
CSE Page 1

SVR ENGINEERING COLLEGE
AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

2020 – 2021

LABORATORY MANUAL

OF

SOFTWARE ENGINEERING LAB
(19A05304P)

(R-19 REGULATION)

Prepared by

Mr. K.AMARENDRANATH

Associ.

ProfessorFor

B.Tech II YEAR – IVTH SEM. (CSE)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SVR ENGINEERING COLLEGE
(AFFILIATED TO JNTUA ANANTHAPURAM- AICITE-INDIA)

AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

CSE Page 2

LAB MANUAL CONTENT

SOFTWARE ENGINEERING LAB
 (19A05304P)

1. Institute Vision & Mission, Department Vision & Mission

2. PO, PEO& PSO Statements.

3. List of Experiments

4. CO-PO Attainment

5. Experiment Code and Outputs

1. Institute Vision & Mission, Department Vision & Mission

Institute Vision:

To produce Competent Engineering Graduates & Managers with a strong

base of Technical & Managerial Knowledge and the Complementary Skills

needed to be Successful Professional Engineers & Managers.

Institute Mission:

To fulfill the vision by imparting Quality Technical & Management

Education to the Aspiring Students, by creating Effective Teaching/Learning

Environment and providing State – of the – Art Infrastructure and Resources.

Department Vision:

To produce Industry ready Software Engineers to meet the challenges of

21st Century.

Department Mission:

 Impart core knowledge and necessary skills in Computer Science and

Engineering through innovative teaching and learning methodology.

 Inculcate critical thinking, ethics, lifelong learning and creativity needed

for industry and society.

 Cultivate the students with all-round competencies, for career, higher

education and self-employability.

CSE Page 3

2. PO, PEO& PSO Statements

PROGRAMME OUTCOMES (POs)

PO-1: Engineering knowledge - Apply the knowledge of mathematics, science,

engineering fundamentals of Computer Science& Engineering to solve complex real-life

engineering problems related to CSE.

PO-2: Problem analysis - Identify, formulate, review research literature, and analyze

complex engineering problems related to CSE and reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions - Design solutions for complex engineering

problems related to CSE and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety, cultural,

societal and environmental considerations.

PO-4: Conduct investigations of complex problems - Use research-based knowledge and

research methods, including design of experiments, analysis and interpretation of data

and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage - Select/Create and apply appropriate techniques, resources and

modern engineering and IT tools and technologies for rapidly changing computing needs,

including prediction and modeling to complex engineering activities, with an

understanding of the limitations.

PO-6: The engineer and society - Apply reasoning informed by the contextual knowledge

to assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the CSE professional engineering practice.

PO-7: Environment and Sustainability - Understand the impact of the CSE professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of, and need for sustainable development.

PO-8: Ethics - Apply ethical principles and commit to professional ethics and

responsibilities and norms of the relevant engineering practices.

PO-9: Individual and team work - Function effectively as an individual, and as a member

or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication - Communicate effectively on complex engineering activities with

the engineering community and with the society-at-large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, give and receive clear instructions.

PO-11: Project management and finance - Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

PO-12: Life-long learning - Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadcast context of technological

changes.

CSE Page 4

Program Educational Objectives (PEOs):

PEO 1:Graduates will be prepared for analyzing, designing, developing and testing the

software solutions and products with creativity and sustainability.

PEO 2: Graduates will be skilled in the use of modern tools for critical problem solvingand

analyzing industrial and societal requirements.

PEO 3:Graduates will be prepared with managerial and leadership skills for career and

starting up own firms.

Program Specific Outcomes (PSOs):

PSO 1:Develop creative solutions by adapting emerging technologies / tools for real time

applications.

PSO 2: Apply the acquired knowledge to develop software solutions and innovative mobile

apps for various automation applications

2.1 Subject Time Table

SVR ENGINEERING COLLEGE::NANDYAL

DEPARTMENT OF CSE

K.AMARENDRANATH II-IVTH

Day/

Time
9:30 AM 10:20 AM

11:30

AM

12:20

PM-

LU
N

C
H

 B
R

EA
K

02:00

PM

02:50

PM

03:40

PM

 10:20

AM
11:10AM

12:20

PM

01:10

PM

02:50

PM

03:40

PM

04:30

PM

MON

TUE

WED

THU

FRI SE LAB

SAT

CSE Page 5

Problem Statement: Draw the Work Breakdown Structure for the system to be
automated

Procedure:
A) How to Create a Work Breakdown Structure and Why You Should?

1. Include 100% of the work necessary to complete the goal.

2. Don't account for any amount of work twice.

3. Focus on outcomes, not actions.

4. A work package should take no less than 8 hours and no more than 80 hours of

effort.

5. Include about three levels of detail.

6. Assign each work package to a specific team or individual.

B) What is a work breakdown structure?

A work breakdown structure starts with a large project or objective and
breaks it down into smaller, more manageable pieces that you can reasonably evaluate
and assign to teams. Rather than focusing on individual actions that must be taken to
accomplish a project, a WBS generally focuses on deliverables or concrete, measurable
milestones.

CSE Page 6

C) Why use a WBS in project management?
1. Estimate the cost of a project.

2. Establish dependencies.

3. Determine a project timeline and develop a schedule.

4. Write a statement of work (or SOW, one of your other acronyms).

5. Assign responsibilities and clarify roles.

6. Track the progress of a project.

7. Identify risk.

D) How to create a work breakdown structure?
1. Record the overarching objective you are trying to accomplish. This objective

could be anything from developing a new software feature to building a missile.

2. Divide the overarching project into smaller and smaller pieces, but stop before

you get to the point of listing out every action that must be taken. Remember to

focus on concrete deliverables rather than actions.

3. Depending on the nature of your project, start dividing by project phases,

specific large deliverables, or sub-tasks.

E) Tips for making a work breakdown structure

 The 100% rule. The work represented by your WBS must include 100% of the
work necessary to complete the overarching goal without including any
extraneous or unrelated work. Also, child tasks on any level must account for all
of the work necessary to complete the parent task.

 Mutually exclusive. Do not include a sub-task twice or account for any amount
of work twice. Doing so would violate the 100% rule and will result in
miscalculations as you try to determine the resources necessary to complete a
project.

 Outcomes, not actions. Remember to focus on deliverables and outcomes
rather than actions. For example, if you were building a bike, a deliverable might
be “the braking system” while actions would include “calibrate the brake pads.”

 The 8/80 rule. There are several ways to decide when a work package is small
enough without being too small. This rule is one of the most common
suggestions—a work package should take no less than eight hours of effort, but
no more than 80. Other rules suggest no more than ten days (which is the same
as 80 hours if you work full time) or no more than a standard reporting period.
In other words, if you report on your work every month, a work package should
take no more than a month to complete. When in doubt, apply the “if it makes
sense” rule and use your best judgment.

CSE Page 7

 Three levels. Generally speaking, a WBS should include about three levels of
detail. Some branches of the WBS will be more subdivided than others, but if
most branches have about three levels, the scope of your project and the level
of detail in your WBS are about right.

 Make assignments. Every work package should be assigned to a specific team or
individual. If you have made your WBS well, there will be no work overlap so
responsibilities will be clear.

Experiment-2
Problem Statement: Schedule all the activities and sub-activities using the
PERT/CPM charts

Procedure:
1. Introduction
Basically, CPM (Critical Path Method) and PERT (Programme Evaluation Review
Technique) are project management techniques, which have been created out of the
need of Western industrial and military establishments to plan, schedule and control
complex projects.

 Planning, Scheduling & Control
Planning, Scheduling (or organizing) and Control are considered to be basic
Managerial functions, and CPM/PERT has been rightfully accorded due importance in
the literature on Operations Research and Quantitative Analysis.

Far more than the technical benefits, it was found that PERT/CPM provided a focus
around which managers could brain-storm and put their ideas together. It proved to
be a great communication medium by which thinkers and planners at one level could
communicate their ideas, their doubts and fears to another level. Most important, it
became a useful tool for evaluating the performance of individuals and teams.

 The Framework for PERT and CPM
Essentially, there are six steps which are common to both the techniques. The
procedure is listed below:

1. Define the Project and all of its significant activities or tasks. The Project (made

up of several tasks) should have only a single start activity and a single finish

activity.

2. Develop the relationships among the activities. Decide which activities must

precede and which must follow others.

3. Draw the "Network" connecting all the activities. Each Activity should have

unique event numbers. Dummy arrows are used where required to avoid giving

the same numbering to two activities.

4. Assign time and/or cost estimates to each activity

5. Compute the longest time path through the network. This is called the critical

path.

CSE Page 8

6. Use the Network to help plan, schedule, and monitor and control the project.

The Key Concept used by CPM/PERT is that a small set of activities, which make up the
longest path through the activity network control the entire project. If these "critical"
activities could be identified and assigned to responsible persons, management
resources could be optimally used by concentrating on the few activities which
determine the fate of the entire project.

Non-critical activities can be preplanned, rescheduled and resources for them can be
reallocated flexibly, without affecting the whole project.

 Drawing the CPM/PERT Network
Each activity (or sub-project) in a PERT/CPM Network is represented by an arrow
symbol. Each activity is preceded and succeeded by an event, represented as a circle
and numbered.

At Event 3, we have to evaluate two predecessor activities – Activity 1-3 and Activity 2-
3, both of which are predecessor activities. Activity 1-3 gives us an Earliest Start of 3
weeks at Event 3. However, Activity 2-3 also has to be completed before Event 3 can
begin. Along this route, the Earliest Start would be 4+0=4. The rule is to take the longer
(bigger) of the two Earliest Starts. So the Earliest Start at event 3 is 4.

Similarly, at Event 4, we find we have to evaluate two predecessor activities – Activity
2-4 and Activity 3-4. Along Activity 2-4, the Earliest Start at Event 4 would be 10 wks,
but along Activity 3-4, the Earliest Start at Event 4 would be 11 wks. Since 11 wks is
larger than 10 wks, we select it as the Earliest Start at Event 4.We have now found the
longest path through the
Network. It will take 11 weeks along activities 1-2, 2-3 and 3-4. This is the
Critical Path.

CSE Page 9

 The Backward Pass – Latest Finish Time Rule
To make the Backward Pass, we begin at the sink or the final event and work
backwards to the first event.

 Tabulation & Analysis of Activities
We are now ready to tabulate the various events and calculate the Earliest and Latest
Start and Finish times. We are also now ready to compute the SLACK or TOTAL FLOAT,
which is defined as the difference between the Latest Start and Earliest Start.

Event

Duration(Weeks)
Earliest

Start

Earliest

Finish

Latest

Start

Latest

Finish

Total

Float

1-2 4 0 4 0 4 0

2-3 0 4 4 4 4 0

3-4 7 4 11 4 11 0

1-3 3 0 3 1 4 1

2-4 6 4 10 5 11 1

 The Earliest Start is the value in the rectangle near the tail of each activity

 The Earliest Finish is = Earliest Start + Duration

 The Latest Finish is the value in the diamond at the head of each activity

 The Latest Start is = Latest Finish – Duration

There are two important types of Float or Slack. These are Total Float and Free Float.
TOTAL FLOAT is the spare time available when all preceding activities occur at the

CSE Page 10

earliest possible times and all succeeding activities occur at the latest possible times.
Total Float = Latest Start – Earliest Start
Activities with zero Total float are on the Critical Path

Experiment-3

Problem Statement: Define use cases and represent them in use-case document for
all the stakeholders of the system to be automated
Procedure:
To start with, let’s understand ‘What is Use Case?’ and later we will discuss ‘What is
Use Case Testing?’
A use case is a tool for defining the required user interaction. If you are trying to create
a new application or make changes to an existing application, several discussions are
made. One of the critical discussion you have to make is how you will represent the
requirement for the software solution.
Business experts and developers must have a mutual understanding about the
requirement, as it’s very difficult to attain. Any standard method for structuring the
communication between them will really be a boon. It will, in turn, reduce the
miscommunications and here is the place where Use case comes into the picture.
1. Who uses ‘Use Case’ documents?
This documentation gives a complete overview of the distinct ways in which the user
interacts with a system to achieve the goal. Better documentation can help to identify
the requirement for a software system in a much easier way.
This documentation can be used by Software developers, software testers as well as
Stakeholders.

