>
 <Button
 android:layout_width="100dp"
 android:layout_height="wrap_content"
 android:layout_gravity="right"
 android:text="Send"/>
</LinearLayout>
Once we are done with creation of layout, we need to load the XML layout resource from
our activity onCreate() callback method, for that open main activity
file MainActivity.java from \java\com.tutlane.linearlayout path and write the code like as shown below.

MainActivity.java
package com.tutlane.linearlayout;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}
If you observe above code we are calling our layout using setContentView method in the form
of R.layout.layout_file_name. Here our xml file name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, the onCreate() callback method will be called by the android
framework to get the required layout for an activity.

Output of Android LinearLayout Example
When we run above example using the android virtual device (AVD) we will get a result like as shown below.

Layout Weight Attribute
If you observe the above example we used layout weight attribute (android:layout_weight) in child view.
Actually, this attribute is used by child views to specify how much space the View should occupy on the screen.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 56

If we assign a larger weight value to the child view, then it will expand to fill any remaining space in the parent
view.

If you observe above example, we used three text fields and we assigned weight value to only one text field.
The two text fields without weight will occupy only the area required for its content and the other text field
with weight value will expand to fill the remaining space after all three fields measured.

This is how we can use LinearLayout in android applications to render all View instances one by one either
in Horizontal direction or Vertical direction based on the orientation property.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 57

Android RelativeLayout with Examples
In android, RelativeLayout is a ViewGroup which is used to specify the position of child View instances relative
to each other (Child A to the left of Child B) or relative to the parent (Aligned to the top of parent).

Following is the pictorial representation of relative layout in android applications.

In android, RelativeLayout is very useful to design user interface because by using relative layout we can
eliminate the nested view groups and keep our layout hierarchy flat, which improves the performance of
application.

Android Positioning Views in Relative Layout
As we discussed, in RelativeLayout we need to specify the position of child views relative to each other or
relative to the parent. In case if we didn’t specify the position of child views, by default all child views are
positioned to top-left of the layout.

Following are the some of most useful layout properties available to views in RelativeLayout.

Attribute Description

layout_alignParentTop If it specified “true”, the top edge of view will match the top edge of the parent.

layout_alignParentBottom If it specified “true”, the bottom edge of view will match the bottom edge of parent.

layout_alignParentLeft If it specified “true”, the left edge of view will match the left edge of parent.

layout_alignParentRight If it specified “true”, the right edge of view will match the right edge of the parent.

layout_centerInParent If it specified “true”, the view will be aligned to the centre of parent.

layout_centerHorizontal If it specified “true”, the view will be horizontally centre aligned within its parent.

layout_centerVertical If it specified “true”, the view will be vertically centre aligned within its parent.

layout_above It accepts another sibling view id and places the view above the specified view id.

layout_below It accepts another sibling view id and places the view below the specified view id.

layout_toLeftOf It accepts another sibling view id and places the view left of the specified view id.

layout_toRightOf It accepts another sibling view id and places the view right of the specified view id.

layout_toStartOf It accepts another sibling view id and places the view to start of the specified view id.

layout_toEndOf It accepts another sibling view id and places the view to the end of the specified view

id.

Android RelativeLayout Example
Following is the example of creating a RelativeLayout with different controls in android application.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 58

Create a new android application using android studio and give names as RelativeLayout

Now open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="10dp"
 android:paddingRight="10dp">
 <Button
 android:id="@+id/btn1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:text="Button1" />
 <Button
 android:id="@+id/btn2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_centerVertical="true"
 android:text="Button2" />
 <Button
 android:id="@+id/btn3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_centerVertical="true"
 android:text="Button3" />

 <Button
 android:id="@+id/btn4"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Button4" />
 <Button
 android:id="@+id/btn5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="@+id/btn2"
 android:layout_centerHorizontal="true"
 android:text="Button5" />
 <Button
 android:id="@+id/btn6"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/btn4"
 android:layout_centerHorizontal="true"
 android:text="Button6" />
 <Button
 android:id="@+id/btn7"
 android:layout_width="wrap_content"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 59

 android:layout_height="wrap_content"
 android:layout_toEndOf="@+id/btn1"
 android:layout_toRightOf="@+id/btn1"
 android:layout_alignParentRight="true"
 android:text="Button7" />
</RelativeLayout>
Once we are done with creation of layout, we need to load the XML layout resource from
our activity onCreate() callback method, for that open main activity
file MainActivity.java from \java\com.tutlane.relativelayout path and write the code like as shown below.

MainActivity.java
package com.tutlane.linearlayout;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}
If you observe above code we are calling our layout using setContentView method in the form
of R.layout.layout_file_name. Here our xml file name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called by the android
framework to get the required layout for an activity.

Output of Android RelativeLayout Example
When we run above example using the android virtual device (AVD) we will get a result like as shown below.

This is how we can use RelativeLayout in android applications based on our requirements.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 60

Android TableLayout with Examples
In android, TableLayout is a ViewGroup subclass that is used to display the child View elements in rows and
columns.

Following is the pictorial representation of table layout in android applications.

In android, TableLayout will position its children elements into rows and columns and it won’t display any
border lines for rows, columns or cells.

The TableLayout in android will work same as the HTML table and the table will have as many columns as the
row with the most cells. The TableLayout can be explained as <table> and TableRow is like <tr> element.

Android TableLayout Example
Following is the example of creating a TableLayout with different controls in android application.

Create a new android application using android studio and give names as TableLayout.
Now open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginTop="100dp"
 android:paddingLeft="10dp"
 android:paddingRight="10dp" >
 <TableRow android:background="#0079D6" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="UserId" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="User Name" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Location" />
 </TableRow>
 <TableRow android:background="#DAE8FC" android:padding="5dp">
 <TextView

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 61

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="1" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Suresh Dasari" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Hyderabad" />
 </TableRow>
 <TableRow android:background="#DAE8FC" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="2" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Rohini Alavala" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Guntur" />
 </TableRow>
 <TableRow android:background="#DAE8FC" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="3" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Trishika Dasari" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Guntur" />
 </TableRow>
</TableLayout>
Once we are done with creation of layout, we need to load the XML layout resource from
our activity onCreate() callback method, for that open main activity
file MainActivity.java from \java\com.tutlane.tablelayout path and write the code like as shown below.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 62

MainActivity.java
package com.tutlane.linearlayout;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}
If you observe above code, we are calling our layout using setContentView method in the form
of R.layout.layout_file_name. Here our xml file name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called by android framework to
get the required layout for an activity.

Output of Android TableLayout Example
When we run above example using the android virtual device (AVD) we will get a result like as shown below.

This is how we can use the table layout in android applications based on our requirements.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 63

Android FrameLayout with Examples
In android, Framelayout is a ViewGroup subclass that is used to specify the position of View instances it
contains on the top of each other to display only single View inside the FrameLayout.
In simple manner, we can say FrameLayout is designed to block out an area on the screen to display a single
item.

Following is the pictorial representation of frame layout in android applications.

In android, FrameLayout will act as a placeholder on the screen and it is used to hold a single child view.

In FrameLayout, the child views are added in a stack and the most recently added child will show on the top.
We can add multiple children views to FrameLayout and control their position by using gravity attributes in
FrameLayout.

Android FrameLayout Example
Following is the example of creating a FrameLayout with different controls in android application.

Create a new android application using android studio and give names as FrameLayout.
Now open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <ImageView
 android:id="@+id/imgvw1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:scaleType="centerCrop"
 android:src="@drawable/flimg" />
 <TextView
 android:id="@+id/txtvw1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="40dp"
 android:background="#4C374A"
 android:padding="10dp"
 android:text="Grand Palace, Bangkok"
 android:textColor="#FFFFFF"
 android:textSize="20sp" />
 <TextView
 android:id="@+id/txtvw2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="right|bottom"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 64

 android:background="#AA000000"
 android:padding="10dp"
 android:text="21/Aug/2017"
 android:textColor="#FFFFFF"
 android:textSize="18sp" />
</FrameLayout>
If you observe above code we used ImageView to show the image (flimg) from drawable folder in framelayout.
So add your image to drawable folder and replace @drawable/flimg path with your image path.

Once we are done with the creation of layout, we need to load the XML layout resource from
our activity onCreate() callback method, for that open main activity
file MainActivity.java from \java\com.tutlane.framelayout path and write the code like as shown below.

MainActivity.java
package com.tutlane.linearlayout;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}
If you observe above code, we are calling our layout using setContentView method in the form
of R.layout.layout_file_name. Here our xml file name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, the onCreate() callback method will be called by the android
framework to get the required layout for an activity.

Output of Android FrameLayout Example
When we run the above example using the android virtual device (AVD) we will get a result like as shown
below.

 This is how we can use frame layout in android applications based on our requirements.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 65

Android ListView with Examples
In android, ListView is a ViewGroup that is used to display the list of scrollable of items in multiple rows and
the list items are automatically inserted to the list using an adapter.

Generally, the adapter pulls data from sources such as an array or database and converts each item into a
result view and that’s placed into the list.

Following is the pictorial representation of listview in android applications.

Android Adapter
In android, Adapter will act as an intermediate between the data sources and adapter views such
as ListView, Gridview to fill the data into adapter views. The adapter will hold the data and iterates through an
items in data set and generate the views for each item in the list.

Generally, in android we have a different types of adapters available to fetch the data from different data
sources to fill the data into adapter views, those are

Adapter Description

ArrayAdapter It will expects an Array or List as input.

CurosrAdapter It will accepts an instance of cursor as an input.

SimpleAdapter It will accepts a static data defined in the resources.

BaseAdapter It is a generic implementation for all three adapter types and it can be used

for ListView, Gridview or Spinners based on our requirements

Android ListView Example
Following is the example of creating a ListView using arrayadapter in android application.

Create a new android application using android studio and give names as ListView.
Now open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <ListView
 android:id="@+id/userlist"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >
 </ListView>
</LinearLayout>
Once we are done with creation of layout, now we will bind data to our ListView using ArrayAdapter, for that
open main activity file MainActivity.java from \java\com.tutlane.listview path and write the code like as
shown below.

https://www.tutlane.com/tutorial/android/android-listview-with-examples
https://www.tutlane.com/tutorial/android/android-gridview-with-examples
https://www.tutlane.com/tutorial/android/android-listview-with-examples
https://www.tutlane.com/tutorial/android/android-gridview-with-examples

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 66

MainActivity.java
package com.tutlane.listview;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.widget.ListView;

public class MainActivity extends AppCompatActivity {
 private ListView mListView;
 private ArrayAdapter aAdapter;
 private String[] users = { "Suresh Dasari", "Rohini Alavala", "Trishika Dasari", "Praveen Alavala", "Madav
Sai", "Hamsika Yemineni"};
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mListView = (ListView) findViewById(R.id.userlist);
 aAdapter = new ArrayAdapter(this, android.R.layout.simple_list_item_1, users);
 mListView.setAdapter(aAdapter);
 }
}
If you observe above code, we are binding static array (users) details to ListView using ArrayAdapter and
calling our layout using setContentView method in the form of R.layout.layout_file_name. Here our xml file
name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called by the android
framework to get the required layout for an activity.

Output of Android ListView Example
When we run above example using android virtual device (AVD) we will get a result like as shown below.

This is how we can bind data to ListView using ArrayAdapter in android applications based on our
requirements.

Android ListView with Custom Adapter Example
In previous example, we learned a simple way to bind data to ListView using ArrayAdapter in the android
application. Now we will see how to create our own custom adapter and bind data to ListView with example.

For this, we need to create our own custom adapter class by extending with the BaseAdapter class and create a
class that will contain parameters for list row items.

Now create a new android application using an android studio and give names as ListView.
Open an activity_main.xml file from \res\layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 67

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <ListView
 android:id="@+id/user_list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:dividerHeight="1dp" />
</LinearLayout>
Now we need to create a layout for listview row items, for that right click on layouts folder à select
New à Layout resource file à Give name as list_row.xml and click OK. Now open newly created file
(list_row.xml) and write the code like as shown below

list_row.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="5dip" >
 <TextView
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textSize="17dp" />
 <TextView
 android:id="@+id/designation"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/name"
 android:layout_marginTop="7dp"
 android:textColor="#343434"
 android:textSize="14dp" />
 <TextView
 android:id="@+id/location"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/designation"
 android:layout_alignBottom="@+id/designation"
 android:layout_alignParentRight="true"
 android:textColor="#343434"
 android:textSize="14dp" />
</RelativeLayout>
Now we need to create a custom class (ListItem.java) to represent each row in the list, for that right click
on java folder à select New à Java Class à Give name as ListItem.java and click OK. Open ListItem.java file and
write the code like as shown below

ListItem.java
package com.tutlane.listview;
public class ListItem {
 private String name;
 private String designation;
 private String location;
 public String getName() {
 return name;

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 68

 }
 public void setName(String name) {
 this.name = name;
 }
 public String getDesignation() {
 return designation;
 }
 public void setDesignation(String designation) {
 this.designation = designation;
 }
 public String getLocation() {
 return location;
 }
 public void setLocation(String location) {
 this.location = location;
 }
}
Now we need to create a custom adapter (CustomListAdapter.java) and extend it by using BaseAdapter. In
case if we are extending our class by using BaseAdapter, we need to override following methods
from BaseAdapter class.

Method Description

getCount() It will return total number of rows count in listview

getItem() It is used to specify the object data of each row

getItemId() It returns the id of each row item

getView() It is used to return a view instance that represents a single row in ListView item.

To create custom adapter right-click on java folder à select New à Java Class à Give name
as CustomListAdapter.java and click OK.

Open CustomListAdapter.java file and write the code like as shown below

CustomListAdapter.java
package com.tutlane.listview;
import android.content.Context;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.TextView;

import java.util.ArrayList;
public class CustomListAdapter extends BaseAdapter {
 private ArrayList<ListItem> listData;
 private LayoutInflater layoutInflater;
 public CustomListAdapter(Context aContext, ArrayList<ListItem> listData) {
 this.listData = listData;
 layoutInflater = LayoutInflater.from(aContext);
 }
 @Override
 public int getCount() {
 return listData.size();

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 69

 }
 @Override
 public Object getItem(int position) {
 return listData.get(position);
 }
 @Override
 public long getItemId(int position) {
 return position;
 }
 public View getView(int position, View v, ViewGroup vg) {
 ViewHolder holder;
 if (v == null) {
 v = layoutInflater.inflate(R.layout.list_row, null);
 holder = new ViewHolder();
 holder.uName = (TextView) v.findViewById(R.id.name);
 holder.uDesignation = (TextView) v.findViewById(R.id.designation);
 holder.uLocation = (TextView) v.findViewById(R.id.location);
 v.setTag(holder);
 } else {
 holder = (ViewHolder) v.getTag();
 }
 holder.uName.setText(listData.get(position).getName());
 holder.uDesignation.setText(listData.get(position).getDesignation());
 holder.uLocation.setText(listData.get(position).getLocation());
 return v;
 }
 static class ViewHolder {
 TextView uName;
 TextView uDesignation;
 TextView uLocation;
 }
}
If you observe above class we are extending our custom adapter by using BaseAdapter and we override
all BaseAdapter methods in our custom adapter.

Now we need to combine all the custom classes in main activity file (MainActivity.java) to bind the data to our
listview.

Open main activity file (MainActivity.java) and write the code like as shown below.

MainActivity.java
package com.tutlane.listview;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ListView;
import android.widget.Toast;

import java.util.ArrayList;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 70

 setContentView(R.layout.activity_main);
 ArrayList userList = getListData();
 final ListView lv = (ListView) findViewById(R.id.user_list);
 lv.setAdapter(new CustomListAdapter(this, userList));
 lv.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> a, View v, int position, long id) {
 ListItem user = (ListItem) lv.getItemAtPosition(position);
 Toast.makeText(MainActivity.this, "Selected :" + " " + user.getName()+", "+ user.getLocation(),
Toast.LENGTH_SHORT).show();
 }
 });
 }
 private ArrayList getListData() {
 ArrayList<ListItem> results = new ArrayList<>();
 ListItem user1 = new ListItem();
 user1.setName("Suresh Dasari");
 user1.setDesignation("Team Leader");
 user1.setLocation("Hyderabad");
 results.add(user1);
 ListItem user2 = new ListItem();
 user2.setName("Rohini Alavala");
 user2.setDesignation("Agricultural Officer");
 user2.setLocation("Guntur");
 results.add(user2);
 ListItem user3 = new ListItem();
 user3.setName("Trishika Dasari");
 user3.setDesignation("Charted Accountant");
 user3.setLocation("Guntur");
 results.add(user3);
 return results;
 }
}
If you observe above code we are building and binding data to ListView using our custom adapter and calling
our layout using setContentView method in the form of R.layout.layout_file_name. Here our xml file name
is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called by android framework to
get the required layout for an activity.

Output of Android Custom ListView Example
When we run the above example using an android virtual device (AVD) we will get a result like as shown below.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 71

 This is how we can bind data to ListView using custom adapter in android applications based on our
requirements.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 72

Android GridView with Examples
In android, Grid View is a ViewGroup that is used to display items in a two dimensional, scrollable grid and grid
items are automatically inserted to the gridview layout using a list adapter.

Generally, the adapter pulls data from sources such as an array or database and converts each item into a
result view and that’s placed into the list.

Following is the pictorial representation of GridView in android applications.

Android Adapter
In android, Adapter will act as an intermediate between the data sources and adapter views such
as ListView, Gridview to fill the data into adapter views. The adapter will hold the data and iterates through
items in the data set and generate the views for each item in the list.

Generally, in android we have a different types of adapters available to fetch the data from different data
sources to fill the data into adapter views, those are

Adapter Description

ArrayAdapter It will expect an Array or List as input.

CurosrAdapter It will accept an instance of a cursor as an input.

SimpleAdapter It will accept a static data defined in the resources.

BaseAdapter It is a generic implementation for all three adapter types and it can be used

for ListView, Gridview or Spinners based on our requirements

Android GridView Example
Following is the simple example showing user details using GridView and showing the position of a particular
image when clicking on it in android applications.

Create a new android application using android studio and give names as GridView.
Once we create an application, add some sample images to project /res/drawable directory to show the
images in GridView.

Now open an activity_main.xml file from /res/layout path and write the code like as shown below

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<GridView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/gridview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnWidth="110dp"
 android:numColumns="auto_fit"
 android:verticalSpacing="10dp"
 android:horizontalSpacing="10dp"
 android:stretchMode="columnWidth"
 android:gravity="center" />

https://www.tutlane.com/tutorial/android/android-listview-with-examples
https://www.tutlane.com/tutorial/android/android-gridview-with-examples
https://www.tutlane.com/tutorial/android/android-listview-with-examples
https://www.tutlane.com/tutorial/android/android-gridview-with-examples

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 73

Once we are done with creation of layout, we need to create a custom adapter (ImageAdapter.java) by
extending it using BaseExtender to show all the items in the grid, for that right click on java folder à Give name
as ImageAdapter.java and click OK.

Open ImageAdapter.java file and write the code like as shown below

ImageAdapter.java
package com.tutlane.gridview;
import android.content.Context;
import android.view.View;
import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.GridView;
import android.widget.ImageView;
public class ImageAdapter extends BaseAdapter {
 private Context mContext;
 public ImageAdapter(Context c) {
 mContext = c;
 }
 public int getCount() {
 return thumbImages.length;
 }
 public Object getItem(int position) {
 return null;
 }
 public long getItemId(int position) {
 return 0;
 }
 // create a new ImageView for each item referenced by the Adapter
 public View getView(int position, View convertView, ViewGroup parent) {
 ImageView imageView = new ImageView(mContext);
 imageView.setLayoutParams(new GridView.LayoutParams(200, 200));
 imageView.setScaleType(ImageView.ScaleType.CENTER_CROP);
 imageView.setPadding(8, 8, 8, 8);
 imageView.setImageResource(thumbImages[position]);
 return imageView;
 }
 // Add all our images to arraylist
 public Integer[] thumbImages = {
 R.drawable.img1, R.drawable.img2,
 R.drawable.img3, R.drawable.img4,
 R.drawable.img5, R.drawable.img6,
 R.drawable.img7, R.drawable.img8,
 R.drawable.img1, R.drawable.img2,
 R.drawable.img3, R.drawable.img4,
 R.drawable.img5, R.drawable.img6,
 R.drawable.img7, R.drawable.img8,
 R.drawable.img1, R.drawable.img2,
 R.drawable.img3, R.drawable.img4,
 R.drawable.img5
 };
}
If you observe above code we referred some images, actually those are the sample images which we added
in /res/drawable directory.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 74

Now we will bind images to our GridView using our custom adapter (ImageAdapter.java), for that open main
activity file MainActivity.java from \java\com.tutlane.gridview path and write the code like as shown below.

MainActivity.java
package com.tutlane.gridview
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.GridView;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 GridView gv = (GridView) findViewById(R.id.gvDetails);
 gv.setAdapter(new ImageAdapter(this));
 gv.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 Toast.makeText(MainActivity.this, "Image Position: " + position, Toast.LENGTH_SHORT).show();
 }
 });
 }
}
If you observe above code, we are binding image details to GridView using our custom adapter
(ImageAdapter.java) and calling our layout using setContentView method in the form
of R.layout.layout_file_name. Here our xml file name is activity_main.xml so we used file name activity_main.

Generally, during the launch of our activity, onCreate() callback method will be called by android framework to
get the required layout for an activity.

Output of Android GridView Example
When we run above example using the android virtual device (AVD) we will get a result like as shown below.

This is how we can bind images to GridView using Adapter in android applications based on our requirements.

Android GridView Details Activity Example
In above example, we implemented an image gallery using gridview in android application. Now we will extend
the functionality of above example to show the selected grid image in full screen.

Now we need to create a new layout (image_details.xml) file in project /res/layout directory to show the
image details, for that right click on the layouts folder à select New à Layout resource file à Give name
as image_details.xml and click OK. Now open newly created file (image_details.xml) and write the code like as
shown below.

https://www.tutlane.com/tutorial/android/android-activity-lifecycle
https://www.tutlane.com/tutorial/android/android-activity-lifecycle

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 75

image_details.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ImageView android:id="@+id/full_image_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>
Now we need to create a custom activity (FullImageActivity.java) to show the image details in our newly
created layout (image_details.xml) file, for that right click on java folder à select New à Java Class à Give name
as FullImageActivity.java and click OK.

Open FullImageActivity.java file and write the code like as shown below

FullImageActivity.java
package com.tutlane.gridview;
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.widget.ImageView;
public class FullImageActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.image_details);
 // Get intent data
 Intent i = getIntent();
 // Get Selected Image Id
 int position = i.getExtras().getInt("id");
 ImageAdapter imageAdapter = new ImageAdapter(this);
 ImageView imageView = (ImageView) findViewById(R.id.full_image_view);
 imageView.setImageResource(imageAdapter.thumbImages[position]);
 }
}
Now we need to include our newly created activity file (FullImageActivity.java) in AndroidManifest.xml file like
as shown below. For that, open AndroidManifest.xml file and write the code like as shown below

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.tutlane.gridview">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 76

 </activity>
 <!-- FullImageActivity -->
 <activity android:name=".FullImageActivity"></activity>
 </application>
</manifest>
Now we need to modify gridview image click function in main activity file (MainActivity.java) to get image
details and show it in new activity.

Open main activity file (MainActivity.java) and write the code like as shown below.

MainActivity.java
package com.tutlane.gridview;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.GridView;

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 GridView gv = (GridView) findViewById(R.id.gvDetails);
 gv.setAdapter(new ImageAdapter(this));
 gv.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 // Sending image id to FullScreenActivity
 Intent i = new Intent(getApplicationContext(), FullImageActivity.class);
 // passing array index
 i.putExtra("id", position);
 startActivity(i);
 }
 });
 }
}
If you observe above code, we are getting the selected image details on image click and sending those details
to our newly created activity file to show the image in full screen.

Output of Android GridView Details Activity Example
When we run above example using android virtual device (AVD) we will get a result like as shown below.

This is how we can build image gallery in gridview and show the selected image in android applications based
on our requirements.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 77

Adapting to Screen Orientation
As with almost all smartphones, Android supports two screen orientations: portrait and landscape. When the
screen orientation of an Android device is changed, the current activity being displayed is destroyed and re-
created automatically to redraw its content in the new orientation. In other words, the onCreate() method of
the activity is fired whenever there is a change in screen orientation.

Portrait mode is longer in height and smaller in width, whereas landscape mode is wider but smaller in height.
Being wider, landscape mode has more empty space on the right side of the screen. At the same time, some of
the controls don’t appear because of the smaller height. Thus, controls needs to be laid out differently in the
two screen orientations because of the difference in the height and width of the two orientations.

There are two ways to handle changes in screen orientation:
• Anchoring controls—Set the controls to appear at the places relative to the four edges of the screen.

When the screen orientation changes, the controls do not disappear but are rearranged relative to the
four edges.

• Defining layout for each mode—A new layout file is defined for each of the two screen orientations. One
has the controls arranged to suit the Portrait mode, and the other has the controls arranged to suit
the Landscape mode.

Anchoring Controls
For anchoring controls relative to the four edges of the screen, we use a RelativeLayout container. Let’s
examine this method by creating an Android project called ScreenOrientationApp. To lay out the controls at
locations relative to the four edges of the screen, write the code in the layout
file activity_screen_orientation_app.xml as shown in Listing 3.15.

Listing 3.15 The Layout file activity_screen_orientation_app.xml on Laying Out Controls Relative to the Four
Edges of the Screen

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/Apple"
 android:text="Apple"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="15dip"
 android:layout_marginLeft="20dip" />
 <Button
 android:id="@+id/Mango"
 android:text="Mango"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="28dip"
 android:layout_toRightOf="@id/Apple"
 android:layout_marginLeft="15dip"
 android:layout_marginRight="10dip"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 78

 android:layout_alignParentTop="true" />
 <Button
 android:id="@+id/Banana"
 android:text="Banana"
 android:layout_width="200dip"
 android:layout_height="50dip"
 android:layout_marginTop="15dip"
 android:layout_below="@id/Apple"
 android:layout_alignParentLeft="true" />
 <Button
 android:id="@+id/Grapes"
 android:text="Grapes"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:minWidth="100dp"
 android:layout_alignParentRight="true"
 android:layout_below="@id/Banana" />
 <Button
 android:id="@+id/Kiwi"
 android:text="Kiwi"
 android:layout_width="100dip"
 android:layout_height="wrap_content"
 android:layout_below="@id/Banana"
 android:paddingTop="15dip"
 android:paddingLeft="25dip"
 android:paddingRight="25dip" />
</RelativeLayout>

Listing 3.15 shows five Button controls arranged in a RelativeLayout container. The controls are aligned relative
to the edges of the container or in relation to each other. Let’s keep the activity
file ScreenOrientationAppActivity.java unchanged with the default code, as shown in Listing 3.16.

Listing 3.16 Default Code in the Java Activity File ScreenOrientationAppActivity.java

package com.androidunleashed.screenorientationapp;
import android.app.Activity;
import android.os.Bundle;

public class ScreenOrientationAppActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_screen_orientation_app);

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 79

 }
}

When the application is run while in the default Portrait mode, the controls appear as shown in Figure 3.16
(left). Because the five Button controls are placed in relation to the four edges of the container and in relation
to each other, none of the Button controls disappear if the screen is rotated to Landscape mode, as shown in
Figure 3.16 (right). To switch between portrait mode and landscape mode on the device emulator, press
the Ctrl+F11 keys.

Figure 3.16 (left) Controls in Portrait mode, and (right) the controls in Landscape mode
Now that we understand the concept of adapting to screen orientation through anchoring controls, let’s have a
look at another approach.
Defining Layout for Each Mode
In this method, we define two layouts. One arranges the controls in the default portrait mode, and the other
arranges the controls in landscape mode. To understand this, let’s write code as shown in Listing 3.17 for laying
out the controls for portrait mode in the default layout file activity_screen_orientation_app.xml (found in
the res/layout folder).