Uses of the Documents:
1. Developers use the documents for implementing the code and designing it.

2. Testers use them for creating the test cases.

3. Business stakeholders use the document for understanding the software

requirements.

1.1 Elements in Use Cases
Given below are the various elements:

1) Brief description: A brief description explaining the case.
2) Actor: Users that are involved in Use Cases Actions.
3) Precondition: Conditions to be satisfied before the case begins.
4) Basic Flow: ‘Basic Flow’ or ‘Main Scenario’ is the normal workflow in the system. It is
the flow of transactions done by the Actors on accomplishing their goals. When the
actors interact with the system, as it’s the normal workflow, there won’t be any error
and the Actors will get the expected output.

CSE Page 11

5) Alternate flow: Apart from the normal workflow, a system can also have an
‘Alternate workflow’. This is the less common interaction done by a user with the
system.

6) Exception flow: The flow that prevents a user from achieving the goal.
7) Post Conditions: The conditions that need to be checked after the case is
completed.

1.2 Representation
A case is often represented in a plain text or a diagram. Due to the simplicity of the use
case diagram, it is considered to be optional by any organization

Use Case Example:
Here I will explain the case for ‘Login’ to a ‘School Management System’.

Use Case Name Login

Use case
Description

A user login to System to access the functionality of the system.

Actors Parents, Students, Teacher, Admin

Pre-Condition System must be connected to the network.

Post -Condition After a successful login a notification mail is sent to the User mail id

Main Scenarios
Serial
No

Steps

Actors/Users 1 Enter
username
Enter
Password

2 Validate Username and Password

3 Allow access to System

Extensions 1a Invalid Username System shows an error message

2b Invalid Password System shows an error message

3c Invalid Password for 4times Application closed

1.3 How to Write a Use Case?
The points summarized below will help you to write these:

CSE Page 12

=> When we are trying to write a case, the first question that should raise is ‘What’s
the primary use for the customer?’ This question will make you write your cases from
the User’s perspective.

=> We must have obtained a template for these.
=> It must be productive, simple and strong. A strong Use Case can impress the
audience even if they have minor mistakes.

=> We should number it.
=> We should write the Process Step in its Order.
=> Give proper name to the Scenarios, naming must be done according to the purpose.
=> This is an iterative process, which means when you write them for the first time it
won’t be perfect.

=> Identify the actors in the system. You may find a bunch of actors in the system.

Experiment-4

Problem Statement: Identify and analyze all the possible risks and its risk mitigation
plan for the system to be automated

Procedure:
Definition: Risk mitigation planning is the process of developing options and actions to
enhance opportunities and reduce threats to project objectives. Risk mitigation
implementation is the process of executing risk mitigation actions. Risk mitigation
progress monitoring includes tracking identified risks, identifying new risks, and
evaluating risk
process
effectiveness
throughout the
project.

CSE Page 13

Example:
Evolution of Healthcare Enterprise Risk Management (ERM)
ERM encompasses eight risk domains:

1. Operational

2. Clinical & Patient Safety

3. Strategic

4. Financial

5. Human Capital

6. Legal & Regulatory

7. Technological

8. Environmental- and Infrastructure-Based Hazards.

Create a Healthcare Risk Management Plan
There are some fundamental components that belong in all healthcare risk
management plans:

Education & Training:
Risk management plans need to detail employee training requirements which should
include new employee orientation, ongoing and in-service training, annual review and
competency validation, and event-specific training.

Patient & Family Grievances:
To promote patient satisfaction and reduce the likelihood of litigation, procedures for
documenting and responding to patient and family complaints should be described in
the Risk Management Plan. Response times, staff responsibilities, and prescribed
actions need to be articulated and communicated.

Purpose, Goals, &Metrics:
Risk management plans should clearly define the purpose and benefits of the
healthcare risk management plan. Specific goals to reduce liability claims, sentinel
events, near misses, and the overall cost of the organization’s risk should also be well-
articulated. Additionally, reporting on quantifiable and actionable data should be
detailed and mandated by the plan.

Communication Plan:
While it is critical that the healthcare risk management team promote open and
spontaneous dialogue, information about how to communicate about risk and with
whom should be provided in the healthcare risk management plan. Next steps and
follow-up activities should be documented. It is essential as well that the plan detail
reporting requirements to departments and C-Suite personnel. Furthermore, the plan
should promote a safe, “no-blame” culture and should include anonymous reporting
capabilities.

CSE Page 14

Contingency Plans:
Risk management plans also need to include contingency preparation for adverse
system-wide failures and catastrophic situations such as malfunctioning EHR systems,
security breaches, and cyber-attacks. The plan needs to include emergency
preparedness for things like disease outbreaks, long-term power loss, and terror
attacks or mass shootings.
Reporting Protocols:
Every healthcare organization must have a quick and easy-to-use, system for
documenting, classifying, and tracking possible risks and adverse events. These
systems must include protocols for mandatory reporting.
Response & Mitigation:
Plans for healthcare risk must also include collaborative systems for responding to
reported risks and events including acute response, follow-up, reporting, and repeat
failure prevention.

Experiment-5

Problem Statement: Diagnose any risk using Ishikawa Diagram (Can be called as Fish
Bone Diagram or Cause & Effect Diagram)

Procedure:
A fishbone diagram is a visualization tool for categorizing the potential causes of a
problem. This tool is used in order to identify a problem’s root causes. Typically used
for root cause analysis, a fishbone diagram combines the practice
of brainstorming with a type of mind map template. It should be efficient as a test case
technique to determine cause and effect.
A fishbone diagram is useful in product development and troubleshooting processes,
typically used to focus a conversation around a problem. After the group has
brainstormed all the possible causes for a problem, the facilitator helps the group to
rate the potential causes according to their level of importance and diagram a
hierarchy.

How to create a fishbone diagram
1. The head of the fish is created by listing the problem in a statement format and

drawing a box around it. A horizontal arrow is then drawn across the page with

an arrow pointing to the head. This acts as the backbone of the fish.

2. Then at least four overarching "causes" are identified that might contribute to

the problem. Some generic categories to start with may include methods, skills,

equipment, people, materials, environment or measurements. These causes are

then drawn to branch off from the spine with arrows, making the first bones of

the fish.

https://whatis.techtarget.com/definition/brainstorming
https://searchsoftwarequality.techtarget.com/tip/Efficient-test-case-design-techniques-to-boost-coverage
https://searchsoftwarequality.techtarget.com/tip/Efficient-test-case-design-techniques-to-boost-coverage
https://searchcio.techtarget.com/definition/product-development-or-new-product-development-NPD?_gl=1%2A1w7kg3y%2A_ga%2AMjAzNDM5OTY4OS4xNjIwNjI4NjU5%2A_ga_TQKE4GS5P9%2AMTYyNjMyNzM1MC4yLjAuMTYyNjMyNzM1MC4w&_ga=2.123136643.966278417.1626327351-2034399689.1620628659
https://whatis.techtarget.com/definition/troubleshooting

CSE Page 15

3. For each overarching cause, team members should brainstorm any supporting

information that may contribute to it. This typically involves some sort of

questioning methods, such as the 5 Why's or the 4P's (Policies, Procedures,

People and Plant) to keep the conversation focused. These contributing factors

are written down to branch off their corresponding cause.

4. This process of breaking down each cause is continued until the root causes of

the problem have been identified. The team then analyzes the diagram until an

outcome and next steps are agreed upon.

Example of a fishbone diagram
The following graphic is an example of a fishbone diagram with the problem "Website
went down." Two of the overarching causes have been identified as "Unable to
connect to server" and "DNS lookup problem," with further contributing factors
branching off.

When to use a fishbone diagram
A few reasons a team might want to consider using a fishbone diagram are:

 To identify the possible causes of a problem.

https://whatis.techtarget.com/definition/5-Whys

CSE Page 16

 To help develop a product that addresses issues within current market offerings.

 To reveal bottlenecks or areas of weakness in a business process.

 To avoid reoccurring issues or employee burnout.

 To ensure that any corrective actions put into place will resolve the issue.

Experiment-6

Problem Statement:Define Complete Project plan for the system to be automated
using Microsoft Project Tool

Procedure:
Microsoft Project Example – Let’s create your first real project in a just few steps
Creating a project plan in Microsoft Project isn’t difficult at all.
This article will teach you how to create a simple project plan using a real project
example.

Some basic configuration before you start
Before you create a schedule, you need to make two important changes in your
settings:
Setting change 1: Make Auto Scheduling the default
o to File –> Options

https://searchnetworking.techtarget.com/definition/bottleneck
https://whatis.techtarget.com/definition/burnout

CSE Page 17

Make sure to set Auto Schedule for new tasks:

What does Auto Scheduled mean?
It means that new tasks will be scheduled automatically based on your project start
date (or end date). More specifically, Project will determine the optimal start and end
date for each task automatically, which is what we want (why would we use a
computer-based scheduling tool if we would not want to automate the scheduling?
Read more about manual vs. automatic scheduling in Project.)
Close the window. At the bottom left corner of the screen it should look like this:

Setting change 2: Enable immediate calculation
We want Microsoft Project to re-calculate the project schedule immediately after we
make a change. This ensures the data you see is always up to date. Unless you run a
mega-project, leave the setting enabled.

https://www.tacticalprojectmanager.com/manual-vs-automatic-scheduling-ms-project/

CSE Page 18

Now, let’s schedule a simple project!
Our sample project: We are setting up our own business. We have picked a business
idea and now we need to go from writing a business plan to a fully established
business. For these steps, we are going to create a project plan.
Step 1: Create a new project

Choose Blank Project.
You will see a blank window.

CSE Page 19

First, let’s create a Project Summary Task. This is like an overall “wrapper” task that
contains our entire project.

Here’s what you should see:

Give your project a suitable name:

Don’t worry about the duration and the dates – we’ll take care of this later.
Step 2: Enter a project start date
You need to tell Project the date at which the project officially starts.
To set the project start date, open the Project tab and click Project Information:

Enter the project start date (in our example: 14th September 2020):

CSE Page 20

Note: You can decide whether you want Microsoft Project to schedule your
project forward from a specific start date or backward from a desired end date. If you
already have committed to a go live date and want to know by when you need to begin
work, then chose Schedule from Project End Date to trigger the backward planning.
For this example, we want to base our schedule on a start date of 14th September
2020.
Press OK after you’ve entered the project start date. You can see now the start date for
our tasks is 14th September 2020.

tep 3: Enter the list of tasks
In this project, we need to accomplish the following tasks:

 Create business plan

 Get business license

 Set up bank account

 Get funding

 Pick a business location

 Set up office equipment and furniture

 Hire team

 Run promotion

If you look at the list, you notice that the tasks must be performed in a specific order.
There are also some dependencies between the tasks.
For example, we can’t get a bank account without having a business license. We also
can’t get funding (i.e. a bank loan) without having a business license. And of course we
need the money to hire people for our store. So, everything is connected with each
other.
Now let’s enter those tasks into Microsoft Project.
Enter the tasks into the table next to the Gantt view:

CSE Page 21

At this stage, Project doesn’t have all the information it needs to create a schedule. It
doesn’t know how long each task is going to take. Therefore the Duration column has a
question mark and the start and finish dates aren’t correct yet.
Let’s continue. You now need to “link” all tasks in the right order and enter the
estimated durations.

Step 4: Enter task durations
Now, tell Project how long each task is going to take. What you enter here is the
duration of the task, which is not the same as the effort. Duration is the total timespan
until a task is finished. Effort (in Project, effort is called Work) is the amount of actual
working time.
Enter the estimated duration in the duration column. Tip: you can either use the
up/down ar- rows to change the values or enter for example “3d” to specify 3 days or
“2w for 2 weeks of duration.

CSE Page 22

CSE Page 23

Experiment-7

Problem Statement:Define the Features, Vision, Business objectives, Business rules
and stakeholders in the vision document

Procedure:
The Vision Document:
The Vision document is the Rational Unified Process artifact that captures all of the
requirements information that we have been discussing in this chapter. As with all
requirements documentation, its primary purpose is communication.
You write a Vision document to give the reader an overall understanding of the system
to be developed by providing a self-contained overview of the system to be built and
the motivations behind building it. To this end, it often contains extracts and
summaries of other related artifacts, such as the business case and associated business
models. It may also contain extracts from the system use-case model where this helps
to provide a succinct and accessible overview of the system to be built.
The purpose of the Vision document is to capture the focus, stakeholder needs, goals
and objectives, target markets, user environments, target platforms, and features of
the product to be built. It communicates the fundamental "whys and what’s" related
to the project, and it is a gauge against which all future decisions should be validated.
The Vision document is the primary means of communication between the
management, marketing, and project teams. It is read by all of the project
stakeholders, including general managers, funding authorities, use-case modelers, and
developers. It provides

 A high-level (sometimes contractual) basis for the more detailed technical

requirements

 Input to the project-approval process (and therefore it is intimately related to

the business case)

 A vehicle for eliciting initial customer feedback

 A means to establish the scope and priority of the product features

It is a document that gets "all parties working from the same book."

Because the Vision document is used and reviewed by a wide variety of involved
personnel, the level of detail must be general enough for everyone to understand.
However, enough detail must be available to provide the team with the information it
needs to create a use-case model and supplementary specification.
The document contains the following sections:

 Positioning: This section summarizes the business case for the product and the

problem or opportunity that the product is intended to address. Typically, the

following areas should be addressed:

CSE Page 24

 The Business Opportunity: A summary of business opportunity being met

by the product

 The Problem Statement: A solution-neutral summary of the problem

being solved focusing on the impact of the problem and the benefits

required of any successful solution

 Market Demographics: A summary of the market forces that drive the

product decisions.

 User Environment: The user environment where the product could be

applied.

 Stakeholders and Users: This section describes the stakeholders in, and users of,

the product. The stakeholder roles and stakeholder types are defined in the

project's Vision document—the actual stakeholder representatives are identified

as part of the project plan just like any other resources involved in the project.

 Key Stakeholder and User Needs: This section describes the key needs that the

stakeholders and users perceive the product should address. It does not

describe their specific requests or their specific requirements, because these are

captured in a separate stakeholder requests artifact. Instead, it provides the

background and justification for why the requirements are needed.

 Product Overview: This section provides a high-level view of the capabilities,

assumptions, dependencies (including interfaces to other applications and

system configurations), and alternatives to the development of the product.

 Features: This section lists the features of the product. Features are the high-

level capabilities (services or qualities) of the system that are necessary to

deliver benefits to the users and satisfy the stakeholder and user needs. This is

the most important, and consequently usually the longest, section of the Vision

document.

 Other Product Requirements: This section lists any other high-level

requirements that cannot readily be captured as product features. These include

any constraints placed on the development of the product and any requirements

the planned product places on its operating environment.

In many cases, a lot more work is put into uncovering the business opportunity and
understanding the market demographics related to the proposed product than is
reflected in the Vision document. This work is usually captured in-depth in business
cases, business models, and market research documents. These documents are then
summarized in the Vision document to ensure that they are reflected in the ongoing

CSE Page 25

evolution of the products specification.
We recommend that the Vision document be treated primarily as a report and that the
stakeholder types, user types, stakeholder roles, needs, features, and other product
requirements be managed using a requirements management tool. If the list of
features is to be generated, it is recommended that they be presented in two sections:

 In-Scope features

 Deferred features

Do you really need to do all of this?
You are probably thinking that this all sounds like an awful lot of work, and you
probably want to get started on the actual use-case modeling without producing reams
and reams of additional documentation.
Well, projects are typically in one of four states when the use-case modeling activities
are scheduled to commence:

 A formal Vision document has been produced.

 The information has already been captured but not consolidated into a single

Vision document.

 There is a shared vision, but it has not been documented.

 There is no vision.

If your project is in one of the first two states, and the information is available to all the
stakeholder representatives, then you are in a position to proceed at full speed with
the construction and completion of the use-case model. If your project is in one of the
last two states, then you should be very careful not to spend too much effort on the
detailed use-case modeling activities. This does not mean that use-case modeling
cannot be started—it simply means that any modeling you do must be undertaken in
conjunction with other activities aimed at establishing a documented vision for the
product. In fact, in many cases, undertaking some initial use-case modeling can act as a
driver and facilitation device for the construction of the vision itself.
Our recommendation would be to always produce a Vision document for every project
and to relate the information it contains to the use-case model to provide focus,
context, and direction to the use-case modeling activities. For-mally relating the two
sets of information also provides excellent validation of their contents and quality. If
there is sufficient domain knowledge and agreement between the stakeholder
representatives, then producing and reviewing the Vision document can be done very
quickly. If there isn't, then there is no point in undertaking detailed use-case modeling;
the resulting specifications would be ultimately worthless as they would not be a
reflection of the product's true requirements.

Summary
Before embarking on any use-case modeling activities it is essential to establish a firm
foundation upon which to build. The foundation has two dimen-sions, which must be

CSE Page 26

evolved in parallel with one another:
1. An understanding of the stakeholder and user community

2. The establishment of a shared vision for the product

Understanding the stakeholder community is essential as the stakeholders are the
primary source of requirements. The following are the key to understanding the
stakeholder community:

 Stakeholder Types: Definitions of all of the different types of stakeholder

affected by the project and the product it produces.

 User Types: Definitions of characteristics and capabilities of the users of the

system. The users are the people and things that will take on the roles defined

by the actors in the use-case model.

For the use-case modeling activities to be successful, the stakeholders and users will
need to be actively involved in them. The stakeholders and users directly involved in
the project are known as stakeholder representatives. To ensure that the stakeholder
representatives understand their commitment to the project, it is worthwhile to clearly
define the "stakeholder roles" that they will be adopting. The stakeholder roles serve
as a contract between the stakeholder representatives and the project, reflecting the
responsibilities and expectations of both sides.

To establish a shared vision for the project, the following are essential:
 The Problem Statement: A solution-neutral summary of the problem being

solved, focusing on the impact of the problem and the benefits required of any

successful solution.

 Stakeholder Needs: The true "business requirements" of the stakeholders

presented in a solution-neutral manner. These are the aspects of the problem

that affect the individual stakeholders.

 Features, Constraints, and Other High-Level Product Requirements: A high-

level definition of the system to be developed. These complement and provide a

context for the use-case model and enable effective scope management.

 Product Overview: A summary of the other aspects of the product not directly

captured by the high-level requirements.

The Vision document can be used to capture all of this information in a form that is
accessible to all the stakeholders of the project.
The vision does not have to be complete before use-case modeling activities start; in
fact, undertaking some initial use-case modeling can act as a driver and facilitation
device for the construction of the vision itself, but if the vision is not established
alongside the use-case model, then there is a strong possibility that it will not be a true
reflection of the real requirements.

CSE Page 27

 Experiment-8

Problem Statement:Define the functional and non-functional requirements of the
system to be automated by using Use cases and document in SRS document
Procedure:
Clearly defined requirements are essential signs on the road that leads to a successful
project. They establish a formal agreement between a client and a provider that they are
both working to reach the same goal. High-quality, detailed requirements also help
mitigate financial risks and keep the project on a schedule. According to the Business
Analysis Body of Knowledge definition, requirements are a usable representation of a
need.
Creating requirements is a complex task as it includes a set of processes such as
elicitation, analysis, specification, validation, and management. In this article, we’ll
discuss the main types of requirements for software products and provide a number of
recommendations for their use.

Classification of requirements
Prior to discussing how requirements are created, let’s differentiate their types.

Business requirements. These include high-level statements of goals, objectives, and
needs.
Stakeholder requirements. The needs of discrete stakeholder groups are also specified
to define what they expect from a particular solution.
Solution requirements. Solution requirements describe the characteristics that a
product must have to meet the needs of the stakeholders and the business itself.

http://www.iiba.org/babok-guide.aspx
http://www.iiba.org/babok-guide.aspx

CSE Page 28

 Nonfunctional requirements describe the general characteristics of a system.

They are also known as quality attributes.

 Functional requirements describe how a product must behave, what its features

and functions.

Transition requirements. An additional group of requirements defines what is needed
from an organization to successfully move from its current state to its desired state
with the new product.
Let’s explore functional and nonfunctional requirements in greater detail.
Functional requirements and their specifications
Functional requirements are product features or functions that developers must
implement to enable users to accomplish their tasks. So, it’s important to make them
clear both for the development team and the stakeholders. Generally, functional
requirements describe system behavior under specific conditions. For instance:
A search feature allows a user to hunt among various invoices if they want to credit an
issued invoice.
Here’s another simple example: As a guest, I want a sofa that I can sleep on overnight.
Requirements are usually written in text, especially for Agile-driven projects. However,
they may also be visuals. Here are the most common formats and documents:

 Software requirements specification document

 Use cases

 User stories

 Work Breakdown Structure (WBS) (functional decomposition)

 Prototypes

 Models and diagrams

Software requirements specification document
Functional and nonfunctional requirements can be formalized in the requirements
specification (SRS) document. (To learn more about software documentation, read our
article on that topic.) The SRS contains descriptions of functions and capabilities that
the product must provide. The document also defines constraints and assumptions.
The SRS can be a single document communicating functional requirements or it may
accompany other software documentation like user stories and use cases.
We don’t recommend composing SRS for the entire solution before the development
kick-off, but you should document the requirements for every single feature before
actually building it. Once you receive the initial user feedback, you can update the
document.
SRS must include the following sections:
Purpose.Definitions, system overview, and background.

https://www.altexsoft.com/whitepapers/agile-project-management-best-practices-and-methodologies/
https://www.altexsoft.com/blog/software-requirements-specification/
https://www.altexsoft.com/blog/software-requirements-specification/
https://www.altexsoft.com/blog/business/technical-documentation-in-software-development-types-best-practices-and-tools/

CSE Page 29

Overall description. Assumptions, constraints, business rules, and product vision.
Specific requirements. System attributes, functional requirements, database
requirements.
It’s essential to make the SRS readable for all stakeholders. You also should use
templates with visual emphasis to structure the information and aid in understanding
it. If you have requirements stored in some other document formats, link to them to
allow readers to find the needed information.
Example: If you’d like to see an actual document, download this SRS example created
at Michigan State University, which includes all points mentioned above in addition to
presenting use cases to illustrate parts of the product.
Use cases
Use cases describe the interaction between the system and external users that leads to
achieving particular goals.

Each use case includes three main elements:
Actors. These are the users outside the system that interact with the system.
System. The system is described by functional requirements that define an intended
behavior of the product.
Goals. The purposes of the interaction between the users and the system are outlined
as goals.

There are two formats to represent use cases:
 Use case specification structured in textual format

 Use case diagram

A use case specification represents the sequence of events along with other
information that relates to this use case. A typical use case specification template
includes the following information:

 Description

 Pre- and Post- interaction condition

 Basic interaction path

 Alternative path

 Exception path

Example:

https://www.cse.msu.edu/~cse435/Handouts/SRSExample-webapp.doc

CSE Page 30

Use case specification template
A use case diagram doesn’t contain a lot of details. It shows a high-level overview of
the relationships between actors, different use cases, and the system.