Listing 3.17 The Layout File activity_screen_orientation_app.xml on Laying Out Controls in Portrait Mode

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/Apple"
 android:text="Apple"
 android:layout_width="300dp"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip" />
 <Button
 android:id="@+id/Mango"
 android:text="Mango"
 android:layout_width="300dp"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip" />
 <Button
 android:id="@+id/Banana"
 android:text="Banana"
 android:layout_width="300dip"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip" />
 <Button
 android:id="@+id/Grapes"

javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig16.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig16.jpg')

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 80

 android:text="Grapes"
 android:layout_width="300dip"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip" />
 <Button
 android:id="@+id/Kiwi"
 android:text="Kiwi"
 android:layout_width="300dip"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip" />
</LinearLayout>

In Listing 3.17, we can see that five Button controls are vertically arranged in a LinearLayout container, one
below the other. This vertical arrangement makes a few of the Button controls disappear when the screen is
in Landscape mode.
If we run the application without defining the layout for the Landscape mode, we find the controls arranged
in Portrait mode, as shown in Figure 3.17 (left). But when we switch the screen orientation to Landscape, we
find the last two Button controls have disappeared, as shown in Figure 3.17 (right).This is because
in Landscape mode, the screen becomes wider but shorter in height.

Figure 3.17 (left) Controls in Portrait mode, and (right) some controls disappear in Landscape mode.
To use the blank space on the right side of the screen in Landscape mode, we need to define another layout
file, activity_screen_orientation_app.xml, created in the res/layout-land folder. The layout-land folder has to be
created manually inside the res folder. Right-click on the res folder in the Package Explorer window and select
the New, Folder option. A dialog box opens, asking for the name for the new folder. Assign the name layout-
land to the new folder, and click the Finish button. Copy the activity_screen_orientation_app.xml file from
the res/layout folder and paste it into res/layout-land folder. Modify
the activity_screen_orientation_app.xml file in the res/layout-land folder so as to arrange the controls
in Landscape mode. The code in the newly created activity_screen_orientation_app.xml is modified as shown in
Listing 3.18.
Listing 3.18 The Layout File activity_screen_orientation_app.xml in the res/layout-land Folder

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:id="@+id/Apple"
 android:text="Apple"
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip" />
 <Button
 android:id="@+id/Mango"

javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig17.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig17.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig17.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig17.jpg')

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 81

 android:text="Mango"
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip"
 android:layout_toRightOf="@id/Apple" />
 <Button
 android:id="@+id/Banana"
 android:text="Banana"
 android:layout_width="250dip"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip"
 android:layout_below="@id/Apple" />
 <Button
 android:id="@+id/Grapes"
 android:text="Grapes"
 android:layout_width="250dip"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip"
 android:layout_below="@id/Apple"
 android:layout_toRightOf="@id/Banana" />
 <Button
 android:id="@+id/Kiwi"
 android:text="Kiwi"
 android:layout_width="250dip"
 android:layout_height="wrap_content"
 android:padding="20dip"
 android:layout_marginTop="20dip"
 android:layout_below="@id/Banana" />
</RelativeLayout>

In this code block, we can see that, to fill up the blank space on the right side of the screen,
the Mango and Grapes button controls are set to appear to the right of the Apple and Banana button controls.
We can also detect the screen orientation via Java code. Let’s modify the activity
file ScreenOrientationAppActivity.java to display a toast message when the screen switches
between landscape mode and portrait mode. The code written in the Java activity
file ScreenOrientationappActivity.java is shown in Listing 3.19.
Listing 3.19 Code Written in the Java Activity File ScreenOrientationappActivity.java

package com.androidunleashed.screenorientationapp;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Toast;

public class ScreenOrientationAppActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_screen_orientation_app);
 if(getResources().getDisplayMetrics().widthPixels>getResources().getDisplayMetrics().
 heightPixels)

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 82

 {
 Toast.makeText(this,"Screen switched to Landscape mode",Toast.LENGTH_SHORT).show();
 }
 else
 {
 Toast.makeText(this,"Screen switched to Portrait mode",Toast.LENGTH_SHORT).show();
 }
 }
}

Now, when we run the application, the controls appear in portrait mode as shown in Figure 3.18 (left) and
in landscape mode as shown in Figure 3.18 (right). We can see that none of the Button controls are now hidden
in landscape mode.

Figure 3.18 (left) Controls in Portrait mode, and (right) all controls are visible in Landscape mode.

javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig18.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig18.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig18.jpg')
javascript:popUp('/content/images/rcex03_9780672336287/elementLinks/03fig18.jpg')

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 83

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 84

Unit – IV

Using Selection Widgets and Debugging
As the name suggests, selection widgets refers to the group controls that display

a list of choices from which users select items. To constrain users to enter the correct
data type or within a specific range and also to show the valid values, lists and drop-
down lists are commonly used in applications. Lists and drop-down lists are
called ListView and Spinner controls in Android. Besides ListView andSpinner, Two
more selection widgets in this chapter: AutoCompleteTextView andGridView.

Q1. WRITE ABOUT ANDROID LISTVIEW CONTROL OR HOW A SCROLLABLE LIST CAN BE
CREATED USING LIST VIEW CONTROL.EXPLAIN WITH AN EXAMPLE?

Android ListView is a view which contains the group of items and displays in a
scrollable list. ListView is implemented by importing android.widget.ListView class.
ListView is a default scrollable which does not use other scroll view.

ListView uses Adapter classes which add the content from data source (such as string
array, array, database etc) to ListView. Adapter bridges data between
an AdapterViews and other Views (ListView, ScrollView etc).

ListView is widely used in android applications. A very common example of ListView is
your phone contact book, where you have a list of your contacts displayed in a ListView
and if you click on it then user information is displayed.

Android ListView is a view which groups several items and display them in vertical
scrollable list. The list items are automatically inserted to the list using an Adapter that
pulls content from a source such as an array or database.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 85

List View

An adapter actually bridges between UI components and the data source that fill data
into UI Component. Adapter holds the data and send the data to adapter view, the
view can takes the data from adapter view and shows the data on different views like
as spinner, list view, grid view etc.

The ListView and GridView are subclasses of AdapterView and they can be populated
by binding them to an Adapter, which retrieves data from an external source and
creates a View that represents each data entry.

Android provides several subclasses of Adapter that are useful for retrieving different
kinds of data and building views for an AdapterView (i.e. ListView or GridView). The
common adapters are ArrayAdapter,Base
Adapter, CursorAdapter, SimpleCursorAdapter,SpinnerAdapter and WrapperListAda
pter. We will see separate examples for both the adapters.

ListView Attributes

Following are the important attributes specific to GridView −

Sr.No Attribute & Description

1 android:id :: This is the ID which uniquely identifies the layout.

2 android:divider :: This is drawable or color to draw between list items.

3 android:dividerHeight ::This specifies height of the divider. This could be in
px, dp, sp, in, or mm.

4 android:entries ::Specifies the reference to an array resource that will
populate the ListView.

5 android:footerDividersEnabled :: When set to false, the ListView will not draw
the divider before each footer view. The default value is true.

6 android:headerDividersEnabled :: When set to false, the ListView will not
draw the divider after each header view. The default value is true.

ArrayAdapter

We can use this adapter when our data source is an array. By default, ArrayAdapter
creates a view for each array item by calling toString() on each item and placing the
contents in a TextView. Consider we have an array of strings we want to display in a
ListView, initialize a new ArrayAdapter using a constructor to specify the layout for
each string and the string array −

ArrayAdapter adapter = new ArrayAdapter<String>(this,R.layout.ListView,StringArray);

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 86

Here are arguments for this constructor −
• First argument this is the application context. Most of the case, keep it this.
• Second argument will be layout defined in XML file and having TextView for

each string in the array.
• Final argument is an array of strings which will be populated in the text view.

Once we have array adapter created, then simply call setAdapter() on
your ListView object as follows −

ListView listView = (ListView) findViewById(R.id.listview);
listView.setAdapter(adapter);

we will define list view under res/layout directory in an XML file. For our example we
are going to using activity_main.xml file.
Example

Following is the example which will take through simple steps to show how to create
our own Android application using ListView. Follow the following steps to modify the
Android application we created in Hello World Example chapter −

Step Description

1 We will use Android Studio IDE to create an Android application and name it
as ListDisplay under a package com.example.ListDisplay as explained in
the Hello World Example chapter.

2 Modify the default content of res/layout/activity_main.xml file to include
ListView content with the self explanatory attributes.

3 No need to change string.xml, Android studio takes care of default string
constants.

4 Create a Text View file res/layout/activity_listview.xml. This file will have
setting to display all the list items. So you can customize its fonts, padding,
color etc. using this file.

6 Run the application to launch Android emulator and verify the result of the
changes done in the application.

Following is the content of the modified main activity
file src/com.example.ListDisplay/ListDisplay.java. This file can include each of the
fundamental life cycle methods.

package com.example.ListDisplay;
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.widget.ArrayAdapter;
import android.widget.ListView;

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 87

public class ListDisplay extends Activity {
 // Array of strings...
 String[] mobileArray = {"Android","IPhone","WindowsMobile","Blackberry",
 "WebOS","Ubuntu","Windows7","Max OS X"};
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 ArrayAdapter adapter = new ArrayAdapter<String>(this,
 R.layout.activity_listview, mobileArray);
 ListView listView = (ListView) findViewById(R.id.mobile_list);
 listView.setAdapter(adapter);
 }
}

Following will be the content of res/layout/activity_main.xml file −

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".ListActivity" >

 <ListView
 android:id="@+id/mobile_list"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >
 </ListView>

</LinearLayout>

Following will be the content of res/values/strings.xml to define two new constants −

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">ListDisplay</string>
 <string name="action_settings">Settings</string>
</resources>

Following will be the content of res/layout/activity_listview.xml file −

<?xml version="1.0" encoding="utf-8"?>
<!-- Single List Item Design -->

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/label"

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 88

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dip"
 android:textSize="16dip"
 android:textStyle="bold" >
</TextView>

Let's try to run our modified Hello World! application we just modified. I assume we
had created our AVD while doing environment set-up. To run the app from Android
studio, open one of our project's activity files and click Run icon from the tool bar.
Android studio installs the app on our AVD and starts it and if everything is fine with
our set-up and application, it will display following Emulator window −

Q2. WRITE ABOUT ANDROID LISTVIEW CONTROL OR HOW A SCROLLABLE LIST CAN BE
CREATED USING ADAPTER CONTROL.EXPLAIN WITH AN EXAMPLE?

Adapters

Android provides a framework of adapters (also known as data adapters) that are
used to provide a data source for displaying content in the form of choices in selection
widgets; that is, they help create child elements for the selection widgets. The data
source refers to the content, including elements in arrays and data in database tables.
The Adapters serve two purposes. First, they provide the data source for a selection
widget, and second, they convert individual elements of data into specific Viewsto be
displayed inside the selection widget. The second purpose is important, as it casts the
data to suit the selection widget environment, overriding its default behavior, and also
enables us to format the data in the available formats. Android provides many basic
Adapters such as ListAdapter,ArrayAdapter, and CursorAdapter. We can also create our
own Adapter.

Populating ListView Through the ArrayAdapter

The ArrayAdapter is one of the adapters provided by Android that provides data
sources (child elements) to selection widgets and also casts the data into specific
view(s) to be displayed inside the selection widgets. In this section, we learn to create

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 89

an ArrayAdapter and use it to populate theListView control. An ArrayAdapter can be
created through string resource, as well as through string arrays defined in Java code.

Create a new Android project called ListViewDemo1. Again, in this application, we use
two controls,ListView and TextView, where ListView displays the items assigned to
it through ArrayAdapterand the TextView displays the item that is selected by the user
from the ListView. Define the two controls by writing the code shown in Listing 5.4 into
the layout fileactivity_list_view_demo1.xml.

Listing 5.4. The Layout File activity_list_view_demo1.xml After Adding
the ListView andTextView Controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 <ListView
 android:id="@+id/fruits_list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false"/>
 <TextView
 android:id="@+id/selectedopt"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Next, we need to write code into the Java activity file ListViewDemo1Activity.java
to serve the following purposes:
• Create an ArrayAdapter through a string array and assign it to the ListView for
displaying items
• Display the item selected from the ListView in the TextView
The code written into the activity file ListViewDemo1Activity.java is shown in Listing
5.5.

Listing 5.5. Code Written into the Java Activity File ListViewDemo1Activity.java

package com.androidunleashed.listviewdemo1;
import android.app.Activity;
import android.os.Bundle;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.TextView;
import android.widget.ListView;
import android.widget.ArrayAdapter;

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05lis04
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05lis05
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05lis05

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 90

import android.widget.AdapterView;
import android.view.View;

public class ListViewDemo1Activity extends Activity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_list_view_demo1);
 final String[] fruits={"Apple", "Mango", "Orange", "Grapes", "Banana"};
 final TextView selectedOpt=(TextView)findViewById(R.id.selectedopt);
 ListView fruitsList = (ListView)findViewById(R.id.fruits_list);
 final ArrayAdapter<String> arrayAdpt= new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, fruits);
 fruitsList.setAdapter(arrayAdpt);
 fruitsList.setOnItemClickListener(new OnItemClickListener(){

 public void onItemClick(AdapterView<?> parent, View v, int position,long id){
 selectedOpt.setText("You have selected "+fruits[position]);
 }
 });
 }
}

An ArrayAdapter is the simplest of the adapters and acts as the data source for
the selection widgetsListView, GridView, and so on. An ArrayAdapter makes use of
the TextView control to represent the child Views in a View. In the code shown
in Listing 5.5, an ArrayAdapter is created through the following code:

ArrayAdapter<String> arrayadpt=new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_1, fruits);

This constructor creates an ArrayAdapter called arrayAdpt that can display the
elements of the specified array, fruits, via the TextView control.
The ArrayAdapter constructor consists of the following:
• this (the current context)—As the Activity is an extension of the Context class, we use
the current instance as the context.
• android.R.layout.simple_list_item_1—Points to a TextView defined by the Android
SDK that will be used for displaying each item in the ListView. The elements of the array
that is specified next needs to be wrapped or cast in a view before being assigned to
any selection widget for display. So, theandroid.R.layout.simple_list_item_1 simply
turns the strings defined in the string array into a TextView for displaying them in
a ListView.
• array—The data source—an array of strings for the ListView.

We can see that the ListView and TextView controls from the layout files are
accessed and mapped to the objects fruitsList and selectedOpt, respectively.
The arrayAdpt ArrayAdaptercontaining the elements of the fruits array

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05lis05

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 91

in TextView form is assigned to the ListView control for displaying choices to the user.
The OnItemClickListener interface is implemented via an anonymous class that
implements a callback method, onItemClick(). The reference of an anonymous class is
passed to the fruitsList ListView to invoke the callback methodonItemClick() when any
of the items in ListView is clicked. In the onItemClick() method, the item selected in
the ListView is displayed via the TextView control selectedOpt. When we run the
application, the list of items is displayed via ListView, and the item selected from
the ListView is displayed via the TextView control, as shown in Figure 5.2.

Figure 5.2. Options displayed through Java code in the ListView control and the
selected option from ListView displayed through the TextView control

Now that we understand how to create a ListView through an Activity base class,
let’s createListView by extending the ListActivity class.

Q3. WRITE ABOUT ANDROID SPINNER CONTROL OR HOW A DROP-DOWN LIST CAN
BE CREATED USING SPINNER CONTROL.EXPLAIN WITH AN EXAMPLE?

USING THE SPINNER CONTROL

Android Spinner is like the combox box of AWT or Swing. It can be used to display the
multiple options to the user in which only one item can be selected by the user.Android
spinner is like the drop down menu with multiple values from which the end user can select

only one value.

Android spinner is associated with AdapterView. So you need to use one of the adapter
classes with spinner.

Android Spinner class is the subclass of AsbSpinner class.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig02

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 92

Android Spinner Example
activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com

/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="example.javatpoint.com.spinner.MainActivity">

 <Spinner

 android:id="@+id/spinner"

 android:layout_width="149dp"

 android:layout_height="40dp"

 android:layout_marginBottom="8dp"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="8dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.502"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="0.498" />

 </android.support.constraint.ConstraintLayout>

MainActivity.java

package example.javatpoint.com.spinner;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Spinner;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity implements

 AdapterView.OnItemSelectedListener {

 String[] country = { "India", "USA", "China", "Japan", "Other"};

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 //Getting the instance of Spinner and applying OnItemSelectedListener on it

 Spinner spin = (Spinner) findViewById(R.id.spinner);

 spin.setOnItemSelectedListener(this);

 ArrayAdapter aa = new ArrayAdapter(this,android.R.layout.simple_spinner_item,country);

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 93

 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

 spin.setAdapter(aa);

 }

 //Performing action onItemSelected and onNothing selected

 public void onItemSelected(AdapterView<?> arg0, View arg1, int position, long id) {

 Toast.makeText(getApplicationContext(),country[position] , Toast.LENGTH_LONG).show();

 }

 public void onNothingSelected(AdapterView<?> arg0) {

 // TODO Auto-generated method stub

 }

}

Output:

Q4. WRITE ABOUT ANDROID SPINNER CONTROL USING ARRAY ADAPTER? OR HOW A
DROP-DOWN LIST CAN BE CREATED USING SPINNER CONTROL THROUGH ARRAY
ADAPTER.EXPLAIN WITH AN EXAMPLE?

Spinners provide a quick way to select one value from a set. In the default state, a spinner
shows its currently selected value. Touching the spinner displays a dropdown menu with all
other available values, from which the user can select a new one.

We can add a spinner to layout with the Spinner object. We should usually do so in XML

layout with a <Spinner> element.

 For example:

https://developer.android.com/reference/android/widget/Spinner

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 94

<Spinner

 android:id="@+id/planets_spinner"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

To populate the spinner with a list of choices, you then need to specify a SpinnerAdapter in

your Activity or Fragment source code.

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com

/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="example.javatpoint.com.spinner.MainActivity">

 <Spinner

 android:id="@+id/spinner"

 android:layout_width="149dp"

 android:layout_height="40dp"

 android:layout_marginBottom="8dp"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="8dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.502"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintVertical_bias="0.498" />

 </android.support.constraint.ConstraintLayout>

MainActivity.java

package example.javatpoint.com.spinner;

 import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Spinner;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity implements

 AdapterView.OnItemSelectedListener {

 String[] country = { "India", "USA", "China", "Japan", "Other"};

 protected void onCreate(Bundle savedInstanceState) {

https://developer.android.com/reference/android/widget/SpinnerAdapter
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Fragment

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 95

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 //Getting the instance of Spinner and applying OnItemSelectedListener on it

 Spinner spin = (Spinner) findViewById(R.id.spinner);

 spin.setOnItemSelectedListener(this);

 //Creating the ArrayAdapter instance having the country list

 ArrayAdapter aa = new ArrayAdapter(this,android.R.layout.simple_spinner_item,country);

 aa.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

 //Setting the ArrayAdapter data on the Spinner

 spin.setAdapter(aa);

 }

 //Performing action onItemSelected and onNothing selected

 public void onItemSelected(AdapterView<?> arg0, View arg1, int position, long id) {

 Toast.makeText(getApplicationContext(),country[position] , Toast.LENGTH_LONG).show();

 }

 public void onNothingSelected(AdapterView<?> arg0) {

 // TODO Auto-generated method stub

 }

}

Output:

Q5. WRITE ABOUT ANDROID GRID-VIEW CONTROL OR HOW A TEXT OR IMAGE CAN
BE SHOWN IN GRID VIEW.EXPLAIN WITH AN EXAMPLE?
USING THE GRIDVIEW CONTROL

The GridView control is a ViewGroup used to display text and image data in the
form of a rectangular, scrollable grid. To display data in the grid, we first define
a GridView control in the XML layout, and then bind the data that we want to be
displayed to it using the ArrayAdapter.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 96

Android GridView shows items in two-dimensional scrolling grid (rows &
columns) and the grid items are not necessarily predetermined but they automatically
inserted to the layout using a ListAdapter

As the name suggests, ViewGroup is a view that contains other views known as child
views. The ViewGroup class is a base class for layout managers that are used to
contain and arrange several views. ListView, GridView, and other container controls
are good examples of ViewGroups.

Let’s create a new Android project called GridViewApp. In this we display certain

strings arranged in a rectangular grid. When a user selects any of the strings, its name is
displayed. That is, we require two controls in this application: a GridView control for
arranging strings and a TextViewcontrol for displaying the string selected by the user.

GridView Attributes

Following are the important attributes specific to GridView −

Different attributes used in GridView.
The number of rows displayed through GridView is dependent on the number of

elements supplied by the attached adapter. The size and number of columns is
controlled through the following attributes:
• android:numColumns—Defines the number of columns. If we supply a
value, auto_fit, Android computes the number of columns based on available space.
• android:verticalSpacing and android:horizontalSpacing—Define the amount of
whitespace between the items in the grid.

• android:columnWidth—Defines the width of each column.

• android:stretchMode—The attribute determines whether the column can stretch or
expand to take up the available space. The valid values for this attribute are

• none—Does not allow columns to stretch or expand

• columnWidth—Makes the columns take up all available space

• spacingWidth—Makes the whitespace between columns take up all available space

File: activity_main.xml

<GridView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/gridView1"

 android:numColumns="auto_fit"

 android:gravity="center"

 android:columnWidth="50dp"

 android:stretchMode="columnWidth"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 </GridView>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 97

MainActivity.java

package com.example.gridview;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import android.widget.ArrayAdapter;

import android.widget.GridView;

import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends Activity {

 GridView gridView;

 static final String[] numbers = new String[] {

 "1", "2", "3", "4", "5",

 "6", "7", "8", "9", "10",};

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 gridView = (GridView) findViewById(R.id.gridView1);

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 android.R.layout.simple_list_item_1, numbers);

 gridView.setAdapter(adapter);

 gridView.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView<?> parent, View view, int position,long id) {

 Toast.makeText(getApplicationContext(),((TextView) view).getText(), Toast.LENGTH_

LONG).show();

 }

 });

 }

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is present.

 getMenuInflater().inflate(R.menu.activity_main, menu);

 return true;

 }

}

Q6. WRITE ABOUT ANDROID GRID-VIEW CONTROL OR HOW IMAGES CAN BE
DISPLAYED IN GRID VIEW.EXPLAIN WITH AN EXAMPLE?

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 98

Displaying Images in GridView

To display content in the GridView control, we use Adapters, which provide the
content to display to the controls. The content can be fetched from the sources such as
arrays, databases, or other data sources.

Let’s create a new application called GridImageApp. Assuming the image filenames that
we want to display through the GridView control
are prod1.png, prod2.png, prod3.png, prod4.png, andprod5.png, copy them into the
four res/drawable folders. Our project in the Package Explorerwindow appears as
shown.

The Package Explorer window showing the images copied to theres/drawable folders

In this application, we want a message to be displayed showing the image
number of the picture displayed via the GridView control. Our application is therefore
going to have two controls: aTextView control for displaying the selected image
number and a GridView control for displaying images in a grid. After we add
the TextView and GridView controls,activity_grid_image_app.xml appears .

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 99

The Layout File activity_grid_image_app.xml After Adding
the TextView andGridView Controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView android:id="@+id/selectedopt"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="List of Products " />
 <GridView android:id="@+id/grid"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:verticalSpacing="2dip"
 android:horizontalSpacing="2dip"
 android:numColumns="auto_fit"
 android:columnWidth="100dip"
 android:stretchMode="columnWidth"
 android:gravity="center" />
</LinearLayout>

To display images in the GridView control and also tell us which image is selected
by the user, write the code into the activity file GridImageAppActivity.java.
Code Written into the Java Activity File GridImageAppActivity.java
package com.androidunleashed.gridimageapp;

import android.app.Activity;
import android.os.Bundle;
import android.widget.GridView;
import android.view.View;
import android.widget.ImageView;

import android.content.Context;
import android.widget.BaseAdapter;
import android.widget.AdapterView;
import android.widget.TextView;
import android.view.ViewGroup;

public class GridImageAppActivity extends Activity implements
 AdapterView.OnItemClickListener {
 TextView selectedOpt;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_grid_image_app);
 selectedOpt=(TextView) findViewById(R.id.selectedopt);
 GridView g=(GridView) findViewById(R.id.grid);
 g.setAdapter(new ImageAdapter(this));
 g.setOnItemClickListener(this);
 }
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 int p=position+1;

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 100

 selectedOpt.setText("You have selected the image number "+p);
 }
 public class ImageAdapter extends BaseAdapter {
 private Context contxt;
 Integer[] images = {
 R.drawable.prod1,
 R.drawable.prod2,
 R.drawable.prod3,
 R.drawable.prod4,
 R.drawable.prod5
 };
 public ImageAdapter(Context c) {
 contxt = c;
 }
 public int getCount() {
 return images.length;
 }
 public Object getItem(int position) {
 return position;
 }
 public long getItemId(int position) {
 return position;
 }
 public View getView(int position, View convertView, ViewGroup parent) {
 ImageView imageView = new ImageView(contxt);
 imageView.setImageResource(images[position]);
 imageView.setLayoutParams(new GridView.LayoutParams(100, 120));
 return imageView;
 } } }
The TextView and GridView controls defined in activity_grid_image_app.xml with the
IDsselectedopt and grid, respectively, are fetched and mapped to the
objects selectedOpt and g, respectively.

Images displayed in a GridView control (left), and the selected image number
displayed via a TextView (right)

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 101

Q7. WRITE ABOUT ANDROID VIEW PAGER CONTROL OR HOW A IMAGE GALLERY
CAN BE SHOWN USING VIEW PAGERCONTROL.EXPLAIN WITH AN EXAMPLE?

CREATING AN IMAGE GALLERY USING THE VIEWPAGER CONTROL

The ViewPager control (android.support.v4.view.ViewPager) helps in showing
data, which may be text, image, and so on, in the form of pages with the horizontal
swiping behavior. That is, the pages of data being displayed can be flipped left and
right. To identify and to keep track of the pages being displayed through ViewPager, a
key object is associated with each of them. The ViewPagerneeds a data adapter to
define and load the data for each page.The data adapter that is used to define the
data for each page to be displayed through the ViewPager control is the PagerAdapter
(android.support.v4.view.PagerAdapter) class.
While implementing the PagerAdapter, we must override the following methods:
• instantiateItem(View container, int position)—Used for creating and instantiating
the page and adding it to the container. Using the LayoutInflater service, the method
also inflates the appropriate layout and adds it to the specified container.

Syntax:

public ObjectinstantiateItem(View container, int position)
• container—Represents the container in which the page has to be displayed.

• position—Represents the position of the page to be instantiated.

• destroyItem(View container, int position, Object object)—Used for removing the
page of the specified position from the container.

• isViewFromObject(View view, Object object)—Determines whether the specified
page is associated with a specific key object.

• getCount()—Defines the size of the paging range, that is, the count of the number of
the pages.

The position of the pages is zero based by default; that is, the first page to the
left is in position 0, the next page to the right is position 1, and so on. We can also set
the initial position of the pager through the setCurrentItem() method.
To listen to the change in state of the selected page, we need to define a class that
extendsSimpleOnPageChangeListener. When a page from the ViewPager is selected,
the callback method onPageSelected() is called.

Lets when an image is selected from the gallery, the selected image number is
displayed. Let’s name this application ViewPagerApp. The first step is to copy the
images that we want to display through the gallery into the res/drawable folders of
the application. Assuming we have the files
named prod1.png, prod2.png, prod3.png, prod4.png, and prod5.png on our local disk
drive, copy them into the res/drawable folders of our project.

After copying the images, we define two controls, TextView and ViewPager, in
the layout fileactivity_view_pager_app.xml. The TextView control displays a message
with the image number selected from the image gallery. The ViewPager control

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 102

displays the images in a horizontally scrolling list. After we define
the TextView and ViewPager control,activity_view_pager_app.xml appears .

The Layout File activity_view_pager_app.xml After Defining
the TextViewand ViewPager Controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView android:id="@+id/selectedopt"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Image Gallery "
 android:gravity="center"
 android:textStyle="bold" />
 <android.support.v4.view.ViewPager
 android:id="@+id/viewpager"
 android:layout_width="match_parent"
 android:layout_height="100dip"
 android:layout_marginTop="25dip" />
</LinearLayout>

We can see that the TextView and ViewPager controls are assigned the
IDs selectedopt andviewpager, respectively. To make the image gallery appear at a
distance of 25dip from the top of the LinearLayout container,
the android:layout_marginTop attribute is set to 25dip. To constrain the height of the
images being displayed to 100dip, the android:layout_height is set to 100dip.

To display images in the ViewPager control and to display the image number selected
by the user, write the code into the activity file ViewPagerAppActivity.java.

Code Written into the Java Activity File ViewPagerAppActivity.java

package com.androidunleashed.viewpagerapp;

import android.os.Bundle;
import android.app.Activity;
import android.support.v4.view.ViewPager;
import android.support.v4.view.PagerAdapter;

import android.widget.TextView;
import android.view.View;
import android.widget.ImageView;

import android.support.v4.view.ViewPager.SimpleOnPageChangeListener;

public class ViewPagerAppActivity extends Activity {
 public TextView selectedOpt;

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 103

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_view_pager_app);
 selectedOpt=(TextView) findViewById(R.id.selectedopt);
 ViewPager viewPager = (ViewPager) findViewById(R.id.viewpager);
 viewPager.setAdapter(new ImageAdapter());
 viewPager.setOnPageChangeListener(new PageListener());
 }
 public class ImageAdapter extends PagerAdapter {
 Integer[] images = {
 R.drawable.prod1,
 R.drawable.prod2,
 R.drawable.prod3,
 R.drawable.prod4,
 R.drawable.prod5
 };
 public Object instantiateItem(View container, int position) {
 ImageView view = new ImageView(ViewPagerAppActivity.this);
 view.setImageResource(images[position]);
 ((ViewPager) container).addView(view, 0);
 return view;
 }

 public int getCount() {
 return images.length;
 }

 public void destroyItem(View arg0, int arg1, Object arg2) {
 ((ViewPager) arg0).removeView((View) arg2);
 }

 public boolean isViewFromObject(View arg0, Object arg1) {
 return arg0 == ((View) arg1);
 }
 } private class PageListener extends SimpleOnPageChangeListener{
 public void onPageSelected(int position) {
 selectedOpt.setText("You have selected the page number "+position);
 }
 } }
The TextView and ViewPager controls defined in activity_view_pager_app.xml with
the IDsselectedopt and viewpager, respectively, are fetched and mapped to the
respective objectsselectedOpt and viewPager.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 104

Image displayed in the gallery control on application startup (left), hidden images
displayed on scrolling the gallery (middle), and the selected image number
displayed via a TextView (right)

Q8. Explain HOW AND WHAT IS THE USE OF THE DEBUGGING TOOL? OR EXPLAIN
DALVIK DEBUG MONITOR SERVICE(DDMS)?

USING THE DEBUGGING TOOL: DALVIK DEBUG MONITOR SERVICE (DDMS)

The DDMS is a powerful debugging tool that is downloaded as part of the Android
SDK. DDMS can be run either by selecting the DDMS icon on the top-right corner of
the Eclipse IDE or by selecting theWindow, Open Perspective, DDMS option.
When we run DDMS, it automatically connects to the attached Android device or
any running emulator.DDMS helps with a variety of tasks, including

• Finding bugs in applications running either on an emulator or on the physical
device.

• Providing several services such as port forwarding, on-device screen capture,
incoming call, SMS, and location data spoofing.

• Showing the status of active processes, viewing the stack and heap, viewing the
status of active threads, and exploring the file system of any active emulator.

• Providing the logs generated by LogCat, so we can see log messages about the
state of the application and the device. LogCat displays the line number on which
the error(s) occurred.

• Simulating different types of networks, such as GPRS and EDGE.

Figure 5.11 shows the DDMS tool window.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig11

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 105

Figure 5.11. The DDMS tool window

In the upper-left pane of the DDMS window, we see a Devices tab that
displays the list of Android devices connected to your PC, along with the
running AVDs (if any). The VMs associated with each device or AVD also is displayed.
Selecting a VM displays its information in the right pane. In theDevices tab, you see
some icons, described here:
• Debug—Used to debug the selected process.
• Update Heap—Enables heap information of the process. After clicking this icon,
use the Heap icon on the right pane to get heap information.
• Dump HPROF file—Shows the HPROF file that can be used for detecting memory
leaks.
• Cause GC—Invokes Garbage Collection.
• Update Threads—Enables fetching the thread information of the selected process.
After clicking this icon, we need to click the Threads icon in the right pane to display
information about the threads that are created and destroyed in the selected
process.
• Start Method Profiling—Used to find the number of times different methods are
called in an application and the time consumed in each of them. Click the Start

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 106

Method Profiling icon, interact with the application, and click the Stop Method
Profiling icon to obtain information related to the different methods called in the
application.
• Stop Process—Stops the selected process.
• Screen Capture—Captures our device/emulator screen.

 If the application is running and its output is being displayed through the
device/emulator, clicking the Screen Capture icon displays theDevice Screen
Capture dialog box, as shown in Figure 5.12 (left). The text, Capturing, tells us that
the output of the application or image being displayed in the device/emulator is in
the process of being captured. Once the image is captured, it is displayed as shown
in Figure 5.12 (right).

Figure 5.12. Image shown in the device/emulator is being captured (left), and the
captured image of the device/emulator displayed (right)

The meaning of the buttons shown at the top in the Device Screen Capture dialog
box is shown here:
• Refresh—Updates the captured image.
• Rotate—With each click of this button, the captured image rotates 90 degrees in
the counterclockwise direction.
• Save—Saves the captured image as a .png file.
• Copy—Copies the captured image to the clipboard.
• Done—Closes the Device Screen Capture dialog.
Back to DDMS, on the right pane (refer to Figure 5.11), we find the following tabs:

• Threads—Displays information about the threads within each process, as shown
in Figure 5.13 (left). The following information about the threads is displayed:

• Thread ID—Displays the unique ID assigned to each thread
• Status—Displays the current status of the thread—whether it is in running,
sleeping, starting, waiting, native, monitor, or zombie state
• utime—Indicates the cumulative time spent executing user code
• stime—Indicates the cumulative time spent executing system code

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig12
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig12
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig11
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig13

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 107

• Name—Displays the name of the thread
• Heap—Displays the heap information of the process (provided the Update
Heap button from theDevices tab has been clicked). Select the Cause GC button to
begin the garbage collection process. The object types and the size of memory
allocated to them are displayed. After we select an object type, a bar graph is
displayed, showing the number of objects allocated for a particular memory size in
bytes (see Figure 5.13—right).

Figure 5.13. The Threads tab, displaying information about running threads (left),
and the Heap tab displaying heap information of the current process (right)

• Allocation Tracker—Tracks the objects allocated to an application.

• Network Statistics—Helps us in getting information regarding network usage of
our application, that is, when our app made network requests, speed of data
transfer—and other related information.

• File Explorer—Displays the file system on the device.

We can view and delete files on the device/emulator through this tab. We can even
push or pull files from the device using the two icons, Pull a file from the
device and Push a file onto the device, that are shown at the top. To copy a file from
the device, select the file in the File Explorer and click the Pull a file from the
device button. The Get Device File dialog box opens up, prompting us to specify the
path and filename where we want to store the pulled device file. Similarly, to copy a
file to the device, click the Push file onto the device button in theFile Explorer tab.
.

Right of the File Explorer tab is the Emulator Control tab that can be used to
simulate incoming phone calls, SMS messages, or GPS coordinates. To simulate an
incoming phone call, select the Voice option, provide the incoming phone number,
and click the Call button, as shown in Figure 5.15 (left). In the emulator, an incoming
call appears, prompting the user to answer the call in Figure 5.15 (right). The

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig13
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig15
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig15

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 108

incoming call can be ended either by clicking the End button in the emulator or by
clicking the Hang Up button in the Emulator Control tab.

Figure 5.15. Simulating an incoming phone call through the Emulator Control tab
(left), and an incoming phone call appears on the Android emulator (right).

To simulate an SMS message, select the SMS option in the Emulator
Control tab, provide the phone number, write the message, and click
the Send button, as shown in Figure 5.16 (left). In the emulator, an incoming SMS
notification appears at the top (see Figure 5.16—right). We can simulate GPS
coordinates (longitude and latitude values) manually, via the GPX file or KML file
through theEmulator Control tab. Remember, only GPX 1.1 files are supported.

Figure 5.16. Simulating SMS via the Emulator Control tab (left), and incoming SMS
notification displayed at the top in the Android emulator (right)

The bottom pane of the DDMS is used to show the log of the processes on the
selected device or AVD. The pane is meant for performing debugging and tracing
tasks. The LogCat tab shows all messages of the device, including exceptions and
those placed in the application to see the intermediate results. We can also set up
filters to watch filtered log information. The Console tab displays the messages
related to the starting of the activity.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig16
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig16

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 109

Q9. WRITE ABOUT ANDROID DEBUGGING APPLICATIONS? OR EXPLAIN MOST
CRITICAL TASK IN SOFTWARE DEVELOPMENT DEBUGGING?

The most critical and essential task in software development—debugging.

DEBUGGING APPLICATIONS

The two most common ways of debugging an application and finding out what
went wrong are placing breakpoints and displaying log messages.

Placing Breakpoints in an Application

Breakpoints are used to temporarily pause the execution of the application,
allowing us to examine the content of variables and objects. To place a breakpoint in
an application, select the line of code where you want to place a breakpoint and
either press Ctrl+Shift+B, select Run, Toggle Breakpoint, or double-click in the
marker bar to the left of the line in the Eclipse code editor.

We can place as many breakpoints as we want in our application. The
statements just perform simple multiplication and display log messages. Only the
statements in bold are newly added; the rest of the code is the same.

Code Added to the Java Activity File HelloWorldAppActivity.java

package com.androidunleashed.helloworldapp;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
import android.util.Log;

public class HelloWorldAppActivity extends Activity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_hello_world_app);
 TextView mesg = (TextView)findViewById(R.id.message);
 mesg.setText("Hello World!");
 int a,b,c;
 a=10;
 b=5;
 c=a*b;
 Log.v("CheckValue1", "a = " + a);
 Log.v("CheckValue2", "b = " + b);
 Log.v("CheckValue3", "c = " + c);
 Log.i("InfoTag", "Program is working correctly up till here");
 Log.e("ErrorTag", "Error--Some error has occurred here");

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 110

 }
}

Let’s place breakpoints at the following three statements in the activity file:

c=a*b;
Log.v("CheckValue1", "a = " + a);
Log.v("CheckValue3", "c = " + c);

When we place these breakpoints, a blue dot appears on the left, indicating that the
breakpoints were successfully inserted (see Figure 5.17).

Figure 5.17.Activity file displaying the statements where breakpoints are inserted
To stop execution at the breakpoints, don’t run the application; instead debug

it by either pressing F11, selecting Run, Debug, or right-clicking the project
in Package Explorer and selecting Debug As,Android Application. During debugging,
the application pauses when the first breakpoint is reached. At the breakpoints, we
can highlight variables to see their values and execute certain expressions. When the
application reaches a breakpoint for the first time, a window pops up asking
whether we want to switch to the Debug perspective, as shown in Figure 5.18. To
prevent this window from appearing again, check the Remember my decision check
box and click Yes.

Figure 5.18. Dialog prompting to switch to the Debug perspective

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig17
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig18

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 111

USING THE DEBUG PERSPECTIVE
When the application switches from the Java to the Debug perspective, we

see the callback stack, console, code view, and variables, as shown in Figure 5.19.

Figure 5.19. The Debug perspective window showing different panes

The following panes are visible by default in Debug perspective:
• Debug—On the top left, this pane displays the application being debugged, along
with its currently running threads.
• Variables—Displays values of the variables at the specific breakpoints.
• Breakpoints—Lists all the breakpoints inserted in the code.
• Editor—At the middle left, this pane displays the application code pointing to the
breakpoint where the application is currently suspended.
• Outline—At the center right, this pane lists the imports, classes, methods, and
variables used in the application. When we select an item in the Outline pane, the
matching source code in the Editorpane is highlighted.
• Console—At the bottom left, the pane displays the status of emulator/device
activity, such as the launching of activities.
• LogCat—At the bottom right, this pane displays the system log messages.

Debug Pane

The Debug pane displays debug session information in a tree hierarchy.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig19

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 112

Code Added to the Java Activity File HelloWorldAppActivity.java

package com.androidunleashed.helloworldapp;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
import android.util.Log;

public class HelloWorldAppActivity extends Activity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_hello_world_app);
 TextView mesg = (TextView)findViewById(R.id.message);
 mesg.setText("Hello World!");
 int a,b,c;
 a=10;
 b=5;
 c=a*b;
 callExcep();
 Log.v("CheckValue1", "a = " + a);
 Log.v("CheckValue2", "b = " + b);
 Log.v("CheckValue3", "c = " + c);
 Log.i("InfoTag", "Program is working correctly up till here");
 Log.e("ErrorTag", "Error--Some error has occurred here");
 }
 public void callExcep() {
 throw new RuntimeException("RuntimeException testing");
 }
}

We see that a method, callExcep(), that throws a RuntimeException is defined.
When we don’t insert Java Exception Breakpoint, if the application is run, it simply
crashes when the exception is thrown. To suspend the thread execution when the
exception occurs, select the Add a Java Exception Breakpoint button from
the Breakpoints pane. We can then examine the variables and logging messages that
might have thrown the exception. After we select the Java Exception
Breakpoint button, a dialog box showing all of the available exceptions is displayed,
as shown inFigure 5.25 (left).

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig25

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 113

Figure 5.25. Dialog box for adding a Java Exception Breakpoint (left), and
theBreakpoints pane showing the RuntimeException (right)

Type the name of the exception we want to catch or select it from the list.
Two check boxes are displayed at the bottom so we can choose whether we want to
suspend the thread execution oncaught or uncaught exceptions. Select Suspend on
caught exceptions to suspend the thread execution at locations where the exception
is thrown and is caught by a catch clause. Similarly, select Suspend on uncaught
exception if we want to suspend thread execution at locations where the exception
is thrown but is uncaught. Let’s select RuntimeException from the list of available
exceptions. Keep the two check boxes selected (by default) and select OK to add
anException Breakpoint to the application. An exception, RuntimeException caught
and uncaught, is added and displayed in the Breakpoints pane, as shown in Figure
5.25 (right). Now the thread is suspended on the statement that throws the
exception, allowing us to examine the variables and the LogCat logging pane to see
what went wrong.

Q10. Explain HOW INFORMATION IS FETCHED USING DIALOGS AND FRAGMENTS?
Displaying and Fetching Information Using Dialogs and Fragments

A dialog is a smaller window that pops up to interact with the user. It can
display important messages and can even prompt for some data. Once the
interaction with the dialog is over, the dialog disappears, allowing the user to
continue with the application. Fragments, as the name suggests, enable us to
fragment or divide our Activities into encapsulated reusable modules, each with its
own user interface, making our application suitable to different screen sizes. That is,
depending on the available screen size, we can add or remove fragments in our
application.

WHAT ARE DIALOGS?

We usually create a new activity or screen for interacting with users, but when
we want only a little information, or want to display an essential message, dialogs
are preferred. Dialogs are also used to guide users in providing requested

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig25
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch05.html#ch05fig25

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 114

information, confirming certain actions, and displaying warnings or error messages.
The following is an outline of different dialog window types provided by the Android
SDK:

• Dialog—The basic class for all dialog types.
• AlertDialog—A dialog with one, two, or three Button controls.
• CharacterPickerDialog—A dialog that enables you to select an accented character
associated with a regular character source.
• DatePickerDialog—A dialog that enables you to set and select a date with
a DatePicker control.
• ProgressDialog—A dialog that displays a ProgressBar control showing the progress
of a designated operation. We learned to work with the ProgressBar control
in Chapter 4, “Utilizing Resources and Media.”
• TimePickerDialog—A dialog that enables you to set and select a time with
a TimePicker control.
A dialog is created by creating an instance of the Dialog class. The Dialog class
creates a dialog in the form of a floating window containing messages and controls
for user interaction. In Android, the dialogs are called asynchronously; that is, the
dialogs are displayed and the main thread that invokes the dialogs returns and
continues executing the rest of the application. The rest of the code continues to
execute in the background and also allows users to simultaneously interact with the
dialog. That means the dialogs in Android are modal in nature. If the dialog is open,
users can interact only with the options and controls in the dialog until it is closed.
While the user interacts with the dialog, the parent activity resumes its normal
execution for efficiency.

Each dialog window is defined within the activity where it will be used. A dialog
window can be created once and displayed several times. It can also be updated
dynamically.

The following is a list of the Activity class dialog methods:

• showDialog()—Displays a dialog and creates a dialog if one does not exist. Each
dialog has a specialdialog identifier that is passed to this method as a parameter.

• onCreateDialog()—The callback method that executes when the dialog is created
for the first time. It returns the dialog of the specified type.

• onPrepareDialog()—The callback method used for updating a dialog.

• dismissDialog()—Closes the dialog whose dialog identifier is supplied to this
method. The dialog can be displayed again through the showDialog() method.
• removeDialog()—The dismissDialog() method doesn’t destroy a dialog. The
dismissed dialog can be redisplayed from the cache. If we do not want to display a
dialog, we can remove it from the activity dialog pool by passing its dialog
identifier to the removeDialog() method.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch04.html#ch04
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch04.html#ch04

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 115

The onCreateDialog() method is called only once while creating the dialog for
the first time, whereas the onPrepareDialog() method is called each time
the showDialog() method is called, allowing the activity to update the dialog before
displaying it to the user.

By overriding the onCreateDialog method, we specify dialogs that will be

created whenshowDialog() is called. Several dialog window types are available in the
Android SDK, such asAlertDialog, DatePickerDialog, and TimePickerDialog, that we
can readily use in an application. All the dialog windows are created by extending
the Dialog class.

AlertDialog

An AlertDialog is a popular method of getting feedback from the user. This
pop-up dialog remains there until closed by the user and hence is used for showing
critical messages that need immediate attention or to get essential feedback before
proceeding further.
The simplest way to construct an AlertDialog is to use the static inner
classAlertDialog.Builder that offers a series of methods to configure an AlertDialog.

This example creates a new AlertDialog.Builder object called alertDialog:

AlertDialog.Builder alertDialog = new AlertDialog.Builder(this);

In this example, this refers to the context, that is, the current activity created
here. We can add atitle, icon, and message to the alertDialog object that we want to
display in the dialog. We can define buttons and controls for user interaction to
display in the dialog. We can also register event listeners with the dialog buttons for
handling events. All these tasks can be easily accomplished through the methods
provided by the AlertDialog.Builder subclass.

Methods of the AlertDialog.Builder Subclass

The methods of the AlertDialog.Builder subclass that we can use to configure
the AlertDialogbox are
• setTitle() and setIcon()—For specifying the text and icon to appear in the title bar
of the dialog box.
• setMessage()—For displaying a text message in the dialog box.
• setPositiveButton(), setNeutralButton(), and setNegativeButton()—For
configuring the following three buttons:
• Positive button—Represents the OK button.
• Negative button—Represents the Cancel button.
• Neutral button—Represents a button to perform a function other
than OK or Cancel.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 116

Through these three methods, we can set the three buttons to appear in the dialog
and also define their location in the dialog box. We can also define the captions and
actions of these buttons.

Let’s create an Android application to see how AlertDialog is displayed. Name

the projectAlertDialogApp. In this, we want to display a Button control that, when
clicked, displays the AlertDialog. So, first we need to define a Button control in the
layout fileactivity_alert_dialog_app.xml, which appears as shown.

The Layout File activity_alert_dialog_app.xml After Adding the ButtonControl

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/click_btn"
 android:text="Click for Alert Dialog" />
</LinearLayout>

To display an AlertDialog, we use the AlertDialog.Builder subclass to create
a Builderobject. Thereafter, we configure the dialog with a title, message, and
buttons with the Builder object. We then define actions for the respective buttons, if
any. Finally, the dialog is built and shown on the screen through the Builder object.
To do all this, the code into theAlertDialogAppActivity.java Java activity file is as
shown in Listing 6.2.

Listing 6.2. Code Written into the Java Activity File AlertDialogAppActivity.java

package com.androidunleashed.alertdialogapp;
import android.app.Activity;
import android.os.Bundle;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.view.View;
import android.app.AlertDialog;
import android.content.DialogInterface;

public class AlertDialogAppActivity extends Activity implements OnClickListener {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis02

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 117

 setContentView(R.layout.activity_alert_dialog_app);
 Button b = (Button)this.findViewById(R.id.click_btn);
 b.setOnClickListener(this);
 }
 public void onClick(View v) {
 AlertDialog.Builder alertDialog = new AlertDialog.Builder(this);
 alertDialog.setTitle("Alert window");
 alertDialog.setIcon(R.drawable.ic_launcher);
 alertDialog.setMessage("This is an alert");
 alertDialog.setPositiveButton("OK", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int buttonId) {
 return;
 }
 });
 alertDialog.show();
 }
}

When click_btn is clicked, theonClick() callback method is executed.
In onClick() a Builder called alertDialog is created. To display the alert dialog on the
screen, we provide the Context—the current activity—to thebuilder object. We then
set the icon and title for the dialog box. The title and text of the dialog are set
to Alert window and This is an alert, respectively.

After running the application, we see a Button control with the caption Click

for Alert Dialog, as shown in Figure 6.1 (left). When we select the Button control,
an AlertDialog is displayed with the title Alert window showing the message This is
an alert, as shown in Figure 6.1 (right).

Figure 6.1. Button with the caption Click for Alert Dialog displayed on application
startup (left), and the AlertDialog appears on selecting the Button control (right)

Besides showing essential or critical messages to the user that require immediate
action, theAlertDialog can also be used for getting input from the user. Let’s see
how.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig01
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig01

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 118

Getting Input via the Dialog Box

We modify our current Android project AlertDialogApp to get input from the user.
We make the following changes to the application:
• Dynamically create an EditText control and set it as part of the AlertDialog to
prompt the user for input.
• Add a TextView control to the layout file to display the data entered by the user
in AlertDialog.
To make it more specific, our application asks the user to input a name
through AlertDialog, and when the user selects the OK button after entering a name,
a welcome message is displayed through theTextView control defined in the layout
file. We also add a Cancel button to the AlertDialog, allowing the user to cancel the
operation, which terminates the dialog.

We don’t have to defining the EditText control in the layout file, as it will be created
dynamically with Java code in the activity file. The only thing that we need to define
in main.xml is a TextView control that will be used for displaying a Welcome
message on the screen.

The code shown in Listing 6.3 is added to the layout file for defining
the TextView control. Only the code in bold is newly added.

Listing 6.3. The Layout File activity_alert_dialog_app.xml After Adding
the TextViewControl

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/click_btn"
 android:text="Click for Alert Dialog"/>
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/response"/>
</LinearLayout>

We can see that the newly added code defines a response TextView control in the
layout file. Next we add code to the Java Activity file AlertDialogAppActivity.java to
do the following tasks:

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis03

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 119

• Dynamically create an EditText control and set it as the content of the AlertDialog.
• Access the TextView control from the layout file main.xml and map it to
a TextView object.
• Fetch the name entered by the user in the EditText control and assign it to
the TextView object for displaying a welcome message.
• Register an event listener for the Cancel button. Recall that the purpose of
the Cancel button is to cancel the operation and terminate the AlertDialog.
To perform all these tasks, the code shown in Listing 6.4 is added
toAlertDialogAppActivity.java. Only the code in bold is newly added.

Listing 6.4. Code Written into the Java Activity File AlertDialogAppActivity.java

package com.androidunleashed.alertdialogapp;
import android.app.Activity;
import android.os.Bundle;
import android.view.View.OnClickListener;

import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

import android.view.View;
import android.app.AlertDialog;
import android.content.DialogInterface;

public class AlertDialogAppActivity extends Activity implements OnClickListener {
 TextView resp;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_alert_dialog_app);
 resp = (TextView)this.findViewById(R.id.response);
 Button b = (Button)this.findViewById(R.id.click_btn);
 b.setOnClickListener(this);
 }
 public void onClick(View v) {
 AlertDialog.Builder alertDialog = new AlertDialog.Builder(this);
 alertDialog.setTitle("Alert window");
 alertDialog.setIcon(R.drawable.ic_launcher);
 alertDialog.setMessage("Enter your name ");
 final EditText username = new EditText(this);
 alertDialog.setView(username);
 alertDialog.setPositiveButton("OK", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int buttonId) {
 String str = username.getText().toString();
 resp.setText("Welcome "+str+ "!");
 return;
 }
 });

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis04

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 120

 alertDialog.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int buttonId) {
 return;
 }
 });
 alertDialog.show();
 }
}

We can see here that the TextView control from the layout file is mapped to
the TextView objectresp. The message set in the AlertDialog is Enter your name. The
dynamically createdEditText control username is set to appear as content in
the AlertDialog, allowing users to enter a name. When a user selects the OK button after
entering a name, a Welcome message is displayed, along with the entered name via
the TextView object resp. No action is performed when Cancel is clicked; we simply
terminate the AlertDialog by returning back to the main activity.

After running the application, we see a Button control with the caption Click for Alert

Dialog. When clicked, it displays an AlertDialog with the title Alert window that shows the
messageEnter your name. There is also an EditText control prompting the user to enter a
name, as shown in Figure 6.2 (left).

After the user enters a name in EditText and click the OK button, a welcome message

is displayed via the TextView control, as shown in Figure 6.2 (right).

Figure 6.2. Getting input from the user via the AlertDialog (left), and the data entered by
the user displayed through TextView (right)

Q9. Explain HOW DATEPICKER DIALOG CAN BE FUNCTIONED. EXPLAIN WITH EXAMPLE?

DatePickerDialog

DatePickerDialog is used to see and modify the date. We can supply the day, month,
and year values to its constructor to initialize the date initially displayed through this dialog.
The constructor includes a callback listener to inform the current Context when the date
has been set or changed. To initialize the current date to the dialog, we use

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig02
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig02

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 121

a Calendar instance. To try DatePickerDialog, let’s create a new Android project and name
it DatePickerApp. The application contains a TextView and a Button control. When clicked,
the Button control displays the DatePickerDialog, and theTextView control displays the date
set by the user.
To define the Button and TextView control, let’s write the code shown in Listing 6.5 into the
layout file activity_date_picker_app.xml.

Listing 6.5. The Layout File activity_date_picker_app.xml After Adding
the TextView andButton Controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/datevw"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <Button android:id="@+id/date_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Set the Date" />
</LinearLayout>

We can see that a TextView and a Button control with the
IDs datevw and date_button, respectively, are defined in the layout file. The caption Set the
Date is set to display in the Buttoncontrol.

To add action to the application, we need to write some Java code into the activity
fileDatePickerAppActivity.java. The code in the activity file does the following:
• Access the system’s current date through the Calendar instance.
• Display the current system date in the TextView control.
• Display the DatePickerDialog, initialized to display the current system date when
the Buttoncontrol is clicked.
• Access the date set by the user in the DatePickerDialog when its Set button is clicked and
display it through the TextView control.

To perform all the preceding tasks, the code shown in Listing 6.6 is written into the Java
activity fileDatePickerAppActivity.java.
Listing 6.6. Code Written into the Java Activity File DatePickerAppActivity.java
package com.androidunleashed.datepickerapp;

import android.app.Activity;
import android.os.Bundle;

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis05
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis06

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 122

import android.widget.TextView;
import android.widget.Button;
import java.util.Calendar;
import android.app.DatePickerDialog;
import android.view.View.OnClickListener;
import android.view.View;
import android.widget.DatePicker;

public class DatePickerAppActivity extends Activity {
 private TextView dispDate;
 private int yr, mon, dy;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_date_picker_app);
 dispDate = (TextView) findViewById(R.id.datevw);
 Button dateButton = (Button) findViewById(R.id.date_button);
 final Calendar c = Calendar.getInstance();
 yr = c.get(Calendar.YEAR);
 mon = c.get(Calendar.MONTH);
 dy = c.get(Calendar.DAY_OF_MONTH);
 dispDate.setText("Current date is: "+(mon+1)+"-"+dy+"-"+yr);
 dateButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 new DatePickerDialog(DatePickerAppActivity.this, dateListener, yr,
mon, dy).show();
 }
 });
 }

 private DatePickerDialog.OnDateSetListener dateListener = new
 DatePickerDialog.OnDateSetListener() {
 public void onDateSet(DatePicker view, int year, int monthOfYear, int dayOf-
Month){
 yr = year;
 mon = monthOfYear;
 dy = dayOfMonth;
 dispDate.setText("Current date is: "+(mon+1)+"-"+dy+"-"+yr);
 }
 };
}

When a user clicks a button, we want the DatePickerDialog to be invoked so a date
can be selected. A date_button Button is captured from the layout and mapped to
a Button object dateButton. A setOnClickListener event listener is associated with

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 123

the Button so that when it is clicked, the event handler, that is, the callback
method, onClick(), is invoked. In the onClick() method, a new instance of
a DatePickerDialog is created using the DatePickerDialog constructor and is displayed on
the screen.