The use case diagram includes the following main elements:
Use cases. Usually drawn with ovals, use cases represent different use scenarios that
actors might have with the system (log in, make a purchase, view items, etc.)
System boundaries. Boundaries are outlined by the box that groups various use cases
in a system.
Actors. These are the figures that depict external users (people or systems) that
interact with the system.
Associations. Associations are drawn with lines showing different types of
relationships between actors and use cases.

Example:

CSE Page 31

Use case diagram example
User stories
A user story is a documented description of a software feature seen from the end-user
perspective. The user story describes what exactly the user wants the system to do. In
Agile projects, user stories are organized in a backlog, which is an ordered list of
product functions. Currently, user stories are considered to be the best format for
backlog items.

A typical user story is written like this:
As a <type of user>, I want <some goal> so that <some reason>.
Example:
As an admin, I want to add descriptions to products so that users can later view these
descriptions and compare the products.
User stories must be accompanied by acceptance criteria. These are the conditions
that the product must satisfy to be accepted by a user, stakeholders, or a product
owner. Each user story must have at least one acceptance criterion. Effective
acceptance criteria must be testable, concise, and completely understood by all team
members and stakeholders. They can be written as checklists, plain text, or by using
Given/When/Then format.

Example:
Here’s an example of the acceptance criteria checklist for a user story describing a
search feature:

 A search field is available on the top-bar.

 A search is started when the user clicks Submit.

 The default placeholder is a grey text Type the name.

CSE Page 32

 The placeholder disappears when the user starts typing.

 The search language is English.

 The user can type no more than 200 symbols.

 It doesn’t support special symbols. If the user has typed a special symbol in the

search input, it displays the warning massage: Search input cannot contain

special symbols.

Finally, all user stories must fit the INVEST quality model:
 I – Independent

 N – Negotiable

 V – Valuable

 E – Estimable

 S – Small

 T – Testable

Independent. This means that you can schedule and implement each user story
separately. This is very helpful if you implement continuous integration processes.
Negotiable. This means that all parties agree to prioritize negotiations over
specification. This also means that details will be created constantly during
development.
Valuable. A story must be valuable to the customer. You should ask yourself from the
customer’s perspective “why” you need to implement a given feature.
Estimable. A quality user story can be estimated. This will help a team schedule and
prioritize the implementation. The bigger the story is, the harder it is to estimate it.
Small. Good user stories tend to be small enough to plan for short production releases.
Small stories allow for more specific estimates.
Testable. If a story can be tested, it’s clear enough and good enough. Tested stories
mean that requirements are done and ready for use.

https://www.altexsoft.com/blog/business/continuous-delivery-and-integration-rapid-updates-by-automating-quality-assurance/

CSE Page 33

Experiment-9

Problem Statement:Define the following traceability matrices:
1. Use case Vs. Features
2. Functional requirements Vs.Usecases
Procedure:
The concept of Traceability Matrix is to be able to trace from top level requirements to
implementation,andfrom top level requirements to test.

A traceability matrix is a table that traces a requirement to the tests that are needed to
verify that the requirement is fulfilled. A good traceability matrix will provide backward
and forward traceability, i.e. a requirement can be traced to a test and a test to a
requirements. The matrix links higher level requirements, design specifications, test
requirements, and code files. It acts as a map, providing the links necessary for
determining where information is located. This is also known as Requirements
Traceability Matrix or RTM.

This is mostly used for QA so that they can ensure that the customer gets what they
requested. The Traceability matrix also helps the developer find out why some code
was implemented the way it was, by being able to go from code to Requirements. If a
test fails, it is possible to use the traceability matrix to see what requirements and
code the test case relates to.

The goal of a matrix of this type is -
1. To make sure that the approved requirements are addressed/covered in all phases
of development: From SRS to Development to Testing to Delivery.
2. That each document should be traceable: Written test cases should be traceable to
its requirement specification. If there is new version then updated test cases should be
traceable with that.

Traceability Matrix is used in entire software development life cycle phases:
1. Risk Analysis phase
2. Requirements Analysis and Specification phase
3. Design Analysis and Specification phase
4. Source Code Analysis, Unit Testing & Integration Testing phase
5. Validation – System Testing, Functional Testing phase
In this topic we will discuss:

 What is Traceability Matrix from Software Testing perspective? (Point

5)

 Types of Traceability Matrix

 Disadvantages of not using Traceability Matrix

 Benefits of using Traceability Matrix in testing

CSE Page 34

 Step by step process of creating an effective Traceability Matrix from

requirements. Sample formats of Traceability Matrix basic version to

advanced version.

In Simple words - A requirements traceability matrix is a document that traces and
maps user requirements [requirement Ids from requirement specification document]
with the test case ids. Purpose is to make sure that all the requirements are covered in
test cases so that while testing no functionality can be missed.
This document is prepared to make the clients satisfy that the coverage done is
complete as end to end, this document consists of Requirement/Base line doc Ref No.,
Test case/Condition, and Defects/Bug id. Using this document the person can track the
Requirement based on the Defect id.

Types of Traceability Matrix:
 Forward Traceability – Mapping of Requirements to Test cases

 Backward Traceability – Mapping of Test Cases to Requirements

 Bi-Directional Traceability - A Good Traceability matrix is the

References from test cases to basis documentation and vice versa.

Why Bi- Directional
Traceability is
required?
Bi-Directional Traceability contains both Forward & Backward Traceability. Through
Backward Traceability Matrix, we can see that test cases are mapped with which
requirements.
This will help us in identifying if there are test cases that do not trace to any coverage
item— in which case the test case is not required and should be removed (or maybe a
specification like a requirement or two should be added!). This “backward” Traceability
is also very helpful if you want to identify that a particular test case is covering how
many requirements?
Through Forward Traceability – we can check that requirements are covered in which
test cases? Whether is the requirements are coved in the test cases or not?
Forward Traceability Matrix ensures – We are building the Right Product.
Backward Traceability Matrix ensures – We the Building the Product Right.

Traceability matrix is the answer of the following questions of any Software Project:
 How is it feasible to ensure, for each phase of the SDLC, that I have

correctly accounted for all the customer’s needs?

CSE Page 35

 How can I certify that the final software product meets the customer’s

needs? Now we can only make sure requirements are captured in the

test cases by traceability matrix.

Disadvantages of not using Traceability Matrix [some possible (seen) impact]:
No traceability or Incomplete Traceability Results into:
1. Poor or unknown test coverage, more defects found in production
2. It will lead to miss some bugs in earlier test cycles which may arise in later test
cycles. Then a lot of discussions arguments with other teams and managers before
release.
3. Difficult project planning and tracking, misunderstandings between different teams
over project dependencies, delays, etc

Benefits of using Traceability Matrix
 Make obvious to the client that the software is being developed as per

the requirements.

 To make sure that all requirements included in the test cases

 To make sure that developers are not creating features that no one has

requested

 Easy to identify the missing functionalities.

 If there is a change request for a requirement, then we can easily find

out which test cases need to update.

 The completed system may have “Extra” functionality that may have

not been specified in the design specification, resulting in wastage of

manpower, time and effort.

Steps to create Traceability Matrix:
1. Make use of excel to create Traceability Matrix:

2. Define following columns:
Base Specification/Requirement ID (If any)
Requirement ID
Requirement description
TC 001

TC 002
TC 003.. So on.
3. Identify all the testable requirements in granular level from requirement document.
Typical requirements you need to capture are as follows:
Used cases (all the flows are captured)
Error Messages
Business rules
Functional rules
SRS
FRS

CSE Page 36

So on…
4. Identity all the test scenarios and test flows.
5. Map Requirement IDs to the test cases. Assume (as per below table), Test case “TC
001” is your one flow/scenario. Now in this scenario, Requirements SR-1.1 and SR-1.2
are covered. So, mark “x” for these requirements.
Now from below table you can conclude –
Requirement SR-1.1 is covered in TC 001
Requirement SR-1.2 is covered in TC 001
Requirement SR-1.5 is covered in TC 001, TC 003 [Now it is easy to identify, which test
cases need to be updated if there is any change request].
TC 001 Covers SR-1.1, SR, 1.2 [we can easily identify that test cases covers which
requirements].
TC 002 covers SR-1.3... So on...

Requirement ID

Requirement
description

TC 001

TC 002

TC 003

SR-1.1 User should be able
to do this

x

SR-1.2 User should be able
to do that

x

SR-1.3 On clicking this,
following message
should appear

x

SR-1.4

x

SR-1.5

x

x

SR-1.6

x

SR-1.7

x

Use Case
A use case describes the interactions between one of more Actors and the system in
order to provide an observable result of value for the initiating actor.
The functionality of a system is defined by different use cases, each of which
represents a specific goal (to obtain the observable result of value) for a particular
actor.

CSE Page 37

In an automated teller machine shown in Figure 1, the Bank Customer can withdraw
cash from an account, transfer funds between accounts, or deposit funds to an
account. These correspond to specific goals that the actor has in using the system.

Figure 1: ATM Use-Case Example
Each use case is associated with a goal of one of the actors. The collection of use cases
constitutes all the possible ways of using the system. You should be able to determine
the goal of a use case simply by observing its name.
A use case describes the interactions between the actor(s) and the system in the form
of a dialog between the actor(s) and the system, structured as follows:

1. The actor <<does something>>
2. The system <<does something in response>>
3. The actor <<does something else>>
4. The system ...
Each dialog of this form is called a "Flow of Events".
Because there are many flows of events possible for achieving the goal (for example,
the flow may differ depending upon specific input from the actor), and there are
situations in which the goal cannot be achieved (for example, a required network
connection is currently unavailable), each use case will contain several flows, including
one "Basic Flow of Events" and several "Alternative Flows".
The Basic Flow of Events specifies the interactions between the actor(s) and the
system for the ideal case, where everything goes as planned, and the actor's goal (the
observable result of value) is met. The basic flow represents the main capability
provided by the system for this use case.
As the name implies, Alternative Flows specify alternative interactions associated with
the same goal.
Closely related to use cases is the concept of a scenario. A scenario is a specific flow of
events, for a specific set of inputs to the system, states of the system, and states of the
system's environment. Scenarios are closely related to test cases.
Properties of Use Cases
Name
Each use case should have a name that indicates what is achieved by its interaction

http://www.blogger.com/

CSE Page 38

with the actors. The name may have to be several words to be understood. Note: No
two use cases can have the same name.

Brief Description
The brief description of the use case should reflect its purpose.
Flow of Events
Flow of Events - Contents
The flow of events should describe the use case's flow of events clearly enough for an
outsider to easily understand. Remember, the flow of events should
represent what the system does, not how the system is design to perform the required
behavior.

Follow these guidelines for the contents of the flow of events:
· Describe how the use case starts and ends.
· Describe what data is exchanged between the actor and the use case.
· Do not describe the details of the user interface, unless it is necessary to
understand the behavior of the system. Specifying user interface details too early will
limit design options.
· Describe the flow of events, not only the functionality. To enforce this, start
every action with "When the actor ... ".
· Describe only the events that belong to the use case, and not what happens in
other use cases or outside of the system.

· Avoid vague terminology.
· Detail the flow of events. Specify what happens when, for each action.
Remember this text will be used to identify test cases.
If you have used certain terms in other use cases, be sure to use the exact same terms
in this use case, and that the meaning of the terms is consistent. To manage common
terms, put them in a glossary.