We want to initialize the DatePickerDialog to today’s date, so we use
the Calendar class to set theDatePickerDialog control to today’s date each time the dialog is
shown. An instance of Calendaris then created, initially set to the current date. The current
year, month, and day are fetched from theCalendar instance and passed to
the DatePickerDialog constructor to initialize it to display the current date. The constructor
also includes a callback listener to inform the current Context when the date is set or
changed.

The DatePickerDialog provides a callback
listener, OnDateChangedListener orOnDateSetListener, that listens for when the user has
finished setting the date. This occurs when the user clicks the Set button in
the DatePickerDialog. The onDateSet() method is called when the date is set or changed,
and we use it to display the set date through the TextView.

Note that the month value is zero-based. January is considered month 0 and
December month 11. To display the correct month, the mon variable, which carries the
month number of the selected month, is incremented by 1 before being displayed through
the TextView.

After running the application, we see a Button control with the caption Set the
Date (see Figure 6.3—top left). When clicked, it displays a DatePickerDialog showing today’s
date, as shown inFigure 6.3 (top right). We can change the day, month, and year as desired
by scrolling them in an up or down direction (see Figure 6.3—bottom left). After we set the
date in the DatePickerDialog, when the Done button is clicked, the currently set date is
displayed via the TextView control, as shown inFigure 6.3 (bottom right).

Figure 6.3. A TextView displaying the current date with a Button control (top left); the DatePicker dialog after
clicking the Button control (top right); changing the day, month, and year displayed through the DatePicker dialog
(bottom left); and displaying the date selected from the DatePicker dialog in the TextView control (bottom right)

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig03
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig03
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig03
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig03

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 124

Q10. Explain HOW TIME PICKER DIALOG CAN BE FUNCTIONED. EXPLAIN WITH EXAMPLE?

TimePickerDialog

The TimePickerDialog allows us to set or select time through the built-in
Android TimePickerview. We can set the values of hour and minute with values of hour
ranging from 0 through 23 and minutes from 0 through 59. The dialog provides a callback
listener, OnTimeChangedListener orOnTimeSetListener, which tells us when a time is
changed or set by the user.

Again, we create a new Android project, called TimePickerApp, to see
how TimePickerDialogworks. In this application, we use two controls, TextView and
a Button, where the TextView control displays the current system time and the new time
set by the user. The Button control is used to invoke the TimePickerDialog; when
the Button control is clicked, the TimePickerDialogappears. To define TextView and Button,
write the code shown in Listing 6.7 into the layout fileactivity_time_picker_app.xml.

Listing 6.7. The Layout File activity_time_picker_app.xml After Adding
the TextView andButton Controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/timevw"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <Button android:id="@+id/time_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Set the Time" />
</LinearLayout>

We can see here that the TextView and Button controls are defined with the
IDs timevw andtime_button, respectively. The caption on the Button control is Set the
Time.
Next, we need to write code into the Java activity file TimePickerAppActivity.java to
perform the following tasks:
• Invoke the TimePickerDialog when the Button control is clicked.
• Display the current system time in the TextView control.
• Use the Calendar instance to initialize TimePickerDialog to display the current system
time.
• Display the newly set time in the TextView control.
To perform these tasks, the code shown in Listing 6.8 is written into
theTimePickerAppActivity.java file.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis07
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis08

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 125

Listing 6.8. Code Written into the Java Activity File TimePickerAppActivity.java

package com.androidunleashed.timepickerapp;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
import android.widget.Button;
import java.util.Calendar;
import android.app.TimePickerDialog;
import android.view.View.OnClickListener;
import android.view.View;
import android.widget.TimePicker;

public class TimePickerAppActivity extends Activity {
 private TextView dispTime;
 private int h, m;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_time_picker_app);
 dispTime = (TextView) findViewById(R.id.timevw);
 Button timeButton = (Button) findViewById(R.id.time_button);
 final Calendar c = Calendar.getInstance();
 h = c.get(Calendar.HOUR_OF_DAY);
 m = c.get(Calendar.MINUTE);
 dispTime.setText("Current time is: "+h+":"+m);
 timeButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 new TimePickerDialog(TimePickerAppActivity.this, timeListener,
h,m,true).show();
 }
 });
 }

 private TimePickerDialog.OnTimeSetListener timeListener = new
 TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hour, int minute) {
 h = hour;
 m = minute;
 dispTime.setText("Current time is: "+h+":"+m);
 }
 };
}

In this application, the timePickerDialog is displayed when the Button is selected.
The Buttonwith the text Set the Time and the ID time_button is captured from the layout

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 126

and mapped to aButton object timeButton. A setOnClickListener event listener is attached
to the button so that when it is clicked, the event handler callback method onClick() is
invoked. In onClick(), a new instance of a TimePickerDialog is created using
the TimePickerDialog constructor and is displayed on the screen.

To initialize the TimePickerDialog so it displays the current system time, we use
the Calendarclass. An instance of Calendar class is created that is initially set to be the
current system time. The current hour and minute values are fetched from
the Calendar instance and passed to theTimePickerDialog constructor to initialize it, which
sets it to display current system time. We also pass a Boolean value, true, to the
constructor to indicate that we want to display the 24-hour clock and not the 12-hour clock
that displays AM/PM. The constructor also includes a callback listener to inform the
current Context (i.e., the current activity) when the time is set or changed in
theTimePickerDialog.

The TimePickerDialog provides a callback
listener, OnTimeChangedListener orOnTimeSetListener, that listens for when the user is
finished setting the time by selecting the Donebutton. The onTimeSet() method is called
when the time is set or changed and we use it to display the selected time through
the TextView.

After running the application, we see a Button control with the caption Set the
Time (see Figure 6.4—top left), which, when clicked, displays a TimePickerDialog showing
the current time, as shown in Figure 6.4 (top right). The current hour and minute are
displayed, and by scrolling them in an up or down direction, we can change them as desired
(see Figure 6.4—bottom left). After we set the desired time in the TimePickerDialog and
select the Done button, the currently set time is displayed via the TextView control, as
shown in Figure 6.4 (bottom right).

Figure 6.4. The TextView displaying the current time with a Button control (top left),
the TimePicker dialog appears after selecting the Button control (top right), changing the

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig04
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig04
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig04
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig04

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 127

hour and minutes displayed via the TimePicker dialog (bottom left), and displaying the
time selected from the TimePicker dialog in the TextView control (bottom right)

Q12. Explain how about combining the two

Controls datepickerdialog and timepickerdialog in one application?

SELECTING THE DATE AND TIME IN ONE APPLICATION

To see how the system date and time can be set in an application, let’s create a new
Android application and name it DateTimePickerApp. In this application, we use
a TextView and two Button controls. The TextView control displays the current system date
and time, and the two Button controls, Set Date and Set Time, are used to invoke the
respective dialogs. When the Set Date button is selected, the DatePickerDialog is invoked,
and when the Set Time button is selected, theTimePickerDialog is invoked.
So, let’s write the code shown in Listing 6.9 into the layout file
activity_date_time_picker_app.xml to define a TextView and two Button controls.

Listing 6.9. The Layout File activity_date_time_picker_app.xml After Adding
the TextViewand Button controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <TextView android:id="@+id/datetimevw"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <Button android:id="@+id/date_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Set Date" />
 <Button android:id="@+id/time_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Set Time" />
</LinearLayout>

We can see here that the TextView and the two Button controls are defined with the
IDsdatetimevw, date_button, and time_button, respectively. The captions for the
two Buttoncontrols are Set Date and Set Time, respectively.
After defining the controls in the layout file, we write Java code into
theDateTimePickerAppActivity.java activity file to perform the following tasks:
• Display the current system date and time in the TextView control.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis09

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 128

• Invoke DatePickerDialog and TimePickerDialog when the Set Date and Set Time
Button controls are clicked.
• Initialize DatePickerDialog and TimePickerDialog to display the current system date and
time via the Calendar instance.
• Display the modified date and time set by the user via
the DatePickerDialog andTimePickerDialog through the TextView control.
To perform these tasks, the code shown in Listing 6.10 is written
intoDateTimePickerAppActivity.java.

Listing 6.10. Code Written into the Java Activity File DateTimePickerAppActivity.java

package com.androidunleashed.datetimepickerapp;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
import android.widget.Button;
import java.util.Calendar;
import android.app.TimePickerDialog;
import android.app.DatePickerDialog;
import android.view.View.OnClickListener;
import android.view.View;
import android.widget.TimePicker;
import android.widget.DatePicker;

public class DateTimePickerAppActivity extends Activity {
 private TextView dateTimeView;
 private Calendar c;
 private int h, m,yr,mon,dy;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_date_time_picker_app);
 dateTimeView = (TextView) findViewById(R.id.datetimevw);
 Button timeButton = (Button) findViewById(R.id.time_button);
 Button dateButton = (Button) findViewById(R.id.date_button);
 c = Calendar.getInstance();
 h = c.get(Calendar.HOUR_OF_DAY);
 m = c.get(Calendar.MINUTE);
 yr = c.get(Calendar.YEAR);
 mon = c.get(Calendar.MONTH);
 dy = c.get(Calendar.DAY_OF_MONTH);
 dateTimeView.setText("Current date is "+ (mon+1)+"-"+dy+"-"+yr+" and current
time is: "+h+":"+m);
 dateButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis10

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 129

 new DatePickerDialog(DateTimePickerAppActivity.this, dateListener,
yr, mon, dy).show();
 }
 });
 timeButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 new TimePickerDialog(DateTimePickerAppActivity.this, timeListener,
h,m,true).show();
 }
 });
 }

 private DatePickerDialog.OnDateSetListener dateListener = new DatePickerDialog.
OnDateSetListener() {
 public void onDateSet(DatePicker view, int year, int monthOfYear, int dayOf-
Month)
 {
 yr = year;
 mon = monthOfYear;
 dy = dayOfMonth;
 dateTimeView.setText("Current date is "+ (mon+1)+"-"+dy+"-"+yr+" and
current time is: "+h+":"+m);
 }
 };

 private TimePickerDialog.OnTimeSetListener timeListener = new TimePickerDialog.
OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hour, int minute) {
 h = hour;
 m = minute;
 dateTimeView.setText("Current date is "+ (mon+1)+"-"+dy+"-"+yr+" and
current time is: "+h+":"+m);
 }
 };
}

The respective listeners, OnDateSetListener and OnTimeSetListener, invoke their
callback methods, onDateSet() and onTimeSet(), when the Done button in
the DatePickerDialog orTimePickerDialog is selected by the user.

The two callback methods access the newly set date and time and display them

through the TextView control.
After we run the application, the system’s current date and time are displayed through
the TextViewcontrol. Two Button controls with the captions Set Date and Set Time are

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 130

displayed in Figure 6.5(left). When the Set Date button is clicked,
the DatePickerDialog showing the system’s current date is displayed, as shown in Figure
6.5 (middle). If we scroll in an up or down direction, the day, month, and year can be
changed as desired. After we set the desired date, the currently set date and time are
displayed via the TextView control, as shown in Figure 6.5 (right).

Figure 6.5. The TextView displaying the current date and time and two Buttoncontrols
(left), the DatePicker dialog appears when the Set Date button is clicked (middle), and the
date selected from the DatePicker dialog displayed in the TextView(right)

Similarly, when the Set Time button is clicked, the TimePickerDialog initialized to the
system’s current time is displayed, as shown in Figure 6.6 (left). If we scroll in an up or
down direction, the hour and minute can be changed as desired, as shown in Figure
6.6 (middle). After we set the desired time in the TimePickerDialog, the currently set date
and time are displayed via the TextView control, as shown in Figure 6.6 (right).

Figure 6.6. The TimePicker dialog appears when the Set Time button is clicked (left),
changing the hour and minutes in the TimePicker dialog (middle), and the time selected
from the TimePicker dialog displayed in the TextView (right)

We can also format the date and time. Let’s modify
the DateTimePickerAppActivity.java file to appear as shown in Listing 6.11.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig05
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig05
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig05
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig05
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig06
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig06
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig06
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig06
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis11

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 131

Listing 6.11. Code in the Java Activity File DateTimePickerAppActivity.java

package com.androidunleashed.datetimepickerapp;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
import android.widget.Button;
import java.util.Calendar;
import android.app.TimePickerDialog;
import android.app.DatePickerDialog;
import android.view.View.OnClickListener;
import android.view.View;
import android.widget.TimePicker;
import android.widget.DatePicker;
import java.text.DateFormat;

public class DateTimePickerAppActivity extends Activity {
 private TextView dateTimeView;
 private Calendar c;
 DateFormat DateTimeFormat = DateFormat.getDateTimeInstance();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_date_time_picker_app);
 dateTimeView = (TextView) findViewById(R.id.datetimevw);
 Button timeButton = (Button) findViewById(R.id.time_button);
 Button dateButton = (Button) findViewById(R.id.date_button);
 c = Calendar.getInstance();
 dateTimeView.setText(DateTimeFormat.format(c.getTime()));
 dateButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 new DatePickerDialog(DateTimePickerAppActivity.this, dateListener,c.
get(Calendar.YEAR), c.get(Calendar.MONTH), c.get(Calendar.DAY_OF_MONTH)).show();
 }
 });
 timeButton.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 new TimePickerDialog(DateTimePickerAppActivity.this, timeListener,
c.get(Calendar.HOUR_OF_DAY), c.get(Calendar.MINUTE),true).show();
 }
 });
 }

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 132

 private DatePickerDialog.OnDateSetListener dateListener = new DatePickerDialog.
OnDateSetListener() {
 public void onDateSet(DatePicker view, int year, int monthOfYear, int dayOf-
Month)
 {
 c.set(Calendar.YEAR,year);
 c.set(Calendar.MONTH,monthOfYear);
 c.set(Calendar.DAY_OF_MONTH,dayOfMonth);
 dateTimeView.setText(DateTimeFormat.format(c.getTime()));
 }
 };

 private TimePickerDialog.OnTimeSetListener timeListener = new
 TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hour, int minute) {
 c.set(Calendar.HOUR_OF_DAY, hour);
 c.set(Calendar.MINUTE, minute);
 dateTimeView.setText(DateTimeFormat.format(c.getTime()));
 }
 };
}

After we run the application, the formatted date and time are displayed, as shown in Figure
6.7.

Figure 6.7. The formatted date and time

Q12. Explain HOW FRAGMENTS CAN FUNCTION OR HOW SCREEN ORIENTATION CAN BE
SET USING FRAGMENTS. EXPLAIN WITH EXAMPLE?

FRAGMENTS

The size of the screen changes when a device is oriented from portrait to landscape
mode. In landscape mode, the screen becomes wider and shows empty space on the right.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig07
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig07

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 133

The height becomes smaller and hides the controls on the bottom of the display. There is a
difference in screen sizes between the Android phone and Android tablet, as well. Android
tablets have a 7–10 inch display, whereas Android phones are in the range of 3–5 inches.

When developing an application, we need to arrange Views in such a way that the
user can view everything in both landscape and portrait mode. If we don’t organize
the Views with this in mind, problems arise if the user switches modes while running an
application. One solution to this problem is one we have already seen—designing an
individual layout for each device or screen mode. This solution is time consuming. Another
solution is implementing fragments in the application.

The Structure of a Fragment

A fragment is a combination of an activity and a layout and contains a set of views
that make up an independent and atomic user interface. For example, one or more
fragments can be embedded in the activity to fill up the blank space that appears on the
right when switching from portrait to landscape. Similarly, the fragments can be
dynamically removed if the screen size is unable to accommodate theViews. That is, the
fragments make it possible for us to manage the Views depending on the target device.
Let’s assume that we have two fragments, Fragment1 and Fragment2, each having its own
set ofViews. If the screen size is small, we can create two activities, each having a single
fragment, and display one activity at a time. If the device screen is able to accommodate
views of both Fragment1and Fragment2, these can be embedded into a single activity to fill
up the screen.

A fragment is like a subactivity with its own life cycle and view hierarchy. We can add
or remove fragments while the activity is running. Remember that the fragments exist
within the context of an activity, and so cannot be used without one.

Tip

Fragments are self-contained and can be used in multiple activities.

To create a fragment, we need to extend the Fragment class and implement several
life cycle callback methods, similar to an activity.

The Life Cycle of a Fragment

The life cycle of a fragments is affected by the activity’s life cycle in which it is
embedded. That is, when the activity is paused, all the fragments in it are paused. Similarly,
if an activity is destroyed, all of its fragments are destroyed, as well. The life cycle of a
fragment includes several callback methods, as listed here:

• onAttach()—Called when the fragment is attached to the activity.
• onCreate()—Called when creating the fragment. The method is used to initialize the items
of the fragment that we want to retain when the fragment is resumed after it is paused or
stopped. For example, a fragment can save the state into a Bundle object that the activity
can use in theonCreate() callback while re-creating the fragment.
• onCreateView()—Called to create the view for the fragment.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 134

• onActivityCreated()—Called when the activity’s onCreate() method is returned.
• onStart()—Called when the fragment is visible to the user. This method is associated with
the activity’s onStart().
• onResume()—Called when the fragment is visible and is running. The method is
associated with the activity’s onResume().
• onPause()—Called when the fragment is visible but does not have focus. The method is
attached to the activity’s onPause().
• onStop()—Called when fragment is not visible. The method is associated with the
activity’sonStop().
• onDestroyView()—Called when the fragment is supposed to be saved or destroyed. The
view hierarchy is removed from the fragment.
• onDestroy()—Called when the fragment is no longer in use. No view hierarchy is
associated with the fragment, but the fragment is still attached to the activity.
• onDetach()—Called when the fragment is detached from the activity and resources
allocated to the fragment are released.

A fragment also has a bundle associated with it that serves as its initialization
arguments. Like an activity, a fragment can be saved and later automatically restored by the
system.

To understand the concept of fragments, let’s create an Android project
called FragmentsApp. In this application, we are going to create two
fragments: Fragment1 and Fragment2.

Fragment1 contains a selection widget, ListView, that displays a couple of fruits to

choose from. Fragment2 contains aTextView control to display the fruit selected from
the ListView of Fragment1.

The fragments use individual XML layout files to define their Views, so for the two

fragments, let’s add two XML files called fragment1.xml and fragment2.xml to
the res/layout folder.

To define a ListView control in the first fragment, the code shown in Listing 6.12 is
written into the XML file, fragment1.xml.

Listing 6.12. Code Written into the XML File fragment1.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:background="#0000FF" >
 <ListView
 android:id="@+id/fruits_list"
 android:layout_width="match_parent"

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis12

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 135

 android:layout_height="match_parent"
 android:drawSelectorOnTop="false"/>
 </LinearLayout>

We can see here that a ListView selection widget is defined with the ID fruits_list. For
distinguishing the two fragments, the background of this fragment is set to blue. To define
a TextViewcontrol for the second fragment, the code shown in Listing 6.13 is written into
the XML filefragment2.xml.

Listing 6.13. Code Written into the XML File fragment2.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:id="@+id/selectedopt"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Please select a fruit" />
 </LinearLayout>

We can see that a selectedopt TextView control is defined and is set to display Please
select a fruit. Each fragment has a Java class that loads its UI from the XML file, so for the
two fragments, we need to add two Java classes to our application.
Add Fragment1Activity.java andFragment2Activity.java to
the com.androidunleashed.fragmentsapp package of the application. The code shown
in Listing 6.14 is written into the Java class file of the first fragment,Fragment1Activity.java.

Listing 6.14. Code Written into the Java Class File Fragment1Activity.java

package com.androidunleashed.fragmentsapp;
import android.app.Fragment;
import android.os.Bundle;
import android.view.ViewGroup;
import android.view.View;
import android.view.LayoutInflater;
import android.widget.ListView;
import android.widget.ArrayAdapter;
import android.content.Context;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.TextView;

public class Fragment1Activity extends Fragment {

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis13
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis14

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 136

 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState) {
 Context c = getActivity().getApplicationContext();
 View vw = inflater.inflate(R.layout.fragment1, container, false);
 final String[] fruits={"Apple", "Mango", "Orange", "Grapes", "Banana"};
 ListView fruitsList = (ListView) vw.findViewById(R.id.fruits_list);
 ArrayAdapter<String> arrayAdpt= new ArrayAdapter<String>(c,
android.R.layout.simple_list_item_1, fruits);
 fruitsList.setAdapter(arrayAdpt);
 fruitsList.setOnItemClickListener(new OnItemClickListener(){
 public void onItemClick(AdapterView<?> parent, View v, int position,
long id)
 {
 TextView selectedOpt = (TextView) getActivity().findViewById(R.
id.selectedopt);
 selectedOpt.setText("You have selected "+((TextView) v).getText().
toString());
 }
 });
 return vw;
 }
}

We can see that the Java class for the fragment extends the Fragment base class. To
access and draw the UI for the fragment, the onCreateView() method is overridden.

In the onCreateView()method, a LayoutInflater object is used to inflate the UI—
the ListView control we defined in thefragment1.xml file.

The OnItemClickListener interface is implemented via an anonymous class that

implements a callback method, onItemClick(). The reference to the anonymous class is
passed to the ListView, to invoke the callback methodonItemClick() when any item in
the ListView is clicked. In the onItemClick() method, the item selected in the ListView is
displayed via the TextView control selectedOpt.

To load the UI of the second fragment from the XML file fragment2.xml, write the code
shown inListing 6.15 into the Java class file of the second fragment Fragment2-Activity.java.

Listing 6.15. Code Written into the Java Class File Fragment2Activity.java

package com.androidunleashed.fragmentsapp;
import android.app.Fragment;
import android.os.Bundle;
import android.view.ViewGroup;
import android.view.View;
import android.view.LayoutInflater;

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis15

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 137

public class Fragment2Activity extends Fragment {

 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState) {
 return inflater.inflate(R.layout.fragment2, container, false);
 }
}

Like the Java class of the first fragment, this class also extends the Fragment base
class. TheonCreateView() method is overridden where a LayoutInflater object is used to
inflate theTextView control we defined in the fragment2.xml file.
To accommodate both the fragments in the application, the code shown in Listing 6.16 is
written into the layout file activity_fragments_app.xml.

Listing 6.16. The Layout File activity_fragments_app.xml After Adding the Two Fragments

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
 <fragment
 android:name="com.androidunleashed.fragmentsapp.Fragment1Activity"
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
 <fragment
 android:name="com.androidunleashed.fragmentsapp.Fragment2Activity"
 android:id="@+id/fragment2"
 android:layout_weight="0"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
</LinearLayout>

Here we can see that the two fragments are added to the activity through
the <fragment> elements. The fragments are assigned the IDs fragment1 and fragment2,
respectively. The fragments are set to refer to their respective Java class through
the android:name attribute. The first fragment refers to its Java class file Fragment1Activity,
which was placed in thecom.androidunleashed.fragmentsapp package. The orientation of
the containerLinearLayout, was set to horizontal, so both the fragments appear beside each
other. We don’t have to write any code into FragmentsAppActivity.java. We can leave the
default code unchanged, as shown in Listing 6.17.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis16
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis17

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 138

Listing 6.17. Code Written into the Java Activity File FragmentsAppActivity.java

package com.androidunleashed.fragmentsapp;
import android.app.Activity;
import android.os.Bundle;

public class FragmentsAppActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragments_app);
 }
}

After we run the application, the two UIs defined
in Fragment1 and Fragment2 appear side by side. The ListView of Fragment1 displays the
list of items, and Fragment2 displays the TextViewasking the user to Please select a fruit, as
shown in Figure 6.8 (left). After a fruit has been selected from the ListView, its name is
displayed through the TextView, as shown in Figure 6.8(right).

Figure 6.8. ListView and TextView controls displayed via two fragments (left), and
the TextView of the second fragment, showing the item selected from the ListView of the
first fragment (right)

CREATING FRAGMENTS WITH JAVA CODE

Until now, we have been defining fragments statically by using <fragment> elements
in the layout file of the application. Let’s now learn how to add fragments to the activity
during runtime. For creating, adding, and replacing fragments to an activity dynamically, we
use the FragmentManager.

FragmentManager

As the name suggests, the FragmentManager is used to manage fragments in an activity. It
provides the methods to access the fragments that are available in the activity. It also
enables us to perform theFragmentTransaction required to add, remove, and replace
fragments. To access theFragmentManager, the method used is getFragmentManager(), as
shown here:

FragmentManager fragmentManager = getFragmentManager();

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig08
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig08

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 139

To perform fragment transactions, we use the instance of the FragmentTransaction as
shown here:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();

A new FragmentTransaction is created using the beginTransaction() method of
theFragmentManager. The following code shows how to add a fragment:

FragmentManager fragmentManager = getFragmentManager()
FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
Fragment1Activity fragment = new Fragment1Activity();
fragmentTransaction.add(R.id.fragment_container, fragment, "TAG1");
fragmentTransaction.commit();

Here the Fragment1Activity is the Java class of the fragment, which is also used to
load the UI of the fragment from its XML file. We assume that the fragment_container is
the ID of the container that exists in the layout file where we want to put our fragment.
Usually LinearLayout orFrameLayout is used as the fragment_container. The TAG1 refers to
the unique ID to identify and access the fragment. The commit() method is used to apply
the changes.

Before we add a fragment, it is a wise idea to check whether it already exists by modifying
the code as shown here:

FragmentManager fragmentManager = getFragmentManager()
FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
if(null==fragmentManager.findFragmentByTag(TAG1)){
 Fragment1Activity fragment = new Fragment1Activity();
 fragmentTransaction.add(R.id.fragment_container, fragment, "TAG1");
}
fragmentTransaction.commit();

We can see that the findFragmentByTag() method of the FragmentManager checks to
see whether any fragment with the given tag exists. One more method that can be used to
identify a fragment is findFragmentById(). The findFragmentById() method is used to
identify the fragment that is added to the Activity layout.
Otherwise, findFragmentByTag() is preferred. TheFragment1Activity is a Java class meant
for loading the Views defined in the fragment’s layout file.
To replace the fragment or content being displayed in the fragment_container with
the View from another fragment, we use the replace() method of
the FragmentTransaction as shown here:

fragmentTransact.replace(R.id.fragment_container, fragment2, "TAG2");

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 140

In this statement, the Views of fragment2 replace the content being displayed in
thefragment_container of the Activity layout. To remove a fragment, we identify it either
through thefindFragmentById() or findFragmentByTag() methods and then use
the remove() method ofFragmentTransaction. The following code identifies the fragment
via the findFragmentById()method and then removes it:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
Fragment fragment = fragmentManager.findFragmentById(R.id.fragment);
fragmentTransaction.remove(fragment);
fragmentTransaction.commit();

Here we assume that a fragment with the ID fragment exists in the Activity. To identify the
fragment through the findFragmentByTag() method, the statement can be replaced by the
following:

Fragment fragment = fragmentManager.findFragmentByTag(TAG1);

Communicating Between Fragments

We can also pass information among the fragments. The two methods provided by
the Fragment class to enable communication between fragments
are setArguments() and getArguments(). ThesetArguments() method stores a Bundle in the
fragment, whereas the getArguments() method retrieves the Bundle to fetch the passed
information.
The following code passes information from fragment 1 to fragment 2. We assume
that fragmentis the ID of the fragment container that exists in the layout file where we
want to display fragment 2.

final Fragment2Activity frag2 = new Fragment2Activity(); #1
final Bundle args = new Bundle(); #2
String selectedItem="Text to send to fragment 2"; #3
if(null==fragmentManager.findFragmentByTag(FRAG2)){ #4
 args.putString("item", selectedItem); #5
 frag2.setArguments(args); #6
 fragmentTransaction.replace(R.id.fragment, frag2); #7
 String tag = null; #8
 fragmentTransaction.addToBackStack(tag); #9
 fragmentTransaction.commit();
}

Statement #1, Fragment2Activity, represents the Java class of the fragment 2. A Java
class instance called frag2 is created. Statement #2 creates a Bundle object called args, and
a string,selectedItem, is defined in #3 that we want to pass to fragment 2.
Statement #4 checks to see whether fragment 2 doesn’t already exist in the layout.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 141

The selectedItem variable is saved in theBundle object args under the key item in #5.
The Bundle object args is stored in fragment 2 in#6. Through statement #7, fragment
2 replaces the View in the fragment container of the layout file. The
statements #8 and #9 are meant for navigating to the previous fragment as discussed next.

Navigating to Previous Fragments

The Activity stack keeps track of previous Activities. When we press the back button,
the Activities in the Activity stack pop up, making their Views visible. In other words, the
Activity stack enables us to navigate back to previous screens by using the back button.
The same concept is applicable to fragments as well. To add the FragmentTransaction to
the back stack, we need to call the addToBackStack() method
of FragmentTransaction before calling the commit() method.

In the code shown previously, fragment 2 replaces fragment 1, which was being
displayed in the fragment container of the layout file. fragment 1 is added to the back stack,
making its Viewsinvisible. Pressing the back button then reverses the
previous FragmentTransaction and returns the View of the earlier fragment, fragment 1.

Retrieving Content Passed Through Bundle

We can access the content passed to the fragment via the Bundle that was saved
through thesetArguments() method. The getArguments() method accesses the Bundle that
may be passed to the fragment. The following code accesses the Bundle object passed to
the fragment. It also accesses the content passed under the item key and assigns it to the
String selectedItem:

String selectedItem="";
@Override
public void onCreate(Bundle state) {
 super.onCreate(state);
 if (null == state) state = getArguments();
 if (null != state){
 selectedItem = state.getString("item");
 }
}

Saving and Restoring the State of Fragments

Fragments can also save their state to be restored later, just like Activities. The
callback methods meant for this purpose
are onSaveInstanceState() and onRestoreInstanceState().

The onSaveInstanceState() Callback

The onSaveInstanceState() callback is used for saving the status of the fragment into
a Bundleobject, which is then used while restoring the fragment. The following code saves

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 142

the status of the fragment. It saves the value of the selectedItem variable into
the Bundle under theselectedfruit key.

@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
 super.onSaveInstanceState(savedInstanceState);
 savedInstanceState.putString("selectedfruit", selectedItem);
}

The onRestoreInstanceState() Callback

The onRestoreInstanceState() callback is for restoring the fragment to its earlier
saved state. It uses the content in the Bundle that was used in
the onSaveInstanceState() for getting the previously saved content of the fragment. The
following code restores the fragment status. It retrieves the value under
the selectedfruit key from the Bundle that was saved while callingonSaveInstanceState():

@Override
public void onRestoreInstanceState(Bundle savedInstanceState){
 super.onRestoreInstanceState(savedInstanceState);
 selectedItem = savedInstanceState.getString("selectedfruit");
}

To understand how fragments are created programmatically, we create an
application similar to ourFragmentsApp application showing a ListView and TextView in
landscape mode and only aListView in portrait mode. When an item from the ListView is
selected, its name is displayed through a TextView. Let’s create a new Android project
called FragmentCodeApp. Add two layout files, fragment1.xml and fragment2.xml, to
the res/layout folder. The fragment1.xml file contains the code to display
a ListView control, and fragment2.xml contains code to display aTextView control. The code
in fragment1.xml is the same as that as shown in Listing 6.12. Similarly, the code written
into fragment2.xml is the same as that shown in Listing 6.13. Write the code shown
in Listing 6.23 into the main layout file of the application,activity_fragment_code_app.xml.

Listing 6.23. Code in the Layout File activity_fragment_code_app.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
 <LinearLayout
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="wrap_content"

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis12
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis13
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis23

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 143

 android:layout_height="match_parent" />
 <LinearLayout
 android:id="@+id/fragment2"
 android:layout_weight="0"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
</LinearLayout>

We can see that two LinearLayout elements are added to the layout file instead of
the fragments. This is because we are adding fragments dynamically through code.
The Views of the desired fragments are displayed through these LinearLayout containers.
The LinearLayout elements are assigned the IDs fragment1 and fragment2, respectively, to
identify them in the Java code.
To load the Views of the two layout files defined in fragment1.xml and fragment2.xml, add
two Java class files
called Fragment1Activity.java and Fragment2Activity.java to thecom.androidunleashed.frag
mentcodeapp package of the application. To load the Viewsdefined in fragment2.xml, the
code that is written into Fragment2Activity.java is the same as that shown in Listing 6.15.
To load the Views defined in fragment1.xml, write the code shown in Listing 6.24 into the
Java class file Fragment1Activity.java. Only the code shown in bold is new; the rest of the
code is the same as Listing 6.20.

Listing 6.24. Code Written into the Java Class File Fragment1Activity.java

package com.androidunleashed.fragmentcodeapp;

import android.view.View;
import android.view.LayoutInflater;
import android.app.Fragment;
import android.os.Bundle;
import android.view.ViewGroup;
import android.widget.ListView;
import android.widget.ArrayAdapter;
import android.content.Context;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.TextView;
import android.content.Intent;
import android.app.FragmentManager;

public class Fragment1Activity extends Fragment{
 protected static final String FRAG2 = "2";
 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis15
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis24
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis20

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 144

savedInstanceState) {
 Context c = getActivity().getApplicationContext();
 View vw = inflater.inflate(R.layout.fragment1, container, false);
 final String[] fruits={"Apple", "Mango", "Orange", "Grapes", "Banana"};
 ListView fruitsList = (ListView) vw.findViewById(R.id.fruits_list);
 ArrayAdapter<String> arrayAdpt= new ArrayAdapter<String>(c,
android.R.layout.simple_list_item_1, fruits);
 fruitsList.setAdapter(arrayAdpt);
 final FragmentManager fragmentManager = getFragmentManager();
 fruitsList.setOnItemClickListener(new OnItemClickListener(){
 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position,
long id){
 if(null!=fragmentManager.findFragmentByTag(FRAG2)){
 TextView selectedOpt = (TextView) getActivity().findViewById(R.
id.selectedopt);
 selectedOpt.setText("You have selected "+((TextView)
v).getText().toString());
 } else {
 Intent intent = new Intent(getActivity().getApplicationCon-
text(), ShowItemActivity.class);
 intent.putExtra("item", ((TextView) v).getText().toString());
 startActivity(intent);
 }
 }
 });
 return vw;
 }
}

We want only the View of the first fragment, ListView, displayed in portrait mode,
and when an item from the ListView is selected, the name of the selected item is displayed
on the next screen. The new screen is created through a new activity. So, add a Java class
file called ShowItemActivity.java to the com.androidunleashed.fragmentcodeapp package
of the application. In theShowItemActivity.java file, write the code as shown in Listing 6.21.
As said earlier, to inform about the newly added activity file to the application, we need to
write a statement as shown in Listing 6.22 in the AndroidManifest.xml file. To the main
activity file of the applicationFragmentCodeAppActivity.java, write the code as shown
in Listing 6.25.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis21
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis22
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis25

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 145

Listing 6.25. Code Written into the Java Activity File FragmentCodeAppActivity.java

package com.androidunleashed.fragmentcodeapp;

import android.app.Activity;
import android.os.Bundle;
import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.content.res.Configuration;

public class FragmentCodeAppActivity extends Activity {
 private static final String FRAG1 = "1";
 private static final String FRAG2 = "2";

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment_code_app);
 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =fragmentManager.beginTransaction();
 if (getResources().getConfiguration().orientation == Configuration.ORIENTA-
TION_LANDSCAPE)
 {
 fragmentTransaction.add(R.id.fragment1, new Fragment1Activity(), FRAG1);
 fragmentTransaction.add(R.id.fragment2, new Fragment2Activity(), FRAG2);
 }
 else
 {
 if(null!=fragmentManager.findFragmentByTag(FRAG2))
 fragmentTransaction.remove(fragmentManager.findFragmentByTag(FRAG2));
 fragmentTransaction.add(R.id.fragment1, new Fragment1Activity(), FRAG1);
 }
 fragmentTransaction.commit();
 }
}

After we run the application, the output of the application is the same as that shown earlier
in Figures 6.9 and 6.10.

Tip

Besides making a class extend a Fragment base class, the fragments are also created by
making the class extend certain subclasses of the Fragment base class. Such fragments are
known as specialized fragments.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig09
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig10

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 146

CREATING SPECIAL FRAGMENTS

After understanding the procedure to create simple fragments, we learn to create
specialized fragments such as list fragments, dialog fragments, and preference fragments.
To create these, we extend from the following subclasses of the Fragment base class:
• ListFragment
• DialogFragment
• PreferenceFragment

Creating a ListFragment

A ListFragment is a fragment that contains a built-in ListView that can be set to
display items from a specified data source. The data source can be an array or a cursor. To
understandListFragments, let’s create an application consisting of a ListView and
a TextView. TheListView displays some items to choose from. The item selected from
the ListView is displayed through a TextView. In this application, the ListView is displayed
via a ListFragment, and theTextView is displayed via a simple fragment. The item selected
from the ListView in theListFragment is displayed through the TextView in the simple
fragment. Let’s name the new Android project ListFragApp. We first create a fragment to
hold the TextView control. So, let’s add an XML file called fragment2.xml to
the res/layout folder of our project. Listing 6.26 shows how to define a TextView control
in fragment2.xml.

Listing 6.26. Code in the XML File fragment2.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:id="@+id/selectedopt"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Please select a fruit" />
</LinearLayout>

We can see that a TextView control with the ID selectedopt is defined in
a LinearLayoutcontainer. The initial text assigned to the TextView control is Please select a
fruit. ThisTextView control is assigned text through Java code to indicate the item selected
from the ListView.
To load the UI of the fragment from fragment2.xml, we need to create a Java class file. So,
add a Java class file called Fragment2Activity.java under
thecom.androidunleashed.listfragapp package. Write the code as shown in Listing 6.27 into
the Java class file, Fragment2Activity.java.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis26
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis27

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 147

Listing 6.27. Code Written into the Java Class File of the Second
FragmentFragment2Activity

package com.androidunleashed.listfragapp;

import android.app.Fragment;
import android.os.Bundle;
import android.view.ViewGroup;
import android.view.View;
import android.view.LayoutInflater;

public class Fragment2Activity extends Fragment {
 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState) {
 return inflater.inflate(R.layout.fragment2, container, false);
 }
}

We can see that the Java class extends the Fragment base class.
The onCreateView() method is overridden when a LayoutInflater object is used to inflate
the TextView control UI that we defined in the fragment2.xml file.

We use ListFragment to display the ListView control. As I said earlier,
the ListFragment already contains a ListView so we don’t need to define a UI for this
fragment. We can directly add a Java class file that extends the ListFragment class. In this
Java class file, we write code to define the items to be displayed through the ListView of
the ListFragment and also to display the item selected from the ListView through
the TextView of the Fragment2. So, add a Java class calledFragment1Activity.java to the
project and write the code shown in Listing 6.28 into it.

Listing 6.28. Code Written into the Java Class for the First
FragmentFragment1Activity.java

package com.androidunleashed.listfragapp;

import android.app.ListFragment;
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.view.View;
import android.widget.ListView;
import android.widget.TextView;

public class Fragment1Activity extends ListFragment {
 final String[] fruits={"Apple", "Mango", "Orange", "Grapes", "Banana"};

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis28

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 148

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ArrayAdapter<String> arrayAdpt = new ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1, fruits);
 setListAdapter(arrayAdpt);
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 TextView selectedOpt = (TextView) getActivity().findViewById(R.
id.selectedopt);
 selectedOpt.setText("You have selected "+((TextView) v).getText().
toString());
 }
}

As expected, the Java class extends the ListFragment base class to create
a ListFragment. To display content through the ListView of the ListFragment, an array
called fruits is defined and fruit names are assigned to it. In the onCreate() method,
an ArrayAdapter object calledarrayadpt is defined to display the elements of the fruits array
in the simple_list_item_1mode. When we use the setListAdapter() method, the content in
the ArrayAdapter object,arrayadpt, is assigned to the ListView for display. As expected,
the onListItemClick() method is invoked when any of the fruits displayed through
the ListView control is selected. In this method, we display the name of the selected fruit
through the TextView control that we defined infragment2.xml.
To accommodate both the fragments in the application, code is written
intoactivity_list_frag_app.xml as shown in Listing 6.29.

Listing 6.29. The activity_list_frag_app.xml Layout File After Adding Two Fragments

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
 <fragment
 android:name="com.androidunleashed.listfragapp.Fragment1Activity"
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
 <fragment
 android:name="com.androidunleashed.listfragapp.Fragment2Activity"

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis29

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 149

 android:id="@+id/fragment2"
 android:layout_weight="0"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
</LinearLayout>

We can see that the fragment1 and fragment2 fragments are added to the activity
through the<fragment> elements. The fragments are set to refer to their respective Java
classes through theandroid:name attribute. We don’t have to write any code into the Java
activity file of the applicationListFragAppActivity.java. We leave the default code in the
activity file unchanged, as shown inListing 6.30.

Listing 6.30. Default Code in the Java Activity File ListFragAppActivity.java

package com.androidunleashed.listfragapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;

public class ListFragAppActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_list_frag_app);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_list_frag_app, menu);
 return true;
 }
}

After running the application, we see the two fragments side-by-side, as shown
in Figure 6.11 (left). TheListView on the left side appears through the ListFragment. The
content in the ListView is displayed via the Java class file of
the ListFragment, Fragment1Activity.java. The item selected from the ListView is displayed
through the TextView defined in Fragment2, as shown inFigure 6.11 (right).

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis30
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig11
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig11

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 150

Figure 6.11. The ListView displayed via ListFragment (left), and the Item selected from
the ListView of ListFragment, displayed via the TextView of the second fragment (right)

Using a DialogFragment

In Android, dialogs are asynchronous. Synchronous dialogs are those in which the
activity suspends its execution until a dialog is dismissed. While the user is interacting with
the dialog, no further execution takes place. Asynchronous dialogs are those in which
activity continues its normal execution, and at the same time users can interact with the
dialog. The activity accesses user interaction with the dialog by implementing callback
methods. The dialogs in Android are modal in nature; while a dialog is open, users cannot
access any other part of the application. The benefit of calling dialogs asynchronously is
that it not only increases code efficiency, but also provides us with the capability to dismiss
the dialog through code.

We can display a DialogFragment by extending the DialogFragment base class, which
in turn is derived from the Fragment class. To demonstrate DialogFragment, let’s create a
new Android project called DialogFragApp. In this project, we use two fragments. One is
used to show aDialogFragment, and the other displays a TextView. The user’s interaction
with theDialogFragment is conveyed through the TextView control in the second fragment.
The selected button in the DialogFragment is displayed via the TextView control in the
second fragment.

Before beginning the creation of DisplayFragment, let’s first define the UI of the
simple fragment that consists of a TextView. To do so, add an XML file
called fragment2.xml to the res/layoutfolder. Write the code shown in Listing 6.31 into
the fragment2.xml file.

Listing 6.31. Code Written into the XML File fragment2.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:id="@+id/selectedopt"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis31

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 151

 android:text="Select Open Dialog Button" />
</LinearLayout>

We can see that a TextView control is defined inside a LinearLayout container.
The TextView is assigned the selectedopt ID and is initialized to display the text Select Open
Dialog Button.This TextView is used to display the option selected by the user in
the DialogFragment.
To load the UI of the fragment from fragment2.xml, a Java class file
calledFragment2Activity.java is added to the project. Write the code shown in Listing
6.32 into the Java file Fragment2Activity.java.

Listing 6.32. Code Written into the Java Class for the Second
FragmentFragment2Activity.java

package com.androidunleashed.dialogfragapp;

import android.app.Fragment;
import android.os.Bundle;
import android.view.ViewGroup;
import android.view.View;
import android.view.LayoutInflater;

public class Fragment2Activity extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState) {
 return inflater.inflate(R.layout.fragment2, container, false);
 }
}

The Java class extends the Fragment base class. The onCreateView() method is
overridden when aLayoutInflater object is used to inflate the TextView control UI that we
defined in thefragment2.xml file.

To accommodate the fragment defined in fragment2.xml, we need to write code into
the layout fileactivity_dialog_frag_app.xml, as shown in Listing 6.33.

Listing 6.33. The Layout File activity_dialog_frag_app.xml After Adding a Fragment and
a Button

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal" >
 <fragment

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis32
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis32
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis33

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 152

 android:name="com.androidunleashed.dialogfragapp.Fragment2Activity"
 android:id="@+id/fragment2"
 android:layout_weight="0"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
 <Button
 android:id="@+id/dialog_button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Open Dialog" />
</LinearLayout>

A Button control is defined because we want the DialogFragment to appear only
when a button is selected in the application. Both the Fragment and Button controls are
nested inside theLinearLayout container. The Fragment is assigned the ID fragment2 and is
set to refer to its Java class through the android:name attribute. The Button control is
assigned the ID dialog_button, and the caption as Open Dialog. fragment2 is meant to
display a TextView to show the option selected by the user in the DialogFragment.

Now it’s time to write code to show a DialogFragment. As stated earlier, to
show DialogFragment, a Java class needs to extend the DialogFragment class. Let’s add a
Java class calledFragment1Activity.java under the
package com.androidunleashed.dialogfragapp. To display a DialogFragment, write the code
shown in Listing 6.34 into theFragment1Activity.java file.

Listing 6.34. Code Written into the Java Class File of the First
FragmentFragment1Activity.java

package com.androidunleashed.dialogfragapp;
import android.app.DialogFragment;
import android.app.Fragment;
import android.os.Bundle;
import android.app.Dialog;
import android.app.AlertDialog;
import android.content.DialogInterface;

public class Fragment1Activity extends DialogFragment{
 static Fragment1Activity newInstance(String title) {
 Fragment1Activity fragment = new Fragment1Activity();
 Bundle args = new Bundle();
 args.putString("title", title);
 fragment.setArguments(args);
 return fragment;
 }

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis34

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 153

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 String title = getArguments().getString("title");
 Dialog diag = new AlertDialog.Builder(getActivity())
 .setIcon(R.drawable.ic_launcher)
 .setTitle(title)
 .setPositiveButton("OK", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 ((DialogFragAppActivity) getActivity()).PositiveButton();
 }
 })
 .setNegativeButton("Cancel", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 ((DialogFragAppActivity) getActivity()).NegativeButton();
 }
 }).create();
 return diag;
 }
}

We can see that to create the DialogFragment, the Java class extends
the DialogFragment class. The newInstance() method is used to create a new instance of
the fragment. The title of theDialogFragment is passed to this method as an argument,
which in turn is stored in the Bundleobject and is associated with the fragment that is
returned by this method.

To create the view hierarchy of the DialogFragment, the onCreateDialog() method of
theDialogFragment class is overridden, and a Bundle object carrying the title of the
fragment and other information, if any, is passed to it. In the onCreateDialog() method, an
alert dialog builder is used to create a dialog object. In the beginning of this chapter, we
learned that AlertDialog is a dialog window that displays a message with optional buttons.
In the onCreateDialog() method, anAlertDialog with two buttons, OK and Cancel, is created,
and the title that has to be displayed in the fragment is obtained from the title argument
saved in the Bundle object. AnonClickListener() is associated with the two
buttons OK and Cancel, which results in invoking the respective onClick() method when the
respective button is clicked. When OK is selected, thePositiveButton() method from the
activity is called. Similarly, when Cancel is selected, theNegativeButton() method from the
activity is called. The method returns the createdAlertDialog.
In the Java activity file, we need to write code to invoke the DialogFragment. The code must
be written to take the necessary action when OK or Cancel is selected from
the DialogFragment. The code written into the Java activity
file DialogFragAppActivity.java is shown in Listing 6.35.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis35

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 154

Listing 6.35. Code Written into the Java Activity File DialogFragAppActivity.java

package com.androidunleashed.dialogfragapp;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.widget.TextView;

public class DialogFragAppActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_dialog_frag_app);
 Button dialogButton = (Button)findViewById(R.id.dialog_button);
 dialogButton.setOnClickListener(new Button.OnClickListener(){
 @Override
 public void onClick(View arg0) {
 Fragment1Activity dialogFragment = Fragment1Activity.
newInstance("Continue Processing?");
 dialogFragment.show(getFragmentManager(), "Dialog Fragment Example");
 }
 });
 }

 public void PositiveButton() {
 TextView selectedOpt = (TextView)findViewById(R.id.selectedopt);
 selectedOpt.setText("You have selected OK button");
 }

 public void NegativeButton() {
 TextView selectedOpt = (TextView) findViewById(R.id.selectedopt);
 selectedOpt.setText("You have selected Cancel button");
 }
}

We want the DialogFragment to appear when the Button is selected from the
application. So, we see that the dialogButton Button control is captured from the layout file
and is mapped to theButton object dialogButton. An OnClickListener is associated with
the Button control, and the onClick() callback method is called if the Button control is
selected from the application. In theonClick() method, the DialogFragment is created by

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 155

creating a dialogFragment instance of theFragment1Activity Java class file, and the title of
the DialogFragment is passed to it asContinue processing.

The DialogFragment is made visible by calling its show() method. The show() method
adds the fragment to the given FragmentManager. The code also defines the two
methods,PositiveButton() and NegativeButton(), which are invoked
when OK and Cancel from theDialogFragment are selected. In both
the PositiveButton() and NegativeButton() methods, the selectedOpt TextView control that
we defined in fragment2.xml is accessed and mapped to the TextView object selectedOpt.
When OK is selected, a message, You have selected OK button, appears in
the TextView through the selectedOpt instance. Similarly, when Cancel from
the DialogFragment is selected, a message, You have selected Cancel button, appears in
the TextView of the second fragment.

After we run the application, a TextView and a Button control are displayed, as
shown in Figure 6.12(left). The TextView is displayed through fragment2.xml.
The TextView displays the initial textSelect the Open Dialog Button, directing the user to
select the Open Dialog button. After we click the Open Dialog button, a dialog fragment
with the title Continue Processing opens, showing two buttons, OK and Cancel, as shown
in Figure 6.12 (middle). After we click the OK button from the DialogFragment, a
message, You have selected OK button, is shown through theTextView control, as shown
in Figure 6.12 (right).

Figure 6.12. The TextView and Button displayed on application startup (left),
theDialogFragment appears after clicking the button (middle), and the TextView showing
that the DialogFragment OK button was clicked (right)

After we click the Open Dialog button again, the DialogFragment opens up once
more. This time, if we select Cancel from the DialogFragment, the TextView displays the
message You have selected Cancel button, as shown in Figure 6.13.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig12
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig12
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig12
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig13

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 156

Figure 6.13. The TextView showing that the DialogFragment Cancel button was clicked

Using PreferenceFragment

PreferenceFragment is a fragment that enables users to configure and personalize an
application. The PreferenceFragment can contain several Preference Views that help in
uniformly setting application preferences with minimum effort. Table 6.1 shows the list
of Preference Views that can be displayed via a PreferenceFragment.

Table 6.1. Preference Views That Can Be Displayed in PreferenceFragments

To understand how application preferences are set, let’s create a new Android

project calledPreferenceFragApp. There are two ways of displaying Preference Views in
aPreferenceFragment: through an XML file and through code. We prefer the XML approach,
so we first add a folder called xml to the res folder. Inside the res/xml folder, we add an
XML file calledpreferences.xml. This file contains the Preference Views we want to display
to the user to configure the application. The options selected by the user in Preference
Views persist in the application. The code written into the preferences.xml file is shown
in Listing 6.36.

Listing 6.36. Code Written into XML File preferences.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
 <PreferenceCategory android:title="Category 1">
 <CheckBoxPreference
 android:title="Pizza"
 android:defaultValue="false"
 android:key="Pizzakey" />
 <EditTextPreference android:key="Namekey"
 android:title="Enter your name: "
 android:dialogTitle="Enter your information">
 </EditTextPreference>
 </PreferenceCategory>

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06tab01
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis36

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 157

 <PreferenceCategory android:title="Category 2">
 <RingtonePreference android:showDefault="true"
 android:key="Audio" android:title="Select sound"
 android:ringtoneType="notification">
 </RingtonePreference>
 <ListPreference android:title="Fruits List "
 android:key="fruits_list"
 android:entries="@array/fruits"
 android:entryValues="@array/fruitselected"
 android:dialogTitle="Choose a fruit">
 </ListPreference>
 </PreferenceCategory>
 <Preference
 android:title="Submit"
 android:key="submitPref" />
</PreferenceScreen>

We can see that the Preference Views are shown in two categories: Category
1 and Category 2. Category 1 includes two Preference Views: a CheckBoxPreference and
anEditTextPreference. Category 2 includes the RingtonePreference and ListPreference.
Every Preference View needs to have an android:key value that is used to identify and
access its value. The android:title attribute is used to assign initial text to the Preference
View, and theandroid:defaultValue attribute is used to assign a default value to
the Preference View.

The CheckBoxPreference displays a check box as its UI element, and it stores a value
in Boolean form—either true or false. The value true is stored when the check box
in CheckBoxPreferenceis selected, and false when the check box is not selected. The default
value false is assigned to theCheckBoxPreference using the android:defaultValue attribute.

The EditTextPreference is assigned the Namekey key, and the title Enter your
name: appears as the text of the Preference View. When the EditTextPreference is selected,
a dialog titledEnter your information is displayed, asking the user to enter information.
When the user clicksOK, the entered information is saved to the preference store.

The RingtonePreference opens a dialog box showing the list of ringtones, allowing
the user to select a default ringtone or silent mode. The key assigned to
the RingtonePreference isAudio, and the dialog box is assigned the title Select sound.
The android:ringtoneTypeattribute helps in determining the list of ringtones to be
displayed. Valid values forandroid:ringtoneType attribute are ringtone, notification, alarm,
and all.

The ListPreference shows a dialog box listing a set of preferences in the form of radio
buttons, allowing the user to select one of them. The dialog box is titled Choose a fruit and
is assigned the key fruits_list. The android:entries attribute assigns a string array
named fruits to theListPreference to show the list of preferences. That is, the elements in
the fruits array display text for the radio buttons displayed via the ListPreference.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 158

The android:entryValues attribute defines another array, fruitselected, to hold the values of
the elements defined in the fruitsarray. The android:entryValues attribute represents an
array that stores the values corresponding to the radio button selected by the user.

The <Preference> elements display a Submit button in the PreferenceFragment that
users click after selecting the desired preferences from Preference Views to either store the
preferences or perform another action. The Submit button is assigned the
key submitPref, which is used to identify it in the Java code.

Next, we need to define two arrays in the strings.xml resource file: one to display text
for the radio button in the ListPreference and the second to store the values of
the corresponding elements in the first array. After we define the two arrays,
the strings.xml file appears as shown in Listing 6.37.

Listing 6.37. The Strings Resource File strings.xml After Defining the Two Arrays

<resources>
 <string name="app_name">PreferenceFragApp</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_preference_frag_app">PreferenceFragAppActivity</string>
 <string-array name="fruits">
 <item>Apple</item>
 <item>Mango</item>
 <item>Orange</item>
 <item>Grapes</item>
 <item>Banana</item>
 </string-array>
 <string-array name="fruitselected">
 <item>You have selected Apple</item>
 <item>You have selected Mango</item>
 <item>You have selected Orange</item>
 <item>You have selected Grapes</item>
 <item>You have selected Banana</item>
 </string-array>
</resources>

The elements in the fruits array are used to display text for the radio buttons shown
in theListPreference, and the elements in the fruitsselected array show the values that are
returned if the corresponding elements in the fruits array are selected.
To load the Preference Views defined in preferences.xml, a Java class file
calledPrefActivity.java is added to the project. Write the code shown in Listing 6.38 into the
Java class file PrefActivity.java.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis37
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis38

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 159

Listing 6.38. Code Written into PreferenceFragment PrefActivity.java

package com.androidunleashed.preferencefragapp;

import android.os.Bundle;
import android.app.Activity;
import android.preference.Preference;
import android.preference.Preference.OnPreferenceClickListener;
import android.preference.PreferenceFragment;

public class PrefActivity extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getFragmentManager().beginTransaction().replace(android.R.id.content, new
PrefsFragment()).commit();
 }

 public static class PrefsFragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.preferences);
 Preference submitPref = (Preference) findPreference("submitPref");
 submitPref.setOnPreferenceClickListener(new OnPreferenceClickListener()
{
 public boolean onPreferenceClick(Preference preference) {
 getActivity().finish();
 return true;
 }
 });
 } }}

To create the PreferenceFragment, a Java class called PrefsFragment is defined that
extends thePreferenceFragment class. The addPreferencesFromResource() method is called
to load thePreference Views in the PreferenceFragment from the XML file preferences.xml.
TheSubmit button defined in the preferences.xml file through the <Preference> element is
accessed and mapped to
the Preference object submitPref. An OnPreferenceClickListenerevent handler is added to
the submitPref object. Its callback method, onPreferenceClick(), is implemented, which
executes when the submitPref Button is clicked. In theonPreferenceClick() method, we
finish by closing the PreferenceFragment and returning toPreferenceFragActivity.java to
take necessary action on the selected preferences. Through the Java activity

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 160

file PreferenceFragAppActivity.java, we display the preferences selected by the user
via TextView controls.