Flow of Events - Structure
The two main parts of the flow of events are basic flow of events and alternative
flows of events. The basic flow of events should cover what "normally" happens when
the use case is performed. The alternative flows of events cover behavior of optional
or exceptional character in relation to the normal behavior, and also variations of the
normal behavior. You can think of the alternative flows of events as detours from the
basic flow of events, some of which will return to the basic flow of events and some of
which will end the execution of the use case.
The straight arrow in Figure 2 represents the basic flow of events, and the curves
represent alternative paths in relation to the normal. Some alternative paths return to
the basic flow of events, whereas others end the use case.

Figure 2: Typical structure of a use case flow of events

http://www.blogger.com/
http://www.blogger.com/
http://www.blogger.com/

CSE Page 39

Both the basic and alternative flows should be further structured into steps or sub-
flows. In doing this, your main goal should be readability of the text. A guideline is that
a sub-flow should be a segment of behavior within the use case that has a clear
purpose, and is "atomic" in the sense that you do either all or none of the actions
described.

Special Requirements
In the Special Requirements of a use case, you describe all the requirements associated
with the use case that are not covered by the flow of events. These are non-functional
requirements that will influence the design. See also the discussion on non-functional
requirements in Concept: Requirements.

Preconditions and Post-conditions
A precondition is the state of the system and its environment that is required before
the use case can be started. Post-Conditions are the states the system can be in after
the use case has ended. It can be helpful to use the concepts of precondition and post-
condition to clarify how the flow of events starts and ends. However, only use them
only if the audience for the description of the use case agrees that it is helpful. Figure 3
shows an example.

Figure 3: Illustration of preconditions and resulting post-conditions
Examples
A precondition for the use case Cash Withdrawal in the ATM machine: The customer
has a personally issued card that fits in the card reader, has been issued a PIN number,
and is registered with the banking system.
A post-condition for the use case Cash Withdrawal in the ATM machine: At the end of
the use case, all account and transaction logs are balanced, communication with the
banking system is reinitialized and the card is returned to the customer.

http://www.blogger.com/
http://www.blogger.com/

CSE Page 40

Experiment-10

Problem Statement:Estimate the effort using the following methods for the system
to be automated:

1. Function point metric
2. Use case point metric
Procedure:
For the success of any project test estimation and proper execution is equally
important as the development cycle. Sticking to the estimation is very important to
build a good reputation with the client.
Experience plays a major role in estimating “Software Testing Efforts”. Working on
varied projects helps to prepare an accurate estimation of the testing cycle. Obviously
one cannot just blindly put some number of days for any testing task. Test estimation
should be realistic and accurate.

Brief Description of the Test Estimation Process
“Estimation is the process of finding an estimate, or approximation, which is a value
that is usable for some purpose even if input data may be incomplete, uncertain,
or unstable.”
We all come across different tasks and duties and deadlines throughout our lives as
professionals, now there are two approaches to find a solution to a problem.
A first approach is a reactive approach whereby we try to find a solution to the
problem at hand only after it arrives.
In the second approach which can be called a Proactive Approach whereby we first
prepare ourselves well before the problem arrives with our past experiences and then
with our past experience, we try to find a solution to the challenge when it arrives.
Estimation can thus be considered as a technique that is applied when we take a
proactive approach to the problem.
Thus Estimation can be used to predict how much effort with respect to time and cost
would be required to complete a defined task.
Once the testing team is able to make an estimate of the problem at hand then it is
easier for them to come up with a solution that would be optimum to the problem at
hand.
The practice of estimation can be defined then more formally as an approximate
computation of the probable cost of a piece of work.

Test Estimation Examples
Use Case Point Estimation Method:
Use-Case Point Method is based on the use cases where we calculate the overall test
estimation effort based on the use cases or the requirements.

CSE Page 41

Here is the detailed process of the Use case point estimation method:

An example of the same is that say in a particular requirement we have 5 use cases,
use case 1, and use case 2… use case 5 respectively. Now let us consider that use case
1 consists of 6 actors, use case 2 consists of 15 actors, use cases 3, 4 and 5, 3, 4 and 5
actors respectively.
We consider any use case which involves the total number of actors as less than 5 as
negative, any use case with the total number of actors is equal to or more than 5 and
less than or equal to 10 as positive and any use case with more than 10 actors as
exceptional.
We decide to assign 2 points to the exceptional use cases, 1 to the positive ones and -1
for the negative ones.

Thus we categorize the Use cases 1 and 5 as positive, use case 2 as exceptional and use

CSE Page 42

case 3, 4 as negative respectively based on our above-stated assumptions.
So the Unprocessed actor weights = Use case 1 = (total number of actors) 5 * 1(the
assigned point) = 5. Similarly

Use case 2 = 15 * 2 = 30.
Repeating the process for rest of the use cases we receive the Unprocessed actor
weights = 33

Unprocessed use case weight = total no. of use cases = 5
Unprocessed use case point = Unadjusted actor weights + Unadjusted use case weight
= 33 + 5 = 38
Processed use case point = 38 * [0.65+ (0.01 * 50] = 26.7 or 28 Person Hours
approximately

Function point metric:
A Function Point (FP) is a unit of measurement to express the amount of business
functionality, an information system (as a product) provides to a user. FPs measure
software size. They are widely accepted as an industry standard for functional sizing.
For sizing software based on FP, several recognized standards and/or public
specifications have come into existence. As of 2013, these are −

ISO Standards
 COSMIC − ISO/IEC 19761:2011 Software engineering. A functional size

measurement method.

 FiSMA − ISO/IEC 29881:2008 Information technology - Software and systems

engineering - FiSMA 1.1 functional size measurement method.

 IFPUG − ISO/IEC 20926:2009 Software and systems engineering - Software

measurement - IFPUG functional size measurement method.

 Mark-II − ISO/IEC 20968:2002 Software engineering - Ml II Function Point

Analysis - Counting Practices Manual.

 NESMA − ISO/IEC 24570:2005 Software engineering - NESMA function size

measurement method version 2.1 - Definitions and counting guidelines for the

application of Function Point Analysis.

Object Management Group Specification for Automated Function Point
Object Management Group (OMG), an open membership and not-for-profit computer
industry standards consortium, has adopted the Automated Function Point (AFP)
specification led by the Consortium for IT Software Quality. It provides a standard for
automating FP counting according to the guidelines of the International Function Point
User Group (IFPUG).
Function Point Analysis (FPA) technique quantifies the functions contained within
software in terms that are meaningful to the software users. FPs consider the number
of functions being developed based on the requirements specification.
Function Points (FP) Counting is governed by a standard set of rules, processes and

CSE Page 43

guidelines as defined by the International Function Point Users Group (IFPUG). These
are published in Counting Practices Manual (CPM).

History of Function Point Analysis
The concept of Function Points was introduced by Alan Albrecht of IBM in 1979. In
1984, Albrecht refined the method. The first Function Point Guidelines were published
in 1984. The International Function Point Users Group (IFPUG) is a US-based worldwide
organization of Function Point Analysis metric software users. The International
Function Point Users Group (IFPUG) is a non-profit, member-governed organization
founded in 1986. IFPUG owns Function Point Analysis (FPA) as defined in ISO standard
20296:2009 which specifies the definitions, rules and steps for applying the IFPUG's
functional size measurement (FSM) method. IFPUG maintains the Function Point
Counting Practices Manual (CPM). CPM 2.0 was released in 1987, and since then there
have been several iterations. CPM Release 4.3 was in 2010.
The CPM Release 4.3.1 with incorporated ISO editorial revisions was in 2010. The ISO
Standard (IFPUG FSM) - Functional Size Measurement that is a part of CPM 4.3.1 is a
technique for measuring software in terms of the functionality it delivers. The CPM is
an internationally approved standard under ISO/IEC 14143-1 Information Technology –
Software Measurement.

Elementary Process (EP)
Elementary Process is the smallest unit of functional user requirement that −

 Is meaningful to the user.

 Constitutes a complete transaction.

 Is self-contained and leaves the business of the application being counted in a

consistent state.

Functions
There are two types of functions −

 Data Functions

 Transaction Functions

Data Functions

There are two types of data functions −
 Internal Logical Files

 External Interface Files

Data Functions are made up of internal and external resources that affect the system.
Internal Logical Files
Internal Logical File (ILF) is a user identifiable group of logically related data or control
information that resides entirely within the application boundary. The primary intent
of an ILF is to hold data maintained through one or more elementary processes of the
application being counted. An ILF has the inherent meaning that it is internally

CSE Page 44

maintained, it has some logical structure and it is stored in a file. (Refer Figure 1)
External Interface Files
External Interface File (EIF) is a user identifiable group of logically related data or
control information that is used by the application for reference purposes only. The
data resides entirely outside the application boundary and is maintained in an ILF by
another application. An EIF has the inherent meaning that it is externally maintained,
an interface has to be developed to get the data from the file. (Refer Figure 1)

Transaction Functions
There are three types of transaction functions.

 External Inputs

 External Outputs

 External Inquiries

Transaction functions are made up of the processes that are exchanged between the
user, the external applications and the application being measured.

External Inputs
External Input (EI) is a transaction function in which Data goes “into” the application
from outside the boundary to inside. This data is coming external to the application.

 Data may come from a data input screen or another application.

 An EI is how an application gets information.

 Data can be either control information or business information.

 Data may be used to maintain one or more Internal Logical Files.

CSE Page 45

 If the data is control information, it does not have to update an Internal Logical

File. (Refer Figure 1)

External Outputs
External Output (EO) is a transaction function in which data comes “out” of the system.
Additionally, an EO may update an ILF. The data creates reports or output files sent to
other applications. (Refer Figure 1).

External Inquiries
External Inquiry (EQ) is a transaction function with both input and output components
that result in data retrieval. (Refer Figure 1).

Experiment-11
Problem Statement: Develop a tool which can be used for quantification of all the
non-functional requirements

Procedure:
Quantification of desirable properties of a system is an integral part of the software
engineering. Most of requirement analysis methods which do not consider
nonfunctional requirements lead to serious software development problems. The
problems faced because of non-functional requirements omissions are more critical
than the problems of functional requirements omissions. Therefore, it is necessary to
measure non-functional requirement during software development process. Since
software reliability is the major concern for quality system and considered as one of
the most desirable quality attributes of the system, hence its quantitative
measurement is an essential part of the development of a quality system. Estimation
of software reliability becomes more important for those applications where risk is
major consideration. Software reliability is the probability to perform failure free
operation and produce correct output for a specified time under specified conditions.
Once the system is installed, it is not possible to test system reliability in an operational
environment because failure data collected in an uncontrolled tested environment
may be limited. In this case, faults may not be necessarily removed as failures are
identified. Therefore, failures are considered as one of the factors affecting the
software. Failure data need to be properly collected and measured during software
development process for the assessment of reliability of software systems. Software
reliability is measured by collecting the historical data and various distribution curves.
As failures are identified, faults are removed from the system to increase reliability.
The fault tree uses fuzzy set theory for the quantification of uncertainty in order to
make the system reliable. In the software development process, software is designed
as an integration of sub-systems instead of a large system. The uncertainty of the
overall system is found on the basis of uncertainties in the failure probability of sub-
systems. Thus reliability requirements apply to the individual subsystems rather than
the whole system. In recent years, various researchers developed different approaches

CSE Page 46

to analyze software quality attributes such as delta oriented slicing, feature wise
measurement, fuzzy logic , scenarios and markov models and scenarios and Bayesian
Belief network (BN).
Reliability is a key non-functional requirement, which can be divided into three Sub-
NFRs (Availability and Recoverability). A. Availability Every system must be alive for
service when it is requested by end-users. Availability of system indicates how reliable
system is during operational hours. Therefore Availability is considered as one of the
important metric used to assess the performance of a system, accounting for reliability
of a system. It is defined as the ability to perform a required function under specified
conditions at a given point of time or over a given time interval. It is often expressed as
uptime and downtime. Uptime refers to the capability to perform the intended task in
a stated environment and downtime refers to not being able to perform the intended
task in a stated environment. In order to make system available, uptime of the system
must be high and downtime of the system should be low. To reduce downtime, system
should be properly maintained by constant monitoring of hardware & software and
using anti-malicious software. To increase system availability during peak hours,
dynamic Load balancing policies can be used to distribute I/O and CPU requests across
all available paths to the storage device and servers respectively.

Recoverability
Recoverability is another important metric used to assess the reliability of a system. It
is very important to know how often system fail to deliver expected level of service.
This helps to measure the amount of data loss and downtime that a business can
endure and decide how to recover from these failures. Good architecture provides
recoverability in the time specified in a service-level agreement. To make system
recoverable, backup of data should be taken at regular intervals. If mirroring of data is
properly maintained, system will be more recoverable in case of any failure or disaster.
FUZZY SETS
Computer programming languages such as C, Java, and COBOL are best suited to
develop such software systems whose behavior can be represented by mathematical
model or logical reasoning. Since mathematical models do not work to develop
software systems which require human judgment and decision making capabilities,
Zadeh introduced the framework of Fuzzy sets to deal with a poorly defined concept in
a coherent and structured way. Examples of poorly defined concepts suitable for the
application of Fuzzy logic are semantic variables, such as high reliability, good
performance, low maintenance, etc. The basis for proposing fuzzy logic was that
human being relies on imprecise expression such as high, good or excellent. But
software based systems work on Boolean logic. In this context, he emphasizes that
human beings are desired to achieve the highest possible precision without paying
attention to the imprecise character of quality. He proposed the theory of fuzzy sets in
a mathematical way to represent vagueness in linguistics and can be considered as a
generalization of classical set theory. In a classical set, an object either belongs to the
set (member) or does not belong to the set (non-member). It means objects satisfy the

CSE Page 47

membership of the set precisely. Whereas in Fuzzy sets membership of the objects is
approximate which helps to represent the real world system in more refined way.
Fuzzy set removes the sharp boundaries that separate members and non-members in
a group. In this case, the transition from a member to a non-member is gradual. It
means that an object can belong to a fuzzy set either fully or partially. For example,
categorizing whether room temperature is hot or cold is decided by considering
various degree of membership. This example supports the concept of approximate
membership. According to Zadeh, the membership of an object to a fuzzy set is
represented by a continuous function defined on closed interval [0, 1] of real numbers.
This type of membership incorporates various degrees of membership and also
supports the concept of membership/non-membership of classical sets. Thus, classical
sets are the collection of objects but Fuzzy sets are the collection of functions which
defines the membership of the objects to the interval [0, 1]. Advantage of fuzzy logic is
its ability to express the amount of ambiguity in human thinking and subjectivity. It is
best suited to the problems which are concerned with continuous variables that are
not easily divided into discrete variables. Fuzzy sets are the best choice for managing
vague, imprecise, doubtful, contradicting and diverging opinions. IV. BAYESIAN
NETWORKS Bayesian belief network represents compact networks of probabilities that
capture the probabilistic relationships between variables, as well as historical
information on their relationships. From another perspective, Bayesian belief network
is a combination of Bayesian probability theory and the concept of conditional
independence. It is also known as belief network, causal graph, causal network or
probabilistic network. Bayesian belief network allows for clear graphical
representation of cause and effect; and are effective for modeling scenarios where
some prior information is already known but input data is uncertain, vague, conflicting
or partially unavailable. Bayesian network is a way of representing joint probability
distribution using Direct Acyclic Graph network structure given a set of variables ܸ.
Nodes of graph represent random uncertain variables and the arcs represent the
Bayesian probabilistic relationships between these variables. It is a collection of
conditional probability distributions where each variable ܸܸ in the directed acyclic

graph ܸ is denoted by a conditional distribution given its parent nodes ܸܸܸሺܸܸሻ

[23]. Bayesian network is also known as a network of nodes of influences based on
reasoning. It uses Bayes theorem to express conditional probability between each
alternative. It is a powerful tool for modeling causes and effects in systems and is
sometimes described as a marriage between probability theory and graphical theory
[24]. Its advantages are as follows: • There is no need of exact historical data or
evidence to produce convincing results. • Despite of uncertainties in the input
information, it provides effective output. • It represents the causes and effects
relationship between the nodes in the form of arcs connecting nodes. • It helps in
diagnosing current situation based on the historical relationship between nodes.
Bayesian Networks represent joint probability distribution consisting of two
components: a) A directed acyclic graph G whose vertices correspond to random

CSE Page 48

variables ܸଵ, ܸଶ,ڮ.ܸ b) Conditional probability distribution of every variable ܸܸ

given its parents ܸܸܸሺܸܸሻ. Graph G encodes the Markov assumption “Every

variable ܸܸ given its parents ܸܸܸሺܸܸሻ is conditional independent of
nondescendants nodes”. Joint probability distribution satisfying Markov assumption is

defined by Chain Rule as follows [22]: ܸሺܸଵ, ܸଶ, ڮܸܸ ,ሻൌ ∏

ܸ൫ܸܸหܸܸܸሺܸܸሻ൯ܸܸ 1ଵሺ1ሻ In discrete Bayesian Networks, the conditional
probability distribution represents a multivariate discrete distribution that
parameterizes all possible combination of discrete states of Vi parents. V. PROPOSED
FUZZY-BAYESIAN NETWORK Probability helps to understand the randomness, whereas
Fuzzy Sets deals with vagueness. But Zadeh [25] combined probability measures and
fuzzy sets together to measure the probability of fuzzy event events in terms of crisp
number. Proposed Fuzzy-Bayesian integrated approach combines the representation
power of Fuzzy Set theory and the algorithmic strength of Bayesian Networks to
measure non-functional requirements. Fuzzy Bayesian approach requires
transformation of Bayesian network to fuzzy domain and corresponding fuzzy
conditional probability distributions. To complete the transformation, we need to
define the following: a) Creation of fuzzy variables of each continuous variable. b)
Creation of fuzzy Conditional probability distributions for each continuous variable. A.
Creation of fuzzy variables Assume X is a continuous variable ranging from value {ݔ

{to {ݔ .{ܸIt is represented by the Equation 2. ܸൌ ሼݔ: ݔ ݔاݔܸ ሽሺ2ሻ where x is
the actual value of the variable X which is defined on the closed interval [ݔ ,ݔ .[ܸA
group of different values of x create continuous variable X. Thus x is the crisp value
that represents the variable X, which is defined on the discourse X. Now, consider the

fuzzy set Xf defined on X, to be ሺ3ሻ ܸܸ ܸܸݔܸ ,ሺݔሻ| ݔ א ൌ ܸܸ where ݔא ܸon

the closed interval [0, 1] and ܸܸሺݔሻ defines membership of ݔ to the Fuzzy Set ܸܸ.
Zadeh [19] defined Fuzzy sets as the collection of functions which defines the
membership of the objects to the interval [0, 1]. Therefore, various fuzzy states

ܸܸܸଵ, ܸܸଶ ,ܸܸଷ,...,ܸܸܸܸ of variable ܸ can be represented as follows:

ܸܸܸൌ ܸ ܸܸܸݔ ,ሺݔሻ|0ܸ, ܸ א ݔ ܸܸܸሺݔሻ 1 (4) where ܸܸܸ ሺݔሻ denotes the
degree of membership of ݔ to the fuzzy state ܸܸܸ. FUZZY-BAYESIAN NETWORK FOR
RELIABILITY The application presented here is illustrating the applicability of our
research methodology. Fuzzy-Bayesian Network for Reliability non-functional
requirement is given in Figure 1. Figure 1: General Hybrid Bayesian Network for
Reliability This network includes discrete functional and non-functional requirements
which have continuous non-functional requirements as parents. There are total 9
nodes in the FuzzyBayesian network of the Reliability requirement. All nodes A, B, C, D,
E, F, G, H and I are representing various functional and non-functional aspects for the
satisfaction of Reliability non-functional requirement. Nodes D, E, F, H and I represent
discrete functional requirements such as Mirroring, Backup Frequency, Load Balancing,
Constant H/W & S/W checking and Use of anti-malicious S/W. Nodes A, B, C and G
represent continuous non-functional requirements such as Reliability, Recoverability,

CSE Page 49

Availability and Software Maintenance.

Experiment-12

Problem Statement: Write C/C++/Java/Python program for classifying the various
types of coupling.

Procedure:

Coupling refers to the usage of an object by another object. It can also be termed as
collaboration. This dependency of one object on another object to get some task done
can be classified into the following two types −

 Tight coupling - When an object creates the object to be used, then it is a tight
coupling situation. As the main object creates the object itself, this object cannot
be changed from outside world easily marked it as tightly coupled objects.

 Loose coupling - When an object gets the object to be used from the outside,
then it is a loose coupling situation. As the main object is merely using the
object, this object can be changed from the outside world easily marked it as
loosely coupled objects.

Example - Tight Coupling

Tester.java

publicclassTester{

publicstaticvoid main(Stringargs[]){

A a=newA();

//a.display() will print A and B

//this implementation can not be changed dynamically

//being tight coupling

a.display();

}

}

class A {

B b;

public A(){

CSE Page 50

Output

A

B

Example - Loose Coupling

Tester.java

//b is tightly coupled to A

b =newB();

}

publicvoid display(){

System.out.println("A");

b.display();

}

}

class B {

public B(){}

publicvoid display(){

System.out.println("B");

}

}

importjava.io.IOException;

publicclassTester{

publicstaticvoid main(Stringargs[])throwsIOException{

Show b =newB();

Show c =newC();

A a=newA(b);

CSE Page 51

//a.display() will print A and B

a.display();

A a1 =new A(c);

//a.display() will print A and C

a1.display();

}

}

interfaceShow{

publicvoid display();

}

class A {

Show s;

public A(Show s){

//s is loosely coupled to A

this.s= s;

}

publicvoid display(){

System.out.println("A");

s.display();

}

}

class B implementsShow{

public B(){}

publicvoid display(){

System.out.println("B");

}

CSE Page 52

Output

A

B

A

C

Experiment-13
Problem Statement: Write C/C++/Java/Python program for classifying the various
types of coupling.

Procedure:

Cohesion in Java is the Object-Oriented principle most closely associated with making
sure that a class is designed with a single, well-focused purpose. In object-oriented
design, cohesion refers all to how a single class is designed.

The advantage of high cohesion is that such classes are much easier to maintain (and
less frequently changed) than classes with low cohesion. Another benefit of high
cohesion is that classes with a well-focused purpose tend to be more reusable than
other classes.

Example: Suppose we have a class that multiplies two numbers, but the same class
creates a pop-up window displaying the result. This is an example of a low cohesive
class because the window and the multiplication operation don’t have much in
common. To make it high cohesive, we would have to create a class Display and a
class Multiply. The Display will call Multiply’s method to get the result and display it.
This way to develop a high cohesive solution.

// Java program to illustrate

}

class C implementsShow{

public C(){}

publicvoid display(){

System.out.println("C");

}

}

CSE Page 53

// high cohesive behavior

class Multiply
{
int a = 5;
int b = 5;

publicintmul(int a, int b)
{
this.a = a;
this.b = b;
return a * b;

}
}

class Display {

}

Output
25

public static void main(String[] args)
{

Multiply m = new Multiply();
System.out.println(m.mul(5, 5));

}

// Java program to illustrate

// high cohesive behavior

class Name {

String name;

public String getName(String name)

{

this.name = name;

return name;

}

}

CSE Page 54

class Age {

int age;

publicintgetAge(int age)

{

this.age = age;

return age;

}

}

class Number {

intmobileno;

publicintgetNumber(intmobileno)

{

this.mobileno = mobileno;

returnmobileno;

}

}

class Display {

public static void main(String[] args)

{

Name n = new Name();

System.out.println(n.getName("Geeksforgeeks"));

Age a = new Age();

System.out.println(a.getAge(10));

Number no = new Number();

System.out.println(no.getNumber(1234567891));

}

CSE Page 55

}

Output
Geeksforgeeks

10

1234567891

Difference between high cohesion and low cohesion:
 High cohesion is when you have a class that does a well-defined job. Low cohesion

is when a class does a lot of jobs that don’t have much in common.
 High cohesion gives us better-maintaining facility and Low cohesion results in

monolithic classes that are difficult to maintain, understand and reduce re-
usability

Experiment-15
Problem Statement: Convert the DFD into appropriate architecture styles.