To display the options selected from the Preference Views shown in
the PreferenceFragment, we need to define four TextView controls in the layout
file activity_preference_frag.xml. After defining the
four TextView controls activity_preference_frag_app.xml appears as shown in Listing 6.39.

Listing 6.39. The Layout File activity_preference_frag_app.xml After Adding the
FourTextView Controls

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/pizza"/>
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/name"/>
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/ringtone"/>
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/fruit"/>
</LinearLayout>

We can see that the four TextView controls are assigned the
IDs pizza, name, ringtone, andfruit. The TextView controls are vertically arranged inside
the LinearLayout container. Thepizza TextView is used to indicate whether the user has
checked the check box in theCheckBoxPreference. The name TextView is used to display
the name entered by the user in theEditTextPreference. The ringtone TextView is used to
display the type of ring tone selected by the user in the RingtonePreference. The fruit
TextView is used to display the fruit selected by the user in the ListPreference.

To display the PreferenceFragment and show the preferences selected by the user,
we need to write the code shown in Listing 6.40 into the main activity
file PreferenceFragAppActivity.java.

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis39
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06lis40

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 161

Listing 6.40. Code Written into the Main Activity File PreferenceFragAppActivity.java

package com.androidunleashed.preferencefragapp;
import android.app.Activity;
import android.os.Bundle;
import android.content.Intent;
import android.preference.PreferenceManager;
import android.content.SharedPreferences;
import android.widget.TextView;

public class PreferenceFragAppActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_preference_frag_app);
 startActivity(new Intent(this, PrefActivity.class));
 }

 @Override
 public void onResume() {
 super.onResume();
 SharedPreferences prefs=PreferenceManager.getDefaultSharedPreferences(this);
 TextView pizza=(TextView)findViewById(R.id.pizza);
 TextView name=(TextView)findViewById(R.id.name);
 TextView ringtone=(TextView)findViewById(R.id.ringtone);
 TextView fruit=(TextView)findViewById(R.id.fruit);
 if(Boolean.valueOf(prefs.getBoolean("Pizzakey", false)))
 pizza.setText("You have selected Pizza");
 else
 pizza.setText("");
 ringtone.setText("The ringtone selected is "+prefs.getString("Audio",
"Silent"));
 name.setText("The name entered is "+prefs.getString("Namekey",""));
 String selectedFruit = prefs.getString("fruits_list", "Apple");
 fruit.setText(selectedFruit);
 }
}

To display the PreferenceFragment, its activity class, PrefActivity.class, is started. To
show the preferences selected by the user in the PreferenceFragment, the TextView
controls defined in the layout file main.xml are accessed and mapped to
the TextView objects. The pizza, name,ringtone, and fruit TextViews are mapped to
the TextView objects pizza, name, ringtone, and fruit, respectively.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 162

To find the options selected in the Preference Views, a SharedPreferences object
called prefsis created. To read the value of CheckBoxPreference, we access the shared
preferences and call thegetBoolean() method, passing the key of
the CheckBoxPreference to it. When theCheckBoxPreference Pizzakey key is passed to
the getBoolean() method of theSharedPreference instance, it returns true or false,
indicating whether the check box inCheckBoxPreference is checked.

Thereafter, EditTextPreference is accessed by passing its Namekey key to
the getString()method of the SharedPreference instance. Similarly,
the RingtonePreference andListPreference are accessed by passing their
keys, Audio and fruits_list, to thegetString() method of the SharedPreference instance. The
preferences selected by the user in the Preference Views are displayed
via TextView controls.
To make the newly added activity PrefActivity.java visible to Android, it is declared
inAndroidManifest.xml by adding the following statement in it:

<activity android:name=".PrefActivity" android:label="@string/app_name" />

After running the application, we see the Preference Views defined in Category
1 andCategory 2. The CheckBoxPreference check box is unchecked by default. When the
check box is selected, it is checked, as shown in Figure 6.14 (left). When
the EditTextPreference with the textEnter your name: is selected, a dialog box titled Enter
your information pops up. We can enter a name or cancel the operation by
selecting Cancel. Let’s enter Troy as shown in Figure 6.14(middle), then click OK to go back
to the PreferenceFragment. When Select sound is clicked and which
represents RingtonePreference, a dialog box prompting the user to select a ringtone type is
opened, as shown in Figure 6.14 (right).

Figure 6.14. A PreferenceFragment showing different Preference Views (left),
theEditTextPreference prompting for information (middle), and
the RingtonePreferenceprompting to select a ringtone type (right)

Let’s select a Default ringtone followed by clicking the OK button to return to
thePreferenceFragment. After we select the ListPreference represented by Fruits List, a
dialog box titled Choose a fruit opens up showing several fruits in the form of radio buttons,
as shown in Figure 6.15 (left). Let’s select Orange. On selecting a fruit, we automatically

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig14
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig14
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig14
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig15

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 163

return to thePreferenceFragment. Finally, we click the Submit button at the bottom of
thePreferenceFragment to close the fragment and display the selected preferences. All the
selected preferences are shown through the TextView controls, as shown in Figure
6.15 (right).

Figure 6.15. The ListPreference showing selectable fruits in the form of radio buttons
(left) and all the selected preferences displayed via TextView controls (right)

https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig15
https://www.safaribooksonline.com/library/view/androidtm-programming-unleashed/9780133151732/ch06.html#ch06fig15

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 164

MAD- UNIT-5

Unit 5: Building Menus and Storing Data: Creating Interface Menus and Action Bars, Menus and Their Types, Creating

Menus Through XML, Creating Menus Through Coding, Applying a Context Menu to a List View, Using the Action Bar,

Replacing a Menu with the Action Bar, Creating a Tabbed Action Bar, Creating a Drop-Down List Action Bar Using

Databases: Using the SQLiteOpenHelperclasss, Accessing Databases with the ADB, Creating a Data Entry Form,

Communicating with SMS and Emails: Understanding Broadcast Receivers, Using the Notification System, Sending

SMS Messages with Java Code, Receiving SMS Messages, Sending Email, Working With Telephony Manager.

Q1. EXPLAIN CREATING INTERFACE MENUS. WRITE ABOUT DIFFERENT TYPES OF MENUS IN ANDROID?

Creating Interface Menus and Action Bars:

Menus are a common user interface component in many types of applications. To provide a familiar and
consistent user experience, we should use the Menu APIs to present user actions and other options in our

activities. Android Option Menus are the primary menus of android. They can be used for settings, search,

delete item etc.

Beginning with Android 3.0 (API level 11), Android-powered devices are no longer required to provide a
dedicated Menu button. With this change, Android apps should migrate away from a dependence on the
traditional 6-item menu panel and instead provide an app bar to present common user actions.

Although the design and user experience for some menu items have changed, the semantics to define a
set of actions and options is still based on the Menu APIs.

Three fundamental types of menus or action presentations on all versions of Android:

Options menu and app bar
The options menu is the primary collection of menu items for an activity. It's where we should place
actions that have a global impact on the app, such as "Search," "Compose email," and "Settings."

Context menu and contextual action mode
A context menu is a floating menu that appears when the user performs a long-click on an element.
It provides actions that affect the selected content or context frame.

The contextual action mode displays action items that affect the selected content in a bar at the top
of the screen and allows the user to select multiple items.

Popup menu
A popup menu displays a list of items in a vertical list that's anchored to the view that invoked the
menu. It's good for providing an overflow of actions that relate to specific content or to provide
options for a second part of a command. Actions in a popup menu should not directly affect the
corresponding content—that's what contextual actions are for. Rather, the popup menu is for
extended actions that relate to regions of content in your activity.

https://developer.android.com/reference/android/view/Menu
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/guide/topics/ui/menus#options-menu
https://developer.android.com/guide/topics/ui/menus#FloatingContextMenu
https://developer.android.com/guide/topics/ui/menus#CAB

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 165

Creating an Options Menu

Figure 1. Options menu in the Browser.

The options menu is where you should include actions and other options that are relevant to the current
activity context, such as "Search," "Compose email," and "Settings."

Where the items in our options menu appear on the screen depends on the version for which we developed
our application:

If we developed our application for Android 2.3.x (API level 10) or lower, the contents of our options
menu appear at the top of the screen when the user presses the Menu button, as shown in figure 1. When
opened, the first visible portion is the icon menu, which holds up to six menu items. If our menu includes
more than six items, Android places the sixth item and the rest into the overflow menu, which the user can
open by selecting More.

If we developed application for Android 3.0 (API level 11) and higher, items from the options menu are
available in the app bar. By default, the system places all items in the action overflow, which the user can
reveal with the action overflow icon on the right side of the app bar (or by pressing the device Menu button,
if available). To enable quick access to important actions, it can promote a few items to appear in the app
bar by adding android:showAsAction="ifRoom" to the corresponding <item> elements

You can declare items for the options menu from either your Activity subclass or a Fragment subclass. If

both your activity and fragment(s) declare items for the options menu, they are combined in the UI. The
activity's items appear first, followed by those of each fragment in the order in which each fragment is
added to the activity. If necessary, you can re-order the menu items with
the android:orderInCategory attribute in each <item> you need to move.

To specify the options menu for an activity, override onCreateOptionsMenu() (fragments provide their

own onCreateOptionsMenu() callback). In this method, you can inflate your menu resource (defined in

XML) into the Menu provided in the callback.

public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.game_menu, menu);

 return true;

}

We can also add menu items using add() and retrieve items with findItem() to revise their properties

with MenuItem APIs.

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/reference/android/app/Activity#onCreateOptionsMenu(android.view.Menu)
https://developer.android.com/reference/android/app/Fragment#onCreateOptionsMenu(android.view.Menu,%20android.view.MenuInflater)
https://developer.android.com/guide/topics/ui/menus#xml
https://developer.android.com/guide/topics/ui/menus#xml
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/reference/android/app/Activity#getMenuInflater()
https://developer.android.com/reference/android/view/Menu#add(int,%20int,%20int,%20int)
https://developer.android.com/reference/android/view/Menu#findItem(int)
https://developer.android.com/reference/android/view/MenuItem

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 166

Handling click events

When the user selects an item from the options menu (including action items in the app bar), the system
calls your activity's onOptionsItemSelected() method. This method passes the MenuItem selected. We

can identify the item by calling getItemId(), which returns the unique ID for the menu item (defined by

the android:id attribute in the menu resource or with an integer given to the add() method). We can

match this ID against known menu items to perform the appropriate action.

public boolean onOptionsItemSelected(MenuItem item) {

 // Handle item selection

 switch (item.getItemId()) {

 case R.id.new_game:

 newGame();

 return true;

 case R.id.help:

 showHelp();

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

Creating Contextual Menus
Android context menu appears when user press long click on the element. It is also known as floating menu.
A contextual menu offers actions that affect a specific item or context frame in the UI. You can provide a
context menu for any view, but they are most often used for items in a ListView, GridView, or other view

collections in which the user can perform direct actions on each item. It doesn't support item shortcuts and

icons.

There are two ways to provide contextual actions:

• In a floating context menu. A menu appears as a floating list of menu items (similar to a dialog) when the
user performs a long-click (press and hold) on a view that declares support for a context menu. Users can
perform a contextual action on one item at a time.

• In the contextual action mode. This mode is a system implementation of ActionMode that displays

a contextual action bar at the top of the screen with action items that affect the selected item(s). When this
mode is active, users can perform an action on multiple items at once (if your app allows it).

Creating a floating context menu

To provide a floating context menu:
1. Register the View to which the context menu should be associated by

calling registerForContextMenu() and pass it the View.

If your activity uses a ListView or GridView and you want each item to provide the same context menu,

register all items for a context menu by passing
the ListView or GridView to registerForContextMenu().

2. Implement the onCreateContextMenu() method in your Activity or Fragment.

https://developer.android.com/reference/android/app/Activity#onOptionsItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/view/MenuItem
https://developer.android.com/reference/android/view/MenuItem#getItemId()
https://developer.android.com/reference/android/view/Menu#add(int,%20int,%20int,%20int)
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/GridView
https://developer.android.com/guide/topics/ui/menus#FloatingContextMenu
https://developer.android.com/guide/topics/ui/menus#CAB
https://developer.android.com/reference/android/view/ActionMode
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/app/Activity#registerForContextMenu(android.view.View)
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/GridView
https://developer.android.com/reference/android/widget/ListView
https://developer.android.com/reference/android/widget/GridView
https://developer.android.com/reference/android/app/Activity#registerForContextMenu(android.view.View)
https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Fragment

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 167

When the registered view receives a long-click event, the system calls
your onCreateContextMenu() method. This is where you define the menu items, usually by inflating a

menu resource.

public void onCreateContextMenu(ContextMenu menu, View v,

 ContextMenuInfo menuInfo) {

 super.onCreateContextMenu(menu, v, menuInfo);

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.context_menu, menu);

}

1. MenuInflater allows you to inflate the context menu from a menu resource. The callback method

parameters include the View that the user selected and a ContextMenu.ContextMenuInfo object that

provides additional information about the item selected. If your activity has several views that each provide
a different context menu, you might use these parameters to determine which context menu to inflate.

2. Implement onContextItemSelected()

3. public boolean onContextItemSelected(MenuItem item) {

 AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuInfo();

 switch (item.getItemId()) {

 case R.id.edit:

 editNote(info.id);

 return true;

 case R.id.delete:

 deleteNote(info.id);

 return true;

 default:

 return super.onContextItemSelected(item);

 }

}

4. The getItemId() method queries the ID for the selected menu item, which you should assign to each

menu item in XML using the android:id attribute, as shown in the section about Defining a Menu

in XML.

5. When you successfully handle a menu item, return true. If you don't handle the menu item, you

should pass the menu item to the superclass implementation. If your activity includes fragments, the
activity receives this callback first. By calling the superclass when unhandled, the system passes
the event to the respective callback method in each fragment, one at a time (in the order each
fragment was added) until true or false is returned. (The default implementation

for Activity and android.app.Fragment return false, so you should always call the superclass

when unhandled.)

Using the contextual action mode

The contextual action mode is a system implementation of ActionMode that focuses user interaction toward

performing contextual actions. When a user enables this mode by selecting an item, a contextual action
bar appears at the top of the screen to present actions the user can perform on the currently selected
item(s). While this mode is enabled, the user can select multiple items (if you allow it), deselect items, and
continue to navigate within the activity (as much as you're willing to allow). The action mode is disabled and
the contextual action bar disappears when the user deselects all items, presses the BACK button, or
selects the Done action on the left side of the bar.

https://developer.android.com/reference/android/view/View.OnCreateContextMenuListener#onCreateContextMenu(android.view.ContextMenu,%20android.view.View,%20android.view.ContextMenu.ContextMenuInfo)
https://developer.android.com/reference/android/view/MenuInflater
https://developer.android.com/guide/topics/resources/menu-resource
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/ContextMenu.ContextMenuInfo
https://developer.android.com/reference/android/app/Activity#onContextItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/view/MenuItem#getItemId()
https://developer.android.com/guide/topics/ui/menus#xml
https://developer.android.com/guide/topics/ui/menus#xml
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/view/ActionMode

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 168

Creating a Popup Menu

A PopupMenu is a modal menu anchored to a View. Android Popup Menu displays the menu below the

anchor text if space is available otherwise above the anchor text. It disappears if you click outside the popup

menu.

The android.widget.PopupMenu is the direct subclass of java.lang.Object class. It's useful for:

• Providing an overflow-style menu for actions that relate to specific content

• Providing a second part of a command sentence (such as a button marked "Add" that produces a
popup menu with different "Add" options).

• Providing a drop-down similar to Spinner that does not retain a persistent selection.

If we define our menu in XML, here's how we can show the popup menu:

1. Instantiate a PopupMenu with its constructor, which takes the current application Context and the View to

which the menu should be anchored.

2. Use MenuInflater to inflate your menu resource into the Menu object returned by PopupMenu.getMenu().

3. Call PopupMenu.show().

4. <ImageButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/ic_overflow_holo_dark"

 android:contentDescription="@string/descr_overflow_button"

 android:onClick="showPopup" />

The activity can then show the popup menu like this:

public void showPopup(View v) {

 PopupMenu popup = new PopupMenu(this, v);

 MenuInflater inflater = popup.getMenuInflater();

 inflater.inflate(R.menu.actions, popup.getMenu());

 popup.show();

}

In API level 14 and higher, we can combine the two lines that inflate the menu with PopupMenu.inflate().

The menu is dismissed when the user selects an item or touches outside the menu area. We can listen for

the dismiss event using PopupMenu.OnDismissListener.

https://developer.android.com/reference/android/widget/PopupMenu
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/widget/Spinner
https://developer.android.com/guide/topics/ui/menus#xml
https://developer.android.com/reference/android/widget/PopupMenu
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/MenuInflater
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/reference/android/widget/PopupMenu#getMenu()
https://developer.android.com/reference/android/widget/PopupMenu#show()
https://developer.android.com/reference/android/widget/PopupMenu#inflate(int)
https://developer.android.com/reference/android/widget/PopupMenu.OnDismissListener

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 169

Using checkable menu items

Figure 5. Screenshot of a submenu with checkable items.

A menu can be useful as an interface for turning options on and off, using a checkbox for stand-alone
options, or radio buttons for groups of mutually exclusive options. Figure 5 shows a submenu with items
that are checkable with radio buttons.

We can define the checkable behavior for individual menu items using the android:checkable attribute in

the <item> element, or for an entire group with the android:checkableBehavior attribute in

the <group> element. For example, all items in this menu group are checkable with a radio button:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">

 <item android:id="@+id/red"

 android:title="@string/red" />

 <item android:id="@+id/blue"

 android:title="@string/blue" />

 </group>

</menu>

The android:checkableBehavior attribute accepts either:

Single : Only one item from the group can be checked (radio buttons)

All : All items can be checked (checkboxes)

None : No items are checkable

We can apply a default checked state to an item using the android:checked attribute in

the <item> element and change it in code with the setChecked() method.

When a checkable item is selected, the system calls our respective item-selected callback method (such
as onOptionsItemSelected()). It is here that we must set the state of the checkbox, because a checkbox

or radio button does not change its state automatically. We can query the current state of the item (as it
was before the user selected it) with isChecked() and then set the checked state with setChecked().

https://developer.android.com/reference/android/view/MenuItem#setChecked(boolean)
https://developer.android.com/reference/android/app/Activity#onOptionsItemSelected(android.view.MenuItem)
https://developer.android.com/reference/android/view/MenuItem#isChecked()
https://developer.android.com/reference/android/view/MenuItem#setChecked(boolean)

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 170

public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.vibrate:

 case R.id.dont_vibrate:

 if (item.isChecked()) item.setChecked(false);

 else item.setChecked(true);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

Q2. EXPLAIN DEFINING A MENU THROUGH XML?

Defining a Menu in XML

For all menu types, Android provides a standard XML format to define menu items. Instead of building a
menu in our activity's code, We should define a menu and all its items in an XML menu resource. We can
then inflate the menu resource (load it as a Menu object) in our activity or fragment.

Using a menu resource is a good practice for a few reasons:

• It's easier to visualize the menu structure in XML.
• It separates the content for the menu from your application's behavioral code.
• It allows you to create alternative menu configurations for different platform versions, screen sizes, and

other configurations by leveraging the app resources framework.

To define the menu, create an XML file inside our project's res/menu/ directory and build the menu with

the following elements:
<menu>

Defines a Menu, which is a container for menu items. A <menu> element must be the root node for

the file and can hold one or more <item> and <group> elements.
<item>

Creates a MenuItem, which represents a single item in a menu. This element may contain a

nested <menu> element in order to create a submenu.
<group>

An optional, invisible container for <item> elements. It allows us to categorize menu items so they

share properties such as active state and visibility.
Here's an example menu named game_menu.xml:
<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/new_game"

 android:icon="@drawable/ic_new_game"

 android:title="@string/new_game"

 android:showAsAction="ifRoom"/>

 <item android:id="@+id/help"

 android:icon="@drawable/ic_help"

 android:title="@string/help" />

</menu>

The <item> element supports several attributes we can use to define an item's appearance and behavior.

The items in the above menu include the following attributes:
android:id : A resource ID that's unique to the item, which allows the application to recognize the item

when the user selects it.
android:icon: A reference to a drawable to use as the item's icon.

android:title: A reference to a string to use as the item's title.

android:showAsAction : Specifies when and how this item should appear as an action item in the app

bar.

https://developer.android.com/guide/topics/resources/menu-resource
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/guide/topics/resources
https://developer.android.com/reference/android/view/Menu
https://developer.android.com/reference/android/view/MenuItem

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 171

To use the menu in our activity, we need to inflate the menu resource (convert the XML resource into a
programmable object) using MenuInflater.inflate().

Q3. EXPLAIN CREATING MENU THROUGH JAVA CODE?

Creating Menus Through Coading:
To implement an options menu for an Activity in an Android app, a few fairly straightforward steps are
required.
Step 1: Open an Activity Class
Select your application package and choose “File”, “New”, then “Class” and enter a name of your choice.
Remember to make your class extend the Activity class and add it to the application Manifest.
Step 2: Create a Resources Folder
The “res” folder holds all of your application resources. To create a menu, you need a menu folder, so
create one inside the “res” folder by selecting it and choosing “File”, “New”, then “Folder” and entering
“menu” as the name.

our new folder will appear within the “res” directory:

Step 3: Create a Menu XML File
Choose the folder and create a new file by selecting “File”, “New”, then “File” and entering a name.You can
choose any filename you like, for example “my_options_menu.xml”.
<menu xmlns:android=”http://schemas.android.com/apk/res/android">
</menu>
Step 4: Add Items to our Menu
You can add one or more items to your options menu depending on the needs of your own project. Add an
item for each menu option using the following syntax:
<item android:id=”@+id/about”
android:title=”About” />
<item android:id=”@+id/help”

https://developer.android.com/reference/android/view/MenuInflater#inflate(int,%20android.view.Menu)
http://www.credosystemz.com/training-in-chennai/best-android-training-in-chennai/
http://www.credosystemz.com/training-in-chennai/best-android-training-in-chennai/

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 172

android:title=”Help” />
Step 5: Create Icons for our Menu Items
Once you have your icons in their folders, you can alter your menu item XML to include them as follows:
<item android:id=”@+id/about”
android:icon=”@drawable/about”
android:title=”About” />
<item android:id=”@+id/help”
android:icon=”@drawable/help”
android:title=”Help” />
Step 6: Inflate our Menu Resource
Add the following method to your Java code, inside the class declaration and after the “onCreate” method:
public boolean onCreateOptionsMenu(Menu menu) {
MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.my_options_menu, menu);
return true;
}

Step 7: Detect User Interaction
Add the following method outline after the “onCreateOptionsMenu” method:
public boolean onOptionsItemSelected(MenuItem item) {
//respond to menu item selection
}
Step 8: Respond to Menu Item Selection
Add a switch statement to your method using the following sample syntax:
switch (item.getItemId()) {
case R.id.about:
startActivity(new Intent(this, About.class));
return true;
case R.id.help:
startActivity(new Intent(this, Help.class));
return true;
default:
return super.onOptionsItemSelected(item);
}

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 173

Q4. EXPLAIN HOW CONTEX MENU IS CREATING USING LISTVIEW?

Android Context Menu Example
Android context menu appears when user press long click on the element. It is also known as floating menu.

It affects the selected content while doing action on it.It doesn't support item shortcuts and icons.
A contextual actionbar is a menu that is activated when user long press on a specific item.

The contextual menu can be applied to almost all views but it is usually used with ListView.

A contextual menu offers actions that affect a specific item or context frame in the UI. You
can provide a context menu for any view, but they are most often used for items in
a ListView, GridView, or other view collections in which the user can perform direct actions

on each item.

There are two ways to provide contextual actions:

• In a floating context menu. A menu appears as a floating list of menu items (similar to
a dialog) when the user performs a long-click (press and hold) on a view that declares

support for a context menu. Users can perform a contextual action on one item at a
time.

• In the contextual action mode. This mode is a system implementation of Action
Modethat displays a contextual action barat the top of the screen with action items that
affect the selected item(s). When this mode is active, users can perform an action on

multiple items at once (if your app allows it).

We can distinguish two different type of contextual menu:

▪ Floating menu
▪ Contextual action mode (ActionMode)

The floating menu is used with Android version lower than 3.0 (API level 11). It is essentially a menu that
appears when an user long click on an ListView item. ContextMenu support has been in android since API
level 1. It’s an extension of menu and implements Menu interface. It’s actually an interface itself.

To create Android ListView context menu, we have first to define a ActionMode.CallBack interface. This
interface is called when an user long clicks on an ListView item. The code looks like:
private ActionMode.Callback modeCallBack = new ActionMode.Callback()
{
public boolean onPrepareActionMode(ActionMode mode, Menu menu)
return false;
}

public void onDestroyActionMode(ActionMode mode) {
mode = null;
}
public boolean onCreateActionMode(ActionMode mode, Menu menu) {
return true;
}
public boolean onActionItemClicked(ActionMode mode, MenuItem item) {
}
};

http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/GridView.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 174

Let's see the simple example of context menu in android.

activity_main.xml

Drag one listview from the pallete, now the xml file will look like this:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/re

s/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="example.javatpoint.com.contextmenu.MainActivity">

 <ListView

 android:layout_width="368dp"

 android:layout_height="495dp"

 android:id="@+id/listView"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="8dp"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.0"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Create a separate menu_main.xml file in menu directory for menu items.

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/call"

 android:title="Call" />

 <item android:id="@+id/sms"

 android:title="SMS" />

</menu>

MainActivity.java

package example.javatpoint.com.contextmenu;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.MenuInflater;

import android.view.MenuItem;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 175

 ListView listView;

 String contacts[]={"Ajay","Sachin","Sumit","Tarun","Yogesh"};

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 listView=(ListView)findViewById(R.id.listView);

 ArrayAdapter<String> adapter=new ArrayAdapter<String>(this,android.R.layout.simple_list_item

_1,contacts);

 listView.setAdapter(adapter);

 // Register the ListView for Context menu

 registerForContextMenu(listView);

 }

 @Override

 public void onCreateContextMenu(ContextMenu menu, View v, ContextMenu.ContextMenuInfo menu

Info)

 {

 super.onCreateContextMenu(menu, v, menuInfo);

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.menu_main, menu);

 menu.setHeaderTitle("Select The Action");

 }

 @Override

 public boolean onContextItemSelected(MenuItem item){

 if(item.getItemId()==R.id.call){

 Toast.makeText(getApplicationContext(),"calling code",Toast.LENGTH_LONG).show();

 }

 else if(item.getItemId()==R.id.sms){

 Toast.makeText(getApplicationContext(),"sending sms code",Toast.LENGTH_LONG).show();

 }else{

 return false;

 }

 return true;

 }

}

Q4. EXPLAIN THE ROLE OF ANDROID ACTION BAR. OR EXPLAIN HOW
ACTION BARS CAN BE USED IN CREATING MENUS.?

Android Action Bar
The action bar is an important design element, usually at the top of each screen in an app, that provides a
consistent familiar look between Android apps. It is used to provide better user interaction and experience
by supporting easy navigation through tabs and drop-down lists. It also provides a space for the app or
activity’s identity, thus enabling the user to know their location in the app, and easy access to the actions
that can be performed.