Procedure:
Transform mapping is a set of design steps that allows a DFD with transform flow
characteristics to be mapped into a specific architectural style. In this section
transform mapping is described by applying design steps to an example system—a
portion of the SafeHome security software.

An Example

The SafeHome security system is representative of many computer-based products
and systems in use today. The product monitors the real world and reacts to changes
that it encounters. It also interacts with a user through a series of typed inputs and
alphanumeric displays. The level 0 data flow diagram for SafeHome, is shown in figure

CSE Page 56

During requirements analysis, more detailed flow models would be created for
SafeHome. In addition, control and process specifications, a data dictionary, and
various behavioral models would also be created.

Design Steps

The preceding example will be used to illustrate each step in transform mapping. The
steps begin with a re-evaluation of work done during requirements analysis and then
move to the design of the software architecture.

Step 1. Review the fundamental system model. The fundamental system model
encompasses the level 0 DFD and supporting information. In actuality, the design step
begins with an evaluation of both the System Specification and the Software
Requirements Specification. Both documents describe information flow and structure
at the software interface. Figure 1 and 2 depict level 0 and level 1 data flow for the
SafeHome software.

CSE Page 57

Step 2. Review and refine data flow diagrams for the software. Information obtained
from analysis models contained in the Software Requirements Specification is refined
to produce greater detail. For example, the level 2 DFD for monitor sensors is
examined, and a level 3 data flow diagram is derived . At level 3, each transform in the
data flow diagram exhibits relatively high cohesion. That is, the process implied by a
transform performs a single, distinct function that can be implemented as a module9
in the SafeHome software. Therefore, the DFD in figure contains sufficient detail for a
"first cut" at the design of architecture for the monitor sensors subsystem, and we
proceedwithoutfurtherrefinement.

CSE Page 58

Step 3. Determine whether the DFD has transform or transaction flow
characteristics. In general, information flow within a system can always be
represented as transform. However, when an obvious transaction characteristic is
encountered, a different design mapping is recommended. In this step, the designer
selects global (softwarewide) flow characteristics based on the prevailing nature of the
DFD. In addition, local regions of transform or transaction flow are isolated. These
subflows can be used to refine program architecture derived from a global
characteristic described previously. For now, we focus our attention only on the
monitor sensors subsystem data flow depicted in figure.

Evaluating the DFD , we see data entering the software along one incoming path and

CSE Page 59

exiting along three outgoing paths. No distinct transaction center is implied (although
the transform establishes alarm conditions that could be perceived as such).
Therefore, an overall transform characteristic will be assumed for information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing flow
boundaries. In the preceding section incoming flow was described as a path in which
information is converted from external to internal form; outgoing flow converts from
internal to external form. Incoming and outgoing flow boundaries are open to
interpretation. That is, different designers may select slightly different points in the
flow as boundary locations. In fact, alternative design solutions can be derived by
varying the placement of flow boundaries. Although care should be taken when
boundaries are selected, a variance of one bubble along a flow path will generally have
little impact on the final program structure.

Flow boundaries for the example are illustrated as shaded curves running vertically
through the flow in the above figure. The transforms (bubbles) that constitute the
transform center lie within the two shaded boundaries that run from top to bottom in
the figure. An argument can be made to readjust a boundary (e.g, an incoming flow
boundary separating read sensors and acquire response info could be proposed). The
emphasis in this design step should be on selecting reasonable boundaries, rather than
lengthy iteration on placement of divisions.

Step 5. Perform "first-level factoring." Program structure represents a top-down
distribution of control. Factoring results in a program structure in which top-level
modules perform decision making and low-level modules perform most input,
computation, and output work. Middle-level modules perform some control and do
moderate amounts of work.

When transform flow is encountered, a DFD is mapped to a specific structure (a call
and return architecture) that provides control for incoming, transform, and outgoing
information processing. This first-level factoring for the monitor sensors subsystem is
illustrated in figure below. A main controller (called monitor sensors executive) resides
at the top of the program structure and coordinates the following subordinate control
functions:

• An incoming information processing controller, called sensor input controller,
coordinates receipt of all incoming data.
• A transform flow controller, called alarm conditions controller, supervises all
operations on data in internalized form (e.g., a module that invokes various data
transformation procedures).
• An outgoing information processing controller, called alarm output controller,
coordinates production of output information.

CSE Page 60

Although a three-pronged structure is implied by figure complex flows in large systems
may dictate two or more control modules for each of the generic control functions
described previously. The number of modules at the first level should be limited to the
minimum that can accomplish control functions and still maintain good coupling and
cohesion characteristics.

Step 6. Perform "second-level factoring." Second-level factoring is accomplished by
mapping individual transforms (bubbles) of a DFD into appropriate modules within
the architecture. Beginning at the transform center boundary and moving outward
along incoming and then outgoing paths, transforms are mapped into subordinate
levels of the software structure. The general approach to second-level factoring for the
SafeHome data flow is illustrated in figure.

CSE Page 61

Although the figure illustrates a one-to-one mapping between DFD transforms and
software modules, different mappings frequently occur. Two or even three bubbles
can be combined and represented as one module (recalling potential problems with
cohesion) or a single bubble may be expanded to two or more modules. Practical
considerations and measures of design quality dictate the outcome of secondlevel
factoring. Review and refinement may lead to changes in this structure, but it can
serve as a "first-iteration" design.

Second-level factoring for incoming flow follows in the same manner. Factoring is again
accomplished by moving outward from the transform center boundary on the
incoming flow side. The transform center of monitor sensors subsystem software is
mapped somewhat differently. Each of the data conversion or calculation transforms
of the transform portion of the DFD is mapped into a module subordinate to the
transform controller. A completed first-iteration architecture is shown in figure.

CSE Page 62

The modules mapped in the preceding manner and shown in figure represent an initial
design of software architecture. Although modules are named in a manner that implies
function, a brief processing narrative (adapted from the PSPEC created during analysis
modeling) should be written for each. The narrative describes

• Information that passes into and out of the module (an interface description).
• Information that is retained by a module, such as data stored in a local data
structure.
• A procedural narrative that indicates major decision points and tasks.
• A brief discussion of restrictions and special features (e.g., file I/O,
hardwaredependent characteristics, special timing requirements).
The narrative serves as a first-generation Design Specification. However, further
refinement and additions occur regularly during this period of design.

Step 7. Refine the first-iteration architecture using design heuristics for improved
software quality. A first-iteration architecture can always be refined by applying
concepts of module independence . Modules are exploded or imploded to produce
sensible factoring, good cohesion, minimal coupling, and most important, a structure
that can be implemented without difficulty, tested without confusion, and maintained
without grief.

Refinements are dictated by the analysis and assessment methods described briefly ,
as well as practical considerations and common sense. There are times, for example,
when the controller for incoming data flow is totally unnecessary, when some input
processing is required in a module that is subordinate to the transform controller,
when high coupling due to global data cannot be avoided, or when
optimal structural characteristics cannot be achieved. Software requirements coupled
with human judgment is the final arbiter. Many modifications can be made to the first
iteration architecture developed for the SafeHome monitor sensors subsystem. Among
many possibilities,

1. The incoming controller can be removed because it is unnecessary when a single

CSE Page 63

incoming flow path is to be managed.

2. The substructure generated from the transform flow can be imploded into the
module establish alarm conditions (which will now include the processing implied by
select phone number). The transform controller will not be needed and the small
decrease in cohesion is tolerable.

3. The modules format display and generate display can be imploded (we assume that
display formatting is quite simple) into a new module called produce display.

The refined software structure for the monitor sensors subsystem is shown in figure.

The objective of the preceding seven steps is to develop an architectural
representation of software. That is, once structure is defined, we can evaluate and
refine software architecture by viewing it as a whole. Modifications made at this time
require little additional work, yet can have a profound impact on software quality.

CSE Page 64

Experiment-17

Problem Statement: Define the design activities along with necessary artifacts using
Design Document.

Procedure:

What is design documentation?

Design documentation is a collection of documents and resources that covers all

aspects of your product design. Documentation should include information about

users, product features, and project deadlines; all essential implementation details;

and design decisions that your team and stakeholders have agreed on.

Why invest in documentation design?

Clarify project requirements

Gaining stakeholder approval to begin implementing a design is one of the most

important steps in the design process. You need to be on the same page with

stakeholders to gain this approval. Proper documentation makes it easier to achieve

this goal. How? Documentation helps you organize and deliver your thoughts to

stakeholders, which in turn helps them understand how your design decisions will

satisfy the user needs and their own business objectives.

Designers need to find a sweet spot between business goals and user needs. Image

CSE Page 65

credit UX Booth.

Streamline design implementation

By documenting a design, you also aid in the implementation of it. Product design is

a collaborative process, and in many cases, multiple people work on the project. It’s

not always possible to share implementation details verbally (for example, when you

work with remote teams). Thus, the design documents act as a single source of truth

for everyone who is involved in product development and can rally your team

around a specific goal.

Motivate your team

Good documentation tells a high-level story about the product and gets team

members excited about the vision. It answers the questions, “How do we want to

build this?” and, importantly, “Why do we want to build this?”

A list of essential docs

While documentation can vary from project to project, the following docs will be

relevant to all. This information can be included in a single document or separated

into multiple documents. Which approach you take will depend on the complexity of

your project.

 Project overview – This document contains a high-level overview of the design and

the goals the design team wants to accomplish. By reading this document, anyone

should be able to understand the purpose of a project.

 Product requirements – This document covers the business and technical

requirements of the design. It should be shared with stakeholders before starting the

design to ensure that both types of requirements are satisfied. It’s also worth

including in this doc information about constraints and assumptions because they

will influence the design decisions.

 Project deliverables – This document provides information about the design artifacts

established during the wireframing and prototyping phases (e.g., lo-fi wireframes,

https://www.uxbooth.com/articles/think-first-a-no-nonsense-approach/
https://xd.adobe.com/ideas/perspectives/leadership-insights/building-strong-design-teams-pt-2/
https://xd.adobe.com/ideas/process/wireframing/

CSE Page 66

mock-ups, hi-fi prototypes) that will be provided as deliverables once

implementation has been completed.

 Target audience information – This document lists relevant information about your

audience, from user personas to data from user research. This information will help

your team understand who your users are and what good design means to them (via

their functional and aesthetic preferences). The doc serves as a reference for

designers when sharing their rationale behind individual design decisions.

 User journeys – This document outlines the path a user may take to reach their goal

when using a product.

 Design guidelines – This document describes the components and specifications

required to build the solution.

 Style guides – This document lists a set of standards for the stylization of design.

Styles, colors, and typefaces are essential pieces of this guide.

 Project scope and implementation plan – This document describes the roles and

flow of cross-team collaboration. The implementation plan documents the

requirements necessary to complete the implementation of the design. For simple

projects, it might be a high-level overview of the steps required to complete the

implementation. For complex projects, it can include a project timeline with

information about the time required to complete each of the steps.

 Design validation and user testing – This document provides an overview of the

practices to be executed during the product design cycle, as well as steps to be taken

after product release to verify that the product satisfies user needs.