The toolbar bar (formerly known as action bar) is represented as of Android 5.0 via the Toolbar view group. It
can be freely positioined into your layout file. It can display the activity title, icon, actions which can be
triggered, additional views and other interactive items. It can also be used for navigation in your application.

Before Android 5.0 the location of the toolbar (actionbar) was hard coded to the top of the activity. It is
possible to disable the toolbar via the used theme, but the default Android themes have it enabled.

The following screenshot shows the toolbar of the Google+ Android application with interactive items and a
navigation bar. On top it also indicates that the user can open a navigation bar on the side of the
application.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 176

The action bar was introduced in Android 3.0, although support for older versions can be achieved by using
the Android Support Library. Before its release, the Options Menu was usually used to provide the actions
and functionality that are now put on the action bar. The action bar is included by default in all activities
for apps with a minSdkVersion of 11. You can disable it and opt to only use the options menu, but for better
user experiences it’s better to use the action bar as it is visible to the user, while the options menu needs
the user to request it and the user might not be aware of its existence in the first place.

Setting up the Action Bar

To start off, we are going to create a new project. Make sure to select a minimum SDK version of 11 or
above. When we run our project, the action bar will be included at the top of our app’s screen. It is
included in all activities that use or inherit from the Theme.Holo theme – which is the default when
the minSdkVersion is set to 11 or greater. A typical action bar is shown in the following figure.

The action bar consists of:

• App icon – This is used to identify your app with a logo or icon.
• View control – This can also be used to identify the app or the specific activity the user is on by the

title. If your app has different views, it can also be used to display these and allow for easy
switching between views.

• Action buttons – These are used to display the most important and/or often used actions. If there
isn’t enough space to show all of the action buttons, those that don’t fit are automatically moved to
the action overflow.

• Action overflow – This is used for the lesser used actions.

Adding Actions to the Action Bar

To add actions to the action bar, create a XML file in the res/menu directory where you will define each
action. It is possible to define the actions in Java code, but you will write less code if you use XML. The
contents of res/menu/main_activity_bar.xml are shown below.

Creating actions in the toolbar

Entries in the toolbar are typically called actions. While it is possible to create entries in the action bar via
code, it is typically defined in an XML resource file.

Each menu definition is contained in a separate file in the res/menu folder. The Android tooling
automatically creates a reference to menu item entries in the R file, so that the menu resource can be
accessed.

An activity adds entries to the action bar in its onCreateOptionsMenu() method.

The showAsAction attribute allows you to define how the action is displayed. For example, the ifRoom attribute
defines that the action is only displayed in the action bar if there is sufficient screen space available.
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item
 android:id="@+id/action_refresh"
 android:orderInCategory="100"

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/reference/android/R.style.html#Theme_Holo

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 177

 android:showAsAction="always"
 android:icon="@drawable/ic_action_refresh"
 android:title="Refresh"/>
 <item
 android:id="@+id/action_settings"
 android:title="Settings">
 </item>

</menu>

Next, add the string literals to res/values/strings.xml, as shown below.
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">ActionBar</string>
 <string name="action_settings">Settings</string>
 <string name="action_search">Search</string>
 <string name="action_record">Record Video</string>
 <string name="action_save">Save</string>
 <string name="action_label">Add Label</string>
 <string name="action_play">Play Video</string>
 <string name="hello_world">Hello world!</string>
</resources>
The icon attribute takes a resource ID for an image which will appear on the action bar with or without
the title. To display the action title add withText to showAsAction. For example you could
use android:showAsAction="ifRoom|withText" to indicate that if there is room on the bar for the action button
and text, they should both be shown. To force an action to always be displayed, use always on showAsAction.
However, this is not advisable as it might cause undesirable layout effects on smaller screens. If you must,
limit it to one or two items.

• The title will be used in the overflow if there isn’t enough space on the action bar for the action
item.

• It might not be obvious to the user what the action item does just from its icon alone and so
providing a title enables them to long press it to reveal a tool-tip that displays the title.

• The title provides accessibility for sight-impaired users, as the screen reader can read the menu
item’s title.

Next, we need to implement the onCreateOptionsMenu() callback method in our activity. This inflates the
menu resource into the given Menu object for use in the action bar.
The code for this function is shown below.
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.main_activity_bar, menu);
 return super.onCreateOptionsMenu(menu);
}
Run the project and you should see something similar to the following figure. Some action buttons appear
on the action bar while the rest can be seen on the expanded action overflow. On changing to landscape
view, the action bar automatically adapts to the new width and displays more actions according to the
guidelines given in the XML file.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 178

Q5. EXPLAIN CREATING A DROP-DOWN LIST ACTION BAR?
Creating a Drop-Down List Action Bar

Android ActionBar supports different navigation types within activities. Eclipse + ADT and Android

studio both support this kind of navigation and we can find everything we need to implement it.

To enable the drop down navigation in our Activity we can create a new project and we reach the

last step before confirming everything we have:

To enable the drop down navigation we have to get the Actionbar reference and the set the

navigation type we want, in our case NAVIGATION_MODE_LIST. If we look at the code generated we

notice:

[java]// Set up the action bar to show a dropdown list.

final ActionBar actionBar = getActionBar();

actionBar.setDisplayShowTitleEnabled(false);

actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);

Android Actionbar: Implementing the navigation item

We need to create a list of item corresponding to the action we want to support. we have to create a

menu with different items. The drop down list is implemented like a Spinner. Spinner is android view

that displays one at time and user can select one item among a list of items. So to create our drop

down navigation list we need simply populate a spinner. To populate a spinner we need an Adapter,

in our case a simple ArrayAdapter, so we have:

ArrayList<String> itemList = new ArrayList<String>();

itemList.add(“Section 1”);

itemList.add(“Section 2”);

ArrayAdapter<String> aAdpt = new ArrayAdapter<String>(this, android.R.layout.simple_list_item_1,

android.R.id.text1, itemList);

https://lh4.ggpht.com/-uvNceB3uAK8/Ueag2gFjUsI/AAAAAAAAAqg/Lw9Jr5ahk0o/s1600-h/Immagine1%5B3%5D.png

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 179

It uses getActionBarThemedContextCompat. Looking at this method code we find out that it

returns this for all the version below Ice Cream Sandwich and another value otherwise.

Now we have to assign our adapter to the Actionbar, we can do it using:

actionBar.setListNavigationCallbacks(aAddpt, this);

Implementing ActionBar.OnNavigationListener

As when user selects an item we implements ActionBar.OnNavigationListener that has only one

method to override:

public boolean onNavigationItemSelected(int position, long id) {

// Our logic

Now we have to activate the right view according to the item selected by user. Usually we can use

Fragment to enable the right UI.

Running the code we have:

Q6. EXPLAIN ABOUT ROLE OF SQLITE OPEN HELPER CLASS. OR EXPLAIN HOW MENUS ARE CAREATED

USINJG SQLITE OPEN HELPERCLASS?

Using the SQLiteOpenHelperclasss:
For maximum control over local data, developers can use SQLite directly by leveraging

SQLiteOpenHelper for executing SQL requests and managing a local database.

SQLite is an open-source relational database i.e. used to perform database operations on android

devices such as storing, manipulating or retrieving persistent data from the database.

It is embedded in android bydefault. So, there is no need to perform any database setup or administration

task.

The android.database.sqlite.SQLiteOpenHelper class is used for database creation and version management.

For performing any database operation, we have to provide the implementation

of onCreate() and onUpgrade() methods of SQLiteOpenHelper class.

Example of android SQLite database

package example.javatpoint.com.sqlitetutorial;

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
https://lh4.ggpht.com/-WVujheGQj9A/UeahDU00cUI/AAAAAAAAAqw/cXEDepRc310/s1600-h/android_drop_down_navigation_1%5B4%5D.png
https://lh3.ggpht.com/-YBhz-UmgxXo/UeahGL1UicI/AAAAAAAAArA/5ufqjfhGw3c/s1600-h/android_drop_down_navigation_2%5B3%5D.png

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 180

public class Contact {

 int _id;

 String _name;

 String _phone_number;

 public Contact(){ }

 public Contact(int id, String name, String _phone_number){

 this._id = id;

 this._name = name;

 this._phone_number = _phone_number;

 }

 public Contact(String name, String _phone_number){

 this._name = name;

 this._phone_number = _phone_number;

 }

 public int getID(){

 return this._id;

 }

 public void setID(int id){

 this._id = id;

 }

 public String getName(){

 return this._name;

 }

 public void setName(String name){

 this._name = name;

 }

 public String getPhoneNumber(){

 return this._phone_number;

 }

 public void setPhoneNumber(String phone_number){

 this._phone_number = phone_number;

 }

}

DatabaseHandler.java

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 181

Now, let's create the database handler class that extends SQLiteOpenHelper class and provides the

implementation of its methods.

package example.javatpoint.com.sqlitetutorial;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import java.util.ArrayList;

import java.util.List;

public class DatabaseHandler extends SQLiteOpenHelper {

 private static final int DATABASE_VERSION = 1;

 private static final String DATABASE_NAME = "contactsManager";

 private static final String TABLE_CONTACTS = "contacts";

 private static final String KEY_ID = "id";

 private static final String KEY_NAME = "name";

 private static final String KEY_PH_NO = "phone_number";

 public DatabaseHandler(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 //3rd argument to be passed is CursorFactory instance

 }

 // Creating Tables

 @Override

 public void onCreate(SQLiteDatabase db) {

 String CREATE_CONTACTS_TABLE = "CREATE TABLE " + TABLE_CONTACTS + "("

 + KEY_ID + " INTEGER PRIMARY KEY," + KEY_NAME + " TEXT,"

 + KEY_PH_NO + " TEXT" + ")";

 db.execSQL(CREATE_CONTACTS_TABLE);

 }

 // Upgrading database

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 // Drop older table if existed

 db.execSQL("DROP TABLE IF EXISTS " + TABLE_CONTACTS);

 // Create tables again

 onCreate(db);

 }

 // code to add the new contact

 void addContact(Contact contact) {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues values = new ContentValues();

 values.put(KEY_NAME, contact.getName()); // Contact Name

 values.put(KEY_PH_NO, contact.getPhoneNumber()); // Contact Phone

 // Inserting Row

 db.insert(TABLE_CONTACTS, null, values);

 //2nd argument is String containing nullColumnHack

 db.close(); // Closing database connection

 }

 // code to get the single contact
 Contact getContact(int id) {

 SQLiteDatabase db = this.getReadableDatabase();

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 182

 Cursor cursor = db.query(TABLE_CONTACTS, new String[] { KEY_ID,

 KEY_NAME, KEY_PH_NO }, KEY_ID + "=?",

 new String[] { String.valueOf(id) }, null, null, null, null);

 if (cursor != null)

 cursor.moveToFirst();

 Contact contact = new Contact(Integer.parseInt(cursor.getString(0)),

 cursor.getString(1), cursor.getString(2));

 // return contact

 return contact;

 }

 // code to get all contacts in a list view

 public List<Contact> getAllContacts() {

 List<Contact> contactList = new ArrayList<Contact>();

 // Select All Query

 String selectQuery = "SELECT * FROM " + TABLE_CONTACTS;

 SQLiteDatabase db = this.getWritableDatabase();

 Cursor cursor = db.rawQuery(selectQuery, null);

 // looping through all rows and adding to list

 if (cursor.moveToFirst()) {

 do {

 Contact contact = new Contact();

 contact.setID(Integer.parseInt(cursor.getString(0)));

 contact.setName(cursor.getString(1));

 contact.setPhoneNumber(cursor.getString(2));

 // Adding contact to list

 contactList.add(contact);

 } while (cursor.moveToNext());

 }

 // return contact list

 return contactList;

 }

 // code to update the single contact

 public int updateContact(Contact contact) {

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues values = new ContentValues();

 values.put(KEY_NAME, contact.getName());

 values.put(KEY_PH_NO, contact.getPhoneNumber());

 // updating row

 return db.update(TABLE_CONTACTS, values, KEY_ID + " = ?",

 new String[] { String.valueOf(contact.getID()) });

 }

 // Deleting single contact

 public void deleteContact(Contact contact) {

 SQLiteDatabase db = this.getWritableDatabase();

 db.delete(TABLE_CONTACTS, KEY_ID + " = ?",

 new String[] { String.valueOf(contact.getID()) });

 db.close();

 }

 // Getting contacts Count

 public int getContactsCount() {
 String countQuery = "SELECT * FROM " + TABLE_CONTACTS;

 SQLiteDatabase db = this.getReadableDatabase();

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 183

 Cursor cursor = db.rawQuery(countQuery, null);

 cursor.close();

 // return count

 return cursor.getCount();

 }

}

MainActivity.java

package example.javatpoint.com.sqlitetutorial;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import java.util.List;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 DatabaseHandler db = new DatabaseHandler(this);

 // Inserting Contacts

 Log.d("Insert: ", "Inserting ..");

 db.addContact(new Contact("Ravi", "9100000000"));

 db.addContact(new Contact("Srinivas", "9199999999"));

 db.addContact(new Contact("Tommy", "9522222222"));

 db.addContact(new Contact("Karthik", "9533333333"));

 // Reading all contacts

 Log.d("Reading: ", "Reading all contacts..");

 List<Contact> contacts = db.getAllContacts();

 for (Contact cn : contacts) {

 String log = "Id: " + cn.getID() + " ,Name: " + cn.getName() + " ,Phone: " +

 cn.getPhoneNumber();

 // Writing Contacts to log

 Log.d("Name: ", log);

 }

 }

}

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 184

Q7. EXPLAIN HOW DATABASES CAN BE ACCESSED USING ADB?

Accessing Databases with the ADB,

Sometimes while developing applications we need to see the database. Android has SQLite Database and
in Android Studio there is no direct option to view the database.
Finding SDK Location

• First you need to find the SDK Location of your system. For this go to File -> Settings.

• Now you can see the SDK Location in the window.

• Copy the path.
Going to the SDK Location in Command Prompt

• Now open command prompt and write the following command.

1

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 185

2
3

cd C:\Users\Belal\AppData\Local\Android\Sdk

• Again run the following command.

1
2
3

cd platform-tools

• Now you are inside the directory platform-tools.

Enabling ADB Root
• To access database we have to enable adb root. For this simply run the following command.

1
2
3

 adb root

Listing Devices
• Now we will list out all the running emulators and devices. For this run the following command.

1
2
3

 adb devices

• It will show you all the running devices.

• As you can see I have only one devices for now.
Connecting with Device Shell

• Run the following command to connect a shell to your device.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 186

1
2
3

adb -s emulator-5554 shell

• Dont forget to change the emulator’s name in the above command.
• And after running the command you will be connected to the device.

Going to Database Folder of the Device
• Run again the following command to access database folder.

1
2
3

cd data/data/net.simplifiedcoding.androidmysqlsync/databases

• Don’t forget to change net.simplifiedcoding.androidmysqlsync with the package name of the
application that you want to access.

Connecting to SQLite Database
• To connect to SQLite Database run the following command.

1
2
3

sqlite3 NamesDB

• In the above command NamesDB is my database name you have to change it with your database
name.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 187

• Bingo! We are connected with the database.
• Now you can run the command .help for the SQLite Cheat Sheet to view or modify databases.

Q8. EXPLAIN CREATING DATA ENTRY FORM IN ANDROID?

Creating a Data Entry Form
Android applications often rely upon data supplied by users. Android use of a number of the most common
controls used to collect data from the user, including:

• The EditText control
• The Spinner control
• The Checkbox control
• The Button control
We design and implement a form within your Android application which allows the user to supply
important feedback to the developer. The user is given a number of options for submitting different
types of feedback. This feedback can then be sent to the developer as an email. The form you create
will ultimately look like this:

•

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 188

Step 1: Designing the Form
First, you need to give some thought to want kind of data you want to collect from the user. The form may
have any number of fields. Consider the types of data you want to collect and choose the appropriate type
of control. For example:

• To collect text input, use EditText controls
• To limit the user to a fixed set of responses, use Spinner controls, similar to a drop-down menu
• To collect boolean (yes/no) input, use CheckBox controls
• To allow the user to trigger events, use Button controls

For this tutorial, you will be designing a feedback form. This form collects five pieces of data from the user:
• The user’s name (a string)
• The user’s email (a string)
• The type of feedback (options: Praise, Gripe, Suggestion or Bug)
• The feedback message (a string)
• Whether or not the user wants an email response (a boolean)

Step 2: Creating the Layout Resource
Begin by creating a layout resource for the form screen. The form will have a bunch of fields, which could
span more than a single screen (depending on the device screen size), so you should consider wrapping the
entire form within a ScrollView control to enable scrollbars.
The ScrollView control must have exactly one child view, so consider which layout control is most
appropriate for the form you want to create. Forms are often contained within a vertically oriented
LinearLayout control, so that the form fields cascade down the page vertically, one after another. This also
helps the user’s focus move from field to field naturally.

A simple form layout resource might look like this:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/ScrollView01"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:scrollbars="vertical">
<LinearLayout
android:layout_width="fill_parent"
android:orientation="vertical"
android:layout_height="fill_parent">

<!--Put form controls here-->

</LinearLayout>
</ScrollView>

Step 3: Add a TextView Control (Form Description)
Next, you need to add a TextView control within the LinearLayout control. The TextView control called
TextViewTitle displays the form description and purpose to the user. This control displays a string resource
called @string/feedbacktitle, which must be defined within the /res/values/strings.xml string resource file.
Here is the XML to add to your form layout resource file:

 <TextView
 android:id="@+id/TextViewTitle"

http://schemas.android.com/apk/res/android

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 189

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/feedbacktitle"
 android:textSize="10pt">
</TextView>

Step 4: Add an EditText Control (Name)
Now you need to add your first EditText control just below the TextView control you just created. This
EditText control called EditTextName acts as a form field for the user’s name. You can use the hint
attribute to supply a string to display in the EditText control when it’s empty (e.g. “Type your name
here…”). You can also set the inputType attribute of the EditText control to apply name entering logic.
Here is the XML to add to your form layout resource file:

<EditText
 android:id="@+id/EditTextName"
 android:layout_height="wrap_content"
 android:hint="@string/feedbackname"
 android:inputType="textPersonName"
 android:layout_width="fill_parent">
</EditText>

Step 5: Add another EditText Control (Email)
Next, you need to add your second EditText control just below the EditText control called EditTextName.
This EditText control called EditTextEmail acts as a form field for the user’s email address. Again, set the
hint attribute to supply a string to display in the EditText control when it’s empty. This time, set the
inputType attribute of the EditText control to textEmailAddress, which will make entering emails easier on
the user.
Here is the XML to add to your form layout resource file:

<EditText
 android:id="@+id/EditTextEmail"
 android:layout_height="wrap_content"
 android:hint="@string/feedbackemail"
 android:inputType="textEmailAddress"
 android:layout_width="fill_parent">
</EditText>

Step 6: Add a Spinner Control (Feedback Type)
Next, you need to add a Spinner control just below the EditText control you just created. This Spinner
control called SpinnerFeedbackType allows the user to select the type of feedback from a fixed list of
options (Praise, Gripe, Suggestion, or Bug).

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 190

First, you need to define these choices as individual string resources in the strings.xml
resource file.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <!--Other string resources also defined in this file… -->
 <string name="feedbacktype1">Praise</string>
 <string name="feedbacktype2">Gripe</string>
 <string name="feedbacktype3">Suggestion</string>
 <string name="feedbacktype4">Bug</string>
</resources>

Next, create a string array resource using the individual string resources as follows in
/res/values/arrays.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="feedbacktypelist">
 <item>@string/feedbacktype1</item>
 <item>@string/feedbacktype2</item>
 <item>@string/feedbacktype3</item>
 <item>@string/feedbacktype4</item>
 </string-array>
</resources>

Now you are ready to configure the Spinner control in your form layout. Begin by supplying the
prompt attribute, which will provide a helpful string at the top of the Spinner control. Next, specify
the list of string choices using the entries attribute—specifically, set the entries attribute to the
string array you just defined: @array/feedbacktypelist.
Here is the XML to add to your form layout resource file:

<Spinner
 android:id="@+id/SpinnerFeedbackType"
 android:layout_height="wrap_content"
 android:prompt="@string/feedbacktype"
 android:layout_width="fill_parent"
 android:entries="@array/feedbacktypelist">
</Spinner>

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 191

Step 7: Add a Multi-Line EditText Control (Feedback)

Next, you need to add one more EditText control just below the Spinner control. This EditText
control called EditTextFeedbackBody acts as a form field for the feedback text. Again, set the
hint attribute to supply a string to display in the EditText control when it’s empty. This time you
want to give the user ample space to write praise, gripes, suggestions, or describe bugs in the
application. Therefore, you may want to set the inputType attribute of the EditText control to
textMultiLine and specify the number of lines to draw using the lines attribute.

Here is the XML to add to your form layout resource file:

<EditText
 android:id="@+id/EditTextFeedbackBody"
 android:layout_height="wrap_content"
 android:hint="@string/feedbackbody"
 android:inputType="textMultiLine"
 android:lines="5"
 android:layout_width="fill_parent">
</EditText>

Step 8: Add a CheckBox Control

Next, you need to add a CheckBox control just below the EditText control you just created.
This CheckBox control called CheckBoxResponse allows the user to choose whether or not
they want to request an email response from the app developer. You can use the text attribute
to supply a string to display next to the CheckBox control.

Here is the XML to add to your form layout resource file:

<CheckBox
 android:id="@+id/CheckBoxResponse"
 android:layout_height="wrap_content"
 android:text="@string/feedbackresponse"
 android:layout_width="fill_parent">
</CheckBox>

Step 9: Add a Button Control
Finally, you are ready to finish off the form with a Button control. If you want to have a button
with text on it, use the Button control; if you prefer a button with a picture on it, use an
ImageButton control instead. We will use a Button control here. First, set the text on the Button
control using the text attribute. Next, you can easily register a click handler (as opposed to
registering it programmatically in your Activity) for your Button control using the onClick
attribute.

Here is the XML to add to your form layout resource file:

<Button
 android:id="@+id/ButtonSendFeedback"
 android:layout_height="wrap_content"
 android:text="@string/feedbackbutton"
 android:onClick="sendFeedback"
 android:layout_width="fill_parent">
</Button>

Excellent! You’ve finished designing your form. Now, all you need to do is implement the
sendFeedback() method in your Activity.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 192

Step 10: Implement a Button click handler

In the Button control, you specified the onClick attribute as sendFeedback. Now you will need
to implement a method called sendFeedback() within your Activity class. For example:
public void sendFeedback(View button) {

 // Do click handling here

}

Step 11: Reading Input from EditText Controls

Now that your form is designed and the controls have been implemented, you next need to
collect the form data from the individual fields when the Button control is clicked.
For an EditText control, you use the getText() method.

final EditText nameField = (EditText)

findViewById(R.id.EditTextName);

String name = nameField.getText().toString();

final EditText emailField = (EditText)

findViewById(R.id.EditTextEmail);

String email = emailField.getText().toString();

final EditText feedbackField = (EditText)

findViewById(R.id.EditTextFeedbackBody);

String feedback = feedbackField.getText().toString();

Step 12: Reading Input From Spinner Controls

Your form included a Spinner control. You use the getSelectedItem() method to read the data
from this form control.
final Spinner feedbackSpinner = (Spinner)

findViewById(R.id.SpinnerFeedbackType);

String feedbackType = feedbackSpinner.getSelectedItem().toString();

In this case, the selected item in the Spinner control is the String chosen by the user of the
selected item.

Step 13: Reading Input from CheckBox Controls

Finally, your form included a CheckBox control. In this case, the result is just a flag to tell your
application if the box was checked or not.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 193

final CheckBox responseCheckbox = (CheckBox)

findViewById(R.id.CheckBoxResponse);

boolean bRequiresResponse = responseCheckbox.isChecked();

You can use this Boolean value however you want in your app.
Step 14: Generate the Appropriate Email Details

Now that you’ve got all your form data, you’re ready to craft a message. Simply process all the
data fields and build an appropriate feedback message. For example, you might use some
fields in the message subject, and others in the message body. You can use format strings to
help build the appropriate strings, the specifics of which will be discussed in an upcoming
quick tip.

Q9. EXPLAIN HOW SMS AND EMAILS CAN BE PROCESSED IN ANDROID?

Communicating with SMS and Emails:
Communication with text messages is a popular way to send and receive information via cellular

phones. Communicating through text messages not only consumes fewer network resources but

also reduces network congestion, making it an inexpensive mode of communication. Moreover, .

Android smartphones can send and receive messages to or from any other phone that supports Short
Message Service (SMS). You have two choices for sending SMS messages:

• Use an implicit Intent to launch a messaging app with the ACTION_SENDTO intent action.
o This is the simplest choice for sending messages. The user can add a picture or other attachment in the

messaging app, if the messaging app supports adding attachments.
o Your app doesn't need code to request permission from the user.
o If the user has multiple SMS messaging apps installed on the Android phone, the App chooser will

appear with a list of these apps, and the user can choose which one to use. (Android smartphones will
have at least one, such as Messenger.)

o The user can change the message in the messaging app before sending it.

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_SENDTO

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 194

o The user navigates back to your app using the Back button.
• Send the SMS message using the sendTextMessage() method or other methods of

the SmsManager class.
o This is a good choice for sending messages from your app without having to use another installed app.
o Your app must ask the user for permission before sending the SMS message, if the user hasn't already

granted permission.
o The user stays in your app during and after sending the message.
o You can manage SMS operations such as dividing a message into fragments, sending a multipart

message, get carrier-dependent configuration values, and so on.

To receive SMS messages, use the onReceive() method of the BroadcastReceiver class.

Task 1. Launch a messaging app to send a message

In this task you create an app called PhoneMessaging, a new version of the PhoneCallDial app from a
previous lesson. The new app launches a messaging app with an implicit intent, and passes a fixed
phone number and a message entered by the user.

The user can tap the messaging icon in your app to send the message. In the messaging app launched
by the intent, the user can tap to send the message, or change the message or the phone number
before sending the message. After sending the message, the user can navigate back to your app using
the Back button.

1.1 Modify the app and layout

1. Copy the PhoneCallDial project folder, rename it to PhoneMessaging, and refactor it to populate the
new name throughout the app project. (See the Appendix for instructions on copying a project.)

2. Add an icon for the messaging button by following these steps:

a. Select drawable in the Project: Android view and choose File > New > Vector Asset.

b. Click the Android icon next to "Icon:" to choose an icon. To find a messaging icon,
choose Communication in the left column.

c. Select the icon, click OK, click Next, and then click Finish.

Add the following EditText to the existing layout after the phone_icon ImageButton:
...
<ImageButton
 android:id="@+id/phone_icon"
 ... />

<EditText
 android:id="@+id/sms_message"
 android:layout_width="200dp"
 android:layout_height="wrap_content"
 android:layout_below="@id/number_to_call"
 android:layout_marginTop="@dimen/activity_vertical_margin"
 android:layout_marginRight="@dimen/activity_horizontal_margin"
 android:hint="Enter message here"
 android:inputType="textMultiLine"/>

You will use the android:id sms_message to retrieve the message in your code. You can
use @dimen/activity_horizontal_margin and @dimen/activity_vertical_margin for the EditText
margins because they are already defined in the dimens.xml file. The EditText view uses
the android:inputType attribute set to "textMultiLine" for entering multiple lines of text.

After adding hard-coded strings and dimensions, extract them into resources:

android:layout_width="@dimen/edittext_width": The width of the EditText message (200dp).

https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallDial
https://google-developer-training.github.io/android-developer-fundamentals-course-practicals/en/appendix_utilities.html#copy_project

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 195

android:hint="@string/enter_message_here": The hint for the EditText ("Enter message
here").

Add the following ImageButton to the layout after the above EditText:

<ImageButton
 android:id="@+id/message_icon"
 android:contentDescription="Send a message"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="@dimen/activity_vertical_margin"
 android:layout_toRightOf="@id/sms_message"
 android:layout_toEndOf="@id/sms_message"
 android:layout_below="@id/phone_icon"
 android:src="@drawable/ic_message_black_24dp"
 android:onClick="smsSendMessage"/>

You will use the android:id message_icon to refer to the ImageButton for launching the messaging
app. Use the vector asset you added previously (such as ic_message_black_24dp for a messaging
icon) for the ImageButton.
After adding the hard-coded string for the android:contentDescription attribute, extract it into the
resource send_a_message.
The smsSendMessage() method referred to in the android:onClick attribute remains highlighted until
you create this method in the MainActivity, which you will do in the next step.
Click smsSendMessage in the android:onClick attribute, click the red light bulb that appears, and then
select Create smsSendMessage(View) in 'MainActivity'. Android Studio automatically creates
the smsSendMessage() method in MainActivity as public, returning void, with a View parameter. This
method is called when the user taps the message_icon ImageButton.
public void smsSendMessage(View view) {
}

Your app's layout should now look like the following figure:

1.2 Edit the onClick method in MainActivity

Inside the smsSendMessage() method in MainActivity, get the phone number from
the number_to_call TextView, and concatenate it with the smsto: prefix (as in smsto:14155551212) to
create the phone number URI string smsNumber:

...
TextView textView = (TextView) findViewById(R.id.number_to_call);
// Use format with "smsto:" and phone number to create smsNumber.
String smsNumber = String.format("smsto: %s",
 textView.getText().toString());
...

Get the string of the message entered into the EditText view:

...
// Find the sms_message view.
EditText smsEditText = (EditText) findViewById(R.id.sms_message);
// Get the text of the SMS message.
String sms = smsEditText.getText().toString();
...

Create an implicit intent (smsIntent) with the intent action ACTION_SENDTO, and set the phone number
and text message as intent data and extended data, using setData() and putExtra:

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 196

...
// Create the intent.
Intent smsIntent = new Intent(Intent.ACTION_SENDTO);
// Set the data for the intent as the phone number.
smsIntent.setData(Uri.parse(smsNumber));
 // Add the message (sms) with the key ("sms_body").
smsIntent.putExtra("sms_body", sms);
...

The putExtra() method needs two strings: the key identifying the type of data ("sms_body") and the
data itself, which is the text of the message (sms). For more information about common intents and
the putExtra() method, see Common Intents: Text Messaging.
Add a check to see if the implicit intent resolves to a package (a messaging app). If it does, send the
intent with startActivity(), and the system launches the app. If it does not, log an error.
...
// If package resolves (target app installed), send intent.
if (smsIntent.resolveActivity(getPackageManager()) != null) {
 startActivity(smsIntent);
} else {
 Log.e(TAG, "Can't resolve app for ACTION_SENDTO Intent");
}
...

The full method should now look like the following:

public void smsSendMessage(View view) {
 TextView textView = (TextView) findViewById(R.id.number_to_call);
 // Use format with "smsto:" and phone number to create smsNumber.
 String smsNumber = String.format("smsto: %s",
 textView.getText().toString());
 // Find the sms_message view.
 EditText smsEditText = (EditText) findViewById(R.id.sms_message);
 // Get the text of the sms message.
 String sms = smsEditText.getText().toString();
 // Create the intent.
 Intent smsIntent = new Intent(Intent.ACTION_SENDTO);
 // Set the data for the intent as the phone number.
 smsIntent.setData(Uri.parse(smsNumber));
 // Add the message (sms) with the key ("sms_body").
 smsIntent.putExtra("sms_body", sms);
 // If package resolves (target app installed), send intent.
 if (smsIntent.resolveActivity(getPackageManager()) != null) {
 startActivity(smsIntent);
 } else {
 Log.d(TAG, "Can't resolve app for ACTION_SENDTO Intent");
 }
}

1.3 Run the app

1. Run the app on either an emulator or a device.
2. Enter a message, and tap the messaging icon (marked "1" in the left side of the figure below). The

messaging app appears, as shown on the right side of the figure below.

https://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String,%20java.lang.String)
https://developer.android.com/guide/components/intents-common.html#Messaging

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 197

3. Use the Back button to return to the PhoneMessaging app. You may need to tap or click it more than
once to leave the SMS messaging app.

Solution code

Android Studio project: PhoneMessaging

Task 2. Send an SMS message from within an app

In this task you will copy the PhoneCallingSample app from the lesson on making a phone call, rename
and refactor it to SmsMessaging, and modify its layout and code to create an app that enables a user
to enter a phone number, enter an SMS message, and send the message from within the app.

In the first step you will add the code to send the message, but the app will work only if you first turn on
SMS permission manually for the app in Settings on your device or emulator.

In subsequent steps you will do away with setting this permission manually by requesting SMS
permission from the app's user if it is not already set.

2.1 Create the app and layout and add permission

1. Copy the PhoneCallingSample project folder, rename it to SmsMessaging, and refactor it to populate
the new name throughout the app project. (See the Appendix for instructions on copying a project.)

2. Open strings.xml and change the app_name string resource to "SMS Messaging".
3. Add the android.permission.SEND_SMS permission to the AndroidManifest.xml file, and remove

the CALL_PHONE and READ_PHONE_STATE permissions for phone use, so that you have only one permission:
4. <uses-permission android:name="android.permission.SEND_SMS" />

Sending an SMS message is permission-protected. Your app can't use SMS without
the SEND_SMS permission line in AndroidManifest.xml. This permission line enables a setting for the app
in the Settings app that gives the user the choice of allowing or disallowing use of SMS. (In the next task
you will add a way for the user to grant that permission from within the app.)

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneMessaging
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSample
https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/PhoneCallingSample
https://google-developer-training.github.io/android-developer-fundamentals-course-practicals/en/appendix_utilities.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 198

5. Add a messaging icon as you did in the previous task, and remove the phone icon from the drawable
folder.

6. Open activity_main.xml and edit the EditText view and replace the android:layout_margin attribute with
the following:

7. ...
8. android:layout_marginTop="@dimen/activity_vertical_margin"
9. android:layout_marginRight="@dimen/activity_horizontal_margin"
10. ...

You can use @dimen/activity_horizontal_margin and @dimen/activity_vertical_margin because they

are already defined in the dimens.xml file.

11. Add the following EditText to the layout after the first EditText (for an image of the layout, see the figure
at the end of these steps):

12. ...
13. <EditText
14. android:id="@+id/sms_message"
15. android:layout_width="@dimen/edittext_width"
16. android:layout_height="wrap_content"
17. android:layout_below="@id/editText_main"
18. android:layout_margin="@dimen/activity_horizontal_margin"
19. android:hint="Enter message here"
20. android:inputType="textMultiLine"/>

You will use the android:id attribute to sms_message to identify it as the EditText for the message. The
EditText view uses the android:inputType attribute set to "textMultiLine" for entering multiple lines of
text.

21. After adding the hard-coded string "Enter message here" for the android:hint attribute, extract it into the
text resource "enter_message_here".

22. Change the android:layout_below attribute for the button_retry Button to refer to
the sms_message EditText view. The Button should appear below the SMS message in the layout if it
becomes visible:

23. android:layout_below="@id/sms_message"

The button_retry Button is set to invisible. It appears only if the app detected that telephony is not
enabled, or if the user previously denied phone permission when the app requested it.

24. Replace the phone_icon ImageButton from the existing layout with the following:
25. <ImageButton
26. android:id="@+id/message_icon"
27. android:contentDescription="Send a message"
28. android:layout_width="wrap_content"
29. android:layout_height="wrap_content"
30. android:layout_marginTop="@dimen/activity_vertical_margin"
31. android:layout_toRightOf="@id/sms_message"
32. android:layout_toEndOf="@id/sms_message"
33. android:layout_below="@id/editText_main"
34. android:src="@drawable/ic_message_black_24dp"
35. android:visibility="visible"
36. android:onClick="smsSendMessage"/>

You will use the android:id message_icon in your code to refer to the ImageButton for sending the
message. Use the vector asset you added previously (such as ic_message_black_24dp for a messaging
icon) for the ImageButton. Make sure you include the android:visibility attribute set to "visible". You
will control the visibility of this ImageButton from your code.

37. After adding a hard-coded string for the android:contentDescription attribute, extract it to
the send_a_message string resource.
The smsSendMessage() method referred to in the android:onClick attribute for the ImageButton remains
highlighted until you create this method in the MainActivity, which you will do in the next step.

38. Click smsSendMessage in the android:onClick attribute, click the red light bulb that appears, and then
select Create smsSendMessage(View) in 'MainActivity'. Android Studio automatically creates
the smsSendMessage() method in MainActivity as public, returning void, with a View parameter. This
method is called when the user taps the message_icon ImageButton.

39. public void smsSendMessage(View view) {
40. }

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 199

Your app's layout should look like the following figure (the button_retry Button is invisible):

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 200

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 201

2.2 Edit the onClick method in MainActivity

1. Open MainActivity and find the new smsSendMessage() method you created in the last step.
2. Add statements to the method to get the string for the phone number from the editText_main view, and

get the string for the SMS message from the sms_message view:
3. public void smsSendMessage(View view) {
4. EditText editText = (EditText) findViewById(R.id.editText_main);
5. // Set the destination phone number to the string in editText.
6. String destinationAddress = editText.getText().toString();
7. // Find the sms_message view.
8. EditText smsEditText = (EditText) findViewById(R.id.sms_message);
9. // Get the text of the sms message.
10. String smsMessage = smsEditText.getText().toString();
11. ...
12. }

13. Declare additional string and PendingIntent parameters for the sendTextMessage() method, which will
send the message (destinationAddress is already declared as the string for the phone number to receive
the message):

o scAddress: A string for the service center address, or null to use the current default SMSC. A Short
Message Service Center (SMSC) is a network element in the mobile telephone network. The mobile
network operator usually presets the correct service center number in the default profile of settings
stored in the device's SIM card.

o smsMessage: A string for the body of the message to send.
o sentIntent: A PendingIntent. If not null, this is broadcast when the message is successfully sent or if

the message failed.
o deliveryIntent: A PendingIntent. If not null, this is broadcast when the message is delivered to the

recipient.
o ...
o // Set the service center address if needed, otherwise null.
o String scAddress = null;
o // Set pending intents to broadcast
o // when message sent and when delivered, or set to null.
o PendingIntent sentIntent = null, deliveryIntent = null;
o ...

14. Use the SmsManager class to create smsManager, which automatically
imports android.telephony.SmsManager, and use sendTextMessage() to send the message:

15. ...
16. // Use SmsManager.
17. SmsManager smsManager = SmsManager.getDefault();
18. smsManager.sendTextMessage
19. (destinationAddress, scAddress, smsMessage,
20. sentIntent, deliveryIntent);
21. ...

The full method should now look like the following:

public void smsSendMessage(View view) {
 EditText editText = (EditText) findViewById(R.id.editText_main);
 // Set the destination phone number to the string in editText.
 String destinationAddress = editText.getText().toString();
 // Find the sms_message view.
 EditText smsEditText = (EditText) findViewById(R.id.sms_message);
 // Get the text of the SMS message.
 String smsMessage = smsEditText.getText().toString();
 // Set the service center address if needed, otherwise null.
 String scAddress = null;
 // Set pending intents to broadcast
 // when message sent and when delivered, or set to null.
 PendingIntent sentIntent = null, deliveryIntent = null;
 // Use SmsManager.
 SmsManager smsManager = SmsManager.getDefault();
 smsManager.sendTextMessage
 (destinationAddress, scAddress, smsMessage,
 sentIntent, deliveryIntent);
}

https://developer.android.com/reference/android/telephony/SmsManager.html#sendTextMessage(java.lang.String,%20java.lang.String,%20java.lang.String,%20android.app.PendingIntent,%20android.app.PendingIntent)
https://developer.android.com/reference/android/telephony/SmsManager.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 202

If you run the app now, on either a device or an emulator, the app may crash depending on whether the
device or emulator has been previously set to allow the app to use SMS. In some versions of Android,
this permission is turned on by default. In other versions, this permission is turned off by default.

To set the app's permission on a device or emulator instance, choose Settings > Apps > SMS
Messaging > Permissions, and turn on the SMS permission for the app. Since the user can turn on or
off SMS permission at any time, you need to add a check in your app for this permission, and request it
from the user if necessary. You will do this in the next step.

2.3 Check for and request permission for SMS

Your app must always get permission to use anything that is not part of the app itself. In Step 2.1 you
added the following permission to the AndroidManifest.xml file:

<uses-permission android:name="android.permission.SEND_SMS" />

This permission enables a permission setting in the Settings app for your app. The user can allow or
disallow this permission at any time from the Settings app. You can add code to request permission
from the user if the user has turned off SMS permission for the app. Follow these steps:

1. At the top of MainActivity, below the class definition, change the global constant for
the MY_PERMISSIONS_REQUEST_CALL_PHONE request code to the following:

2. private static final int MY_PERMISSIONS_REQUEST_SEND_SMS = 1;

When a result returns in the activity, it will contain the MY_PERMISSIONS_REQUEST_SEND_SMS requestCode so
that your code can identify it.

3. Remove the constant declarations for mTelephonyManager and MyPhoneCallListener.
4. Remove the isTelephonyEnabled() method, and remove all of the code in the onCreate() method that

starts with the mTelephonyManager assignment, leaving only the first two lines:
5. @Override
6. protected void onCreate(Bundle savedInstanceState) {
7. super.onCreate(savedInstanceState);
8. setContentView(R.layout.activity_main);
9. }

10. Refactor/rename the existing disableCallButton() method to disableSmsButton() and edit the method to
do the following:

a. Display a toast to notify the user that SMS usage is disabled.

b. Find and then set the smsButton (the message icon) to be invisible so that the user can't send a
message.

c. Set the Retry button to be visible, so that the user can restart the activity and allow permission.

d. private void disableSmsButton() {
e. Toast.makeText(this, "SMS usage disabled", Toast.LENGTH_LONG).show();
f. ImageButton smsButton = (ImageButton) findViewById(R.id.message_icon);
g. smsButton.setVisibility(View.INVISIBLE);
h. Button retryButton = (Button) findViewById(R.id.button_retry);
i. retryButton.setVisibility(View.VISIBLE);
j. }

Extract a string resource (sms_disabled) for the hard-coded string "SMS usage disabled" in the toast
statement.

11. Refactor/rename the existing enableCallButton() method to enableSmsButton() to set the SMS message
icon button to be visible:

12. private void enableSmsButton() {
13. ImageButton smsButton = (ImageButton) findViewById(R.id.message_icon);
14. smsButton.setVisibility(View.VISIBLE);
15. }

16. Modify the existing retryApp() method in MainActivity to remove the call to enableCallButton().
17. In MainActivity, rename and refactor the checkForPhonePermission() method to checkForSmsPermission(),

and change the code to the following:
18. private void checkForSmsPermission() {
19. if (ActivityCompat.checkSelfPermission(this,
20. Manifest.permission.SEND_SMS) !=

https://google-developer-training.github.io/android-developer-phone-sms-course/Lesson%202/2_p_sending_sms_messages.html#task2steps1

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 203

21. PackageManager.PERMISSION_GRANTED) {
22. Log.d(TAG, getString(R.string.permission_not_granted));
23. // Permission not yet granted. Use requestPermissions().
24. // MY_PERMISSIONS_REQUEST_SEND_SMS is an
25. // app-defined int constant. The callback method gets the
26. // result of the request.
27. ActivityCompat.requestPermissions(this,
28. new String[]{Manifest.permission.SEND_SMS},
29. MY_PERMISSIONS_REQUEST_SEND_SMS);
30. } else {
31. // Permission already granted. Enable the SMS button.
32. enableSmsButton();
33. }
34. }

Use checkSelfPermission() to determine whether your app has been granted a particular permission by
the user. If permission has not been granted by the user, use the requestPermissions() method to
display a standard dialog for the user to grant permission.

https://developer.android.com/reference/android/support/v4/content/ContextCompat.html#checkSelfPermission(android.content.Context,%20java.lang.String)
https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 204

When your app calls requestPermissions(), the system shows a standard dialog for each permission to
the user, as shown in the figure below.

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.html#requestPermissions(android.app.Activity,%20java.lang.String[],%20int)

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 205

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 206

35. When the user responds to the request permission dialog, the system invokes your
app's onRequestPermissionsResult() method, passing it the user response. Find
the onRequestPermissionsResult() method you created for the previous version of this app.
Your implementation of onRequestPermissionsResult() already uses a switch statement based on the
value of requestCode. A case for checking phone permission is already implemented
using MY_PERMISSIONS_REQUEST_CALL_PHONE.
Replace MY_PERMISSIONS_REQUEST_CALL_PHONE with MY_PERMISSIONS_REQUEST_SEND_SMS, and
replace CALL_PHONE with SEND_SMS. The switch block should now look like the following:
...
switch (requestCode) {
 case MY_PERMISSIONS_REQUEST_SEND_SMS: {
 if (permissions[0].equalsIgnoreCase
 (Manifest.permission.SEND_SMS)
 && grantResults[0] ==
 PackageManager.PERMISSION_GRANTED) {
 // Permission was granted. Enable sms button.
 enableSmsButton();
 } else {
 // Permission denied.
 Log.d(TAG, getString(R.string.failure_permission));
 Toast.makeText(this,
 getString(R.string.failure_permission),
 Toast.LENGTH_LONG).show();
 // Disable the sms button.
 disableSmsButton();
 }
 }
}

If the user allows the permission request, the message button is re-enabled with enableSmsButton() in
case it was made invisible by lack of permission.
If the user denies the permission requests, your app should take appropriate action. For example, your
app might disable the functionality that depends on a specific permission and show a dialog explaining
why it could not perform it. For now, log a debug message, display a toast to show that permission was
not granted, and disable the message button with disableSmsButton().

36. In the onCreate() method of MainActivity, add a call to the checkForSmsPermission() method:
37. @Override
38. protected void onCreate(Bundle savedInstanceState) {
39. super.onCreate(savedInstanceState);
40. setContentView(R.layout.activity_main);
41. checkForSmsPermission();
42. }

43. Remove the callNumber() method and the MyPhoneCallListener inner class (including
the onCallStateChanged() method, as you are no longer using the Telephony Manager).

44. Remove the onDestroy() method since you are no longer using a listener.
45. Since the user might turn off SMS permission while the app is still running, add a check for SMS

permission in the smsSendMessage() method after setting the sentIntent but before using
the SmsManager class:

46. ...
47. PendingIntent sentIntent = null, deliveryIntent = null;
48. // Check for permission first.
49. checkForSmsPermission();
50. // Use SmsManager.
51. ...

2.4 Run the app and test permissions

1. Run your app. Enter a phone number (or the emulator port number if using emulators), and enter the
message to send. Tap the messaging icon to send the message.

2. After running the app, choose Settings > Apps > SMS Messaging > Permissions and turn off SMS
permission for the app.

https://developer.android.com/reference/android/support/v4/app/ActivityCompat.OnRequestPermissionsResultCallback.html#onRequestPermissionsResult(int,%20java.lang.String[],%20int[])

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 207

3. Run the app again. You should see the SMS permission request dialog as shown below.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 208

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 209

4. Click Deny. In the app's UI, the message icon button no longer appears, and a Retry button appears, as
shown below.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 210

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 211

5. Click Retry, and then click Allow for SMS permission.
6. Test the app's ability to send a message:

a. Enter a phone number.

b. Enter a message.

c. Tap the messaging icon.

Task 3. Receive SMS messages with a broadcast

receiver

To receive SMS messages, use the onReceive() method of the BroadcastReceiver class. The Android
framework sends out system broadcasts of events such as receiving an SMS message, containing
intents that are meant to be received using a BroadcastReceiver. You need to add
the RECEIVE_SMS permission to your app's AndroidManifest.xml file.

3.1 Add permission and create a broadcast receiver

To add RECEIVE_SMS permission and create a broadcast receiver, follow these steps:
1. Open the AndroidManifest.xml file and add the android.permission.RECEIVE_SMS permission below the

other permission for SMS use:
2. <uses-permission android:name="android.permission.SEND_SMS" />
3. <uses-permission android:name="android.permission.RECEIVE_SMS" />

Receiving an SMS message is permission-protected. Your app can't receive SMS messages without
the RECEIVE_SMS permission line in AndroidManifest.xml.

4. Select the package name in the Project:Android: view and choose File > New > Other > Broadcast
Receiver.

5. Name the class "MySmsReceiver" and make sure "Exported" and "Enabled" are checked.

https://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/content/BroadcastReceiver.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 212

The "Exported" option allows your app to respond to outside broadcasts, while "Enabled" allows it to be
instantiated by the system.

6. Open the AndroidManifest.xml file again. Note that Android Studio automatically generates
a <receiver> tag with your chosen options as attributes:

7. <receiver
8. android:name=
9. "com.example.android.smsmessaging.MySmsReceiver"
10. android:enabled="true"
11. android:exported="true">
12. </receiver>

3.2 Register the broadcast receiver

In order to receive any broadcasts, you must register for specific broadcast intents. In the Intent
documentation, under "Standard Broadcast Actions", you can find some of the common broadcast
intents sent by the system. In this app, you use the android.provider.Telephony.SMS_RECEIVED intent.
Add the following inside the <receiver> tags to register your receiver:
<receiver
 android:name="com.example.android.smsmessaging.MySmsReceiver"
 android:enabled="true"
 android:exported="true">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>
 </intent-filter>
</receiver>

3.3 Implement the onReceive() method

Once the BroadcastReceiver intercepts a broadcast for which it is registered (SMS_RECEIVED), the intent is
delivered to the receiver's onReceive() method, along with the context in which the receiver is running.

1. Open MySmsReceiver and add under the class declaration a string constant TAG for log messages and a
string constant pdu_type for identifying PDUs in a bundle:

2. public class MySmsReceiver extends BroadcastReceiver {
3. private static final String TAG =
4. MySmsReceiver.class.getSimpleName();
5. public static final String pdu_type = "pdus";
6. ...

7. Delete the default implementation inside the supplied onReceive() method.
8. In the blank onReceive() method:
a. Add the @TargetAPI annotation for the method, because it performs a different action depending on the

build version.
b. Retrieve a map of extended data from the intent to a bundle.
c. Define the msgs array and strMessage string.
d. Get the format for the message from the bundle.
e. @TargetApi(Build.VERSION_CODES.M)
f. @Override
g. public void onReceive(Context context, Intent intent) {
h. // Get the SMS message.
i. Bundle bundle = intent.getExtras();
j. SmsMessage[] msgs;
k. String strMessage = "";
l. String format = bundle.getString("format");
m. ...

As you enter SmsMessage[], Android Studio automatically imports android.telephony.SmsMessage.

9. Retrieve from the bundle one or more pieces of data in the protocol data unit (PDU) format, which is the
industry-standard format for an SMS message:

10. ...
11. // Retrieve the SMS message received.
12. Object[] pdus = (Object[]) bundle.get(pdu_type);

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 213

13. ...

14. If there are messages (pdus), check for Android version 6.0 (Marshmallow) and newer versions. You will
use this boolean to check if your app needs the deprecated signature createFromPdu(byte[] pdu) for
earlier versions of Android:

15. ...
16. if (pdus != null) {
17. // Check the Android version.
18. boolean isVersionM = (Build.VERSION.SDK_INT >=
19. Build.VERSION_CODES.M);
20. ...

21. Initialize the msgs array, and use its length in the for loop:
22. ...
23. // Fill the msgs array.
24. msgs = new SmsMessage[pdus.length];
25. for (int i = 0; i < msgs.length; i++) {
26. // Check Android version and use appropriate createFromPdu.
27. if (isVersionM) {
28. // If Android version M or newer:
29. msgs[i] =
30. SmsMessage.createFromPdu((byte[]) pdus[i], format);
31. } else {
32. // If Android version L or older:
33. msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
34. }
35. ...

Use createFromPdu(byte[] pdu, String format) to fill the msgs array for Android version 6.0
(Marshmallow) and newer versions. For earlier versions of Android, use the deprecated
signature createFromPdu(byte[] pdu).

36. Build the strMessage to show in a toast message:
a. Get the originating address using the getOriginatingAddress() method.
b. Get the message body using the getMessageBody() method.
c. Add an ending character for an end-of-line.

d. ...
e. // Build the message to show.
f. strMessage += "SMS from " + msgs[i].getOriginatingAddress();
g. strMessage += " :" + msgs[i].getMessageBody() + "\n";
h. ...

37. Log the resulting strMessage and display a toast with it:
38. ...
39. // Log and display the SMS message.
40. Log.d(TAG, "onReceive: " + strMessage);
41. Toast.makeText(context, strMessage, Toast.LENGTH_LONG).show();
42. ...

The complete onReceive() method is shown below:
@TargetApi(Build.VERSION_CODES.M)
@Override
public void onReceive(Context context, Intent intent) {
 // Get the SMS message.
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs;
 String strMessage = "";
 String format = bundle.getString("format");
 // Retrieve the SMS message received.
 Object[] pdus = (Object[]) bundle.get(pdu_type);
 if (pdus != null) {
 // Check the Android version.
 boolean isVersionM =
 (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M);
 // Fill the msgs array.
 msgs = new SmsMessage[pdus.length];
 for (int i = 0; i < msgs.length; i++) {
 // Check Android version and use appropriate createFromPdu.
 if (isVersionM) {
 // If Android version M or newer:
 msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i], format);
 } else {

https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[])
https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[],%20java.lang.String)
https://developer.android.com/reference/android/telephony/SmsMessage.html#createFromPdu(byte[])

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 214

 // If Android version L or older:
 msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
 }
 // Build the message to show.
 strMessage += "SMS from " + msgs[i].getOriginatingAddress();
 strMessage += " :" + msgs[i].getMessageBody() + "\n";
 // Log and display the SMS message.
 Log.d(TAG, "onReceive: " + strMessage);
 Toast.makeText(context, strMessage, Toast.LENGTH_LONG).show();
 }
 }
}

3.4 Run the app and send a message

Run the app on a device. If possible, have someone send you an SMS message from a different device.

You can also receive an SMS text message when testing on an emulator. Follow these steps:

1. Run the app on an emulator.
2. Click the … (More) icon at the bottom of the emulator's toolbar on the right side, as shown in the figure

below:

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 215

3. The extended controls for the emulator appear. Click Phone in the left column to see the extended
phone controls:

4. You can now enter a message (or use the default "marshmallows" message) and click Send

Message to have the emulator send an SMS message to itself.

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 216

5. The emulator responds with a notification about receiving an SMS message. The app should also
display a toast message showing the message and its originating address, as shown below:

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 217

PREPARED BY: O.SAMPATH. ASSISTANT PROFESSOR –SVR ENGINEERING COLLEGE-NDL Page 218

Solution Code

Android Studio project: SmsMessaging

Coding challenge

Note: All coding challenges are optional.

Challenge: Create a simple app with one button, Choose Picture and Send, that enables the user to
select an image from the Gallery and send it as a Multimedia Messaging Service (MMS) message. After
tapping the button, a choice of apps may appear, including the Messenger app. The user can select the
Messenger app, and select an existing conversation or create a new conversation, and then send the
image as a message.

The following are hints:

• To access and share an image from the Gallery, you need the following permission in the
AndroidManifest.xml file:

• <uses-permission

• android:name="android.permission.READ_EXTERNAL_STORAGE" />

• To enable the above permission, follow the model shown previously in this chapter to check for
the READ_EXTERNAL_STORAGE permission, and request permission if necessary.

• Use the following intent for picking an image:
• Intent galleryIntent = new Intent(Intent.ACTION_PICK,

• android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

• startActivityForResult(galleryIntent, IMAGE_PICK);

• Override the onActivityResult method to retrieve the intent result, and use getData() to get the Uri of the
image in the result:

• protected void onActivityResult

• (int requestCode, int resultCode, Intent imageReturnedIntent) {

• ...

• Uri mSelectedImage = imageReturnedIntent.getData();

• }

• Set the image's Uri, and use an intent with ACTION_SEND, putExtra(), and setType():
• Intent smsIntent = new Intent(Intent.ACTION_SEND);

• smsIntent.putExtra(Intent.EXTRA_STREAM, mSelectedImage);

• smsIntent.setType("image/*");

• Android Studio emulators can't pass MMS messages to and from each other. You must test this app on
real Android devices.

• For more information about sending multimedia messages, see Sending MMS with Android.

https://github.com/google-developer-training/android-fundamentals-phone-sms/tree/master/SmsMessaging
https://developer.android.com/reference/android/app/Activity.html#onActivityResult(int,%20int,%20android.content.Intent)
http://jtribe.blogspot.com/2008/12/sending-mms-with-android.html