 Operational instructions – This document provides detailed instructions on how to

perform common operational tasks after the design is implemented. For example, it

can provide step-by-step instructions on how to roll out a new version of an app in

the production environment.

Properly documenting design

Though there’s no single way to conduct design documentation, and it varies by

product team, there are a few general recommendations that can benefit every

project.

CSE Page 67

Make documentation usable for the target audience

It’s possible to identify three large groups of users for documentation: product team

members, stakeholders, and end users. Every group has its own needs, and it’s

important to consider this fact when working on your docs. Both the content of and

the format for documentation should be adapted to suit your target audience.

Provide up-to-date documentation

Introduce a version control framework to keep your documentation up-to-date and

therefore minimize the risk of incorrect design decisions. UX managers should

validate the documentation at least once a month.

Release notes for Salesforce’s Lightning Design System feature the release date. Image
credit Salesforce.

Work on design documentation incrementally

Documentation design isn’t a one-and-done activity. In many cases, it’s impossible to

create all the docs in one attempt. Thus, product teams should work on

documentation as they go through the project. Documentation should be a “living”

project that is constantly updated as you work on the design. Product teams should

invest time in creating a flexible, accessible structure—anyone from a team should

be able to update documentation rather effortlessly.

Test documentation

https://xd.adobe.com/ideas/perspectives/leadership-insights/
https://lightningdesignsystem.com/release-notes/

CSE Page 68

Documentation is a by-product of your product design, and like other products, it

should be tested with users. Ensure that users know how to use it and find the

documentation valuable. You can also introduce a simple feedback loop, such as an

online response form, so your users can record their reactions and help you

continuously improve your documentation.

Avoid jargon

Every field has its own special language. When used in an appropriate context, this

special language helps you communicate precisely with specialists that have the

required expertise. But when you are uncertain about the expertise of your target

audience, minimize the use of technical language in your documents.

The best documentation is the kind that your target audience can easily understand.

It’s important to learn what’s appropriate for your audience and leave out jargon if it

can be replaced by more familiar terms. Try reading the text out loud and evaluating

it from the perspective of your documentation readers. Note any terms that might

cause confusion and replace them with clearer terms.

Create easy access

Static paper-based documentation is quickly becoming a thing of the past. Modern

documentation should be provided as an online resource. This format not only

makes it easier for users to access the documentation, but it also simplifies the

procedure for updates. Prioritize sections with information, and make sure search

works fine. The structure you choose should follow the pattern that users follow

when browsing the documentation.

CSE Page 69

the Adobe Spectrum design system uses an easy-to-follow structure that makes
documentation readable and its organization intuitive. Image credit Adobe.

Provide visual or code samples in the doc

It’s much easier to use information when you can match it with an actual design. To

create contextual hierarchies and improve comprehension, documentation should

include visual design and code snippets, not just plain words. Visual design or code

samples make it easier for users to translate the information into design decisions.

Adobe Spectrum pairs visual examples with a text description. By doing so, it simplifies
user comprehension. Image credit Adobe.

Update documentation automatically

If some part of the design goes undocumented, it doesn’t exist. If elements of the

design system go undocumented, you run the risk of duplicating elements. Try to

keep documentation up-to-date with your product’s code by automating

documentation. Rules and systems should be in place for documentation to be

updated as soon as developers introduce a change in the front-end design. This

includes both visual references and code samples.

Find patterns in existing docs and turn them into templates

Once you have created the documentation for a few projects, review the docs and

try to identify common aspects of all the projects. Define templates for the standard

parts to aid in the creation of design documentation. Templates will also serve as a

foundation for building out design documents for your future projects.

Conclusion

https://spectrum.adobe.com/
https://spectrum.adobe.com/page/action-button/

CSE Page 70

Creating design documentation is an important step in the project design process

and has a direct impact on the outcome. The best design documentation gives a

product team a framework for making design decisions. No matter how tight your

deadlines for creating a design, you should never overlook the documentation

process.

Experiment-18

Problem Statement: Reverse Engineer any object-oriented code to an appropriate
class and object diagrams.

Procedure:

Introduction

In software evolution and maintenance, the ultimate, most reliable description of a
system is its source code. Reverse engineering aims at extracting abstract, goal-
oriented views from the code, to summarize relevant properties of program
computations.

Reverse Engineering of Object Oriented Code presents a unifying framework for the
analysis of object oriented code. Using Unified Modeling Language (UML) to represent
the extracted design diagrams, the book explains how to recover them from object
oriented code, thereby enabling developers to better comprehend their product and
evaluate the impact of changes to it. Furthermore, it describes the algorithms
involved in recovering views and demonstrates some of the techniques that can be
employed for their visualization. The presentation is fully self-contained.

Topics and Features:

*Provides unique, in-depth exposition of the core concepts, principles, and methods
behind reverse engineering object oriented code

*Explains the techniques and algorithms through numerous examples of object

oriented code, the leading programming paradigm

CSE Page 71

Experiment-19
Problem Statement:Test a piece of code which executes a specific functionality in the
code to be tested and asserts a certain behavior or state using Junit.

Procedure:

JUnit is a popular unit-testing framework in the Java ecosystem. JUnit 5 added many
new features based on the Java 8 version of the language.

 Configuration for using JUnit 5

To use JUnit 5 you have to make the libraries available for your test code. Jump to the
section which is relevant to you, for example read the Maven part, if you are using
Maven as build system.

 How to define a test in JUnit?

A JUnit test is a method contained in a class which is only used for testing. This is called
a Test class. To mark a method as a test method, annotate it with
the @Test annotation. This method executes the code under test.

The following code defines a minimal test class with one minimal test method.

*Focuses on fully automated design recovery, and deals with static and dynamic
source-code analysis algorithms

*Explores code-centered analysis to obtain design diagrams aligned with the
implementation

*Describes structural and behavioral views to offer a multi-perspective assessment of
the system being analyzed

*Reports the analysis results in UML, the standard language for representing design

diagrams in object oriented program development

This new state-of-the-art volume covers core methodologies for reverse engineering
object oriented code, allowing for improved control in future code maintenance and
modification. It is a significant resource for researchers and software engineers in the
areas of reverse engineering, code analysis, object oriented programming, and UML.
In addition, it will be invaluable as the reference book for advanced courses in these
areas.

https://www.vogella.com/tutorials/JUnit/article.html#junitsetup
https://www.vogella.com/tutorials/JUnit/article.html#unittesting_junit_test

CSE Page 72

You can use assert methods, provided by JUnit or another assert framework, to check
an expected result versus the actual result. Such statement are called asserts or assert
statements.

Assert statements typically allow to define messages which are shown if the test fails.
You should provide here meaningful messages to make it easier for the user to identify
and fix the problem. This is especially true if someone looks at the problem, who did
not write the code under test or the test code.

 Example for developing a JUnit 5 test for another class

The following example defines a Java class and defines software tests for it.

Assume you have the following class which you want to test.

A test class for the above class could look like the following.

packagecom.vogella.junit5;

publicclassCalculator{

publicintmultiply(inta,intb){
returna*b;

}
}

packagecom.vogella.junit.first;

importstaticorg.junit.jupiter.api.Assertions.assertTrue;

importorg.junit.jupiter.api.Test;

classAClassWithOneJUnitTest{

@Test
voiddemoTestMethod(){
assertTrue(true);

}
}

packagecom.vogella.junit5;

importstaticorg.junit.jupiter.api.Assertions.assertEquals;

https://www.vogella.com/tutorials/JUnit/article.html#unittesting_junitexample

CSE Page 73

The method annotated with @BeforeEach runs before each test

A method annotated with @Test defines a test method

@DisplayName can be used to define the name of the test which is displayed to the
user

This is an assert statement which validates that expected and actual value is the
same, if not the message at the end of the method is shown

@RepeatedTest defines that this test method will be executed multiple times, in this
example 5 times

 JUnit test class naming conventions

importorg.junit.jupiter.api.BeforeEach;
importorg.junit.jupiter.api.DisplayName;
importorg.junit.jupiter.api.RepeatedTest;
importorg.junit.jupiter.api.Test;

classCalculatorTest{

Calculatorcalculator;

@BeforeEach
voidsetUp(){

calculator=newCalculator();
}

@Test
@DisplayName("Simple multiplication should work")
voidtestMultiply(){
assertEquals(20,calculator.multiply(4,5),

"Regular multiplication should work");
}

@RepeatedTest(5)
@DisplayName("Ensure correct handling of zero")
voidtestMultiplyWithZero(){
assertEquals(0,calculator.multiply(0,5),"Multiple with zero should be zero");
assertEquals(0,calculator.multiply(5,0),"Multiple with zero should be zero");

}
}

https://www.vogella.com/tutorials/JUnit/article.html#junit_namingconventions_maven

CSE Page 74

Build tools like Maven use a pattern to decide if a class is a test classes or not. The
following is the list of classes Maven considers automatically during its build:

includes all of its subdirectories and all Java filenames that start with Test.

includes all of its subdirectories and all Java filenames that end with Test.

includes all of its subdirectories and all Java filenames that end with Tests.

includes all of its subdirectories and all Java filenames that end with TestCase.

Therefore, it is common practice to use the Test or Tests suffix at the end of test classes
names.

 Where should the test be located?

Typical, unit tests are created in a separate source folder to keep the test code separate
from the real code. The standard convention from the Maven and Gradle build tools is
to use:

 src/main/java - for Java classes

 src/test/java - for test classes

 Static imports and unit testing

JUnit 5 allows to use static imports for its assertStatements to make the test code short
and easy to read. Static imports are a Java feature that allows fields and methods
defined in a class as public static to be used without specifying the class in which the
field is defined.

JUnit assert statements are typically defined as public static to allow the developer to
write short test statements. The following snippet demonstrates an assert statement
with and without static imports.

**/Test*.java
**/*Test.java
**/*Tests.java
**/*TestCase.java

// without static imports you have to write the following statement
importorg.junit.jupiter.api.Assertions;
// more code
Assert.assertEquals("10 x 5 must be 50",50,tester.multiply(10,5));

https://www.vogella.com/tutorials/JUnit/article.html#junit_testorganization
https://www.vogella.com/tutorials/JUnit/article.html#usingjunit_staticimports

CSE Page 75

2. Assertions and assumptions

JUnit 5 comes with multiple assert statements, which allows you to test your code
under test. Simple assert statements like the following allow to check for true, false or
equality. All of them are static methods from
the org.junit.jupiter.api.Assertions.* package.

Assert
statement

Example

assertEquals assertEquals(4, calculator.multiply(2, 2),"optional failure
message");

assertTrue assertTrue('a' < 'b', () → "optional failure message");

assertFalse assertFalse('a' > 'b', () → "optional failure message");

assertNotNull assertNotNull(yourObject, "optional failure message");

assertNull assertNull(yourObject, "optional failure message");

Messages can be created via lambda expressions, to avoid the overhead in case the
construction of the message is expensive.

// alternatively define assertEquals as static import

importstaticorg.junit.jupiter.api.Assertions.assertEquals;
// more code
// use assertEquals directly because of the static import
assertEquals(calculator.multiply(4,5),20,"Regular multiplication should work");

assertTrue('a'<'b',()->"Assertion messages can be lazily evaluated -- "
+"to avoid constructing complex messages unnecessarily.");

https://www.vogella.com/tutorials/JUnit/article.html#assertions-and-assumptions

CSE Page 76

Experiment-20

Problem Statement:Test the percentage of code to be tested by unit test using any
code coverage tools

Procedure:
Code coverage is a metric that can help you understand how much of your source is
tested. It's a very useful metric that can help you assess the quality of your test suite,
and we will see here how you can get started with your projects.

How is code coverage calculated?

Code coverage tools will use one or more criteria to determine how your code was
exercised or not during the execution of your test suite. The common metrics that you
might see mentioned in your coverage reports include:

 Function coverage: how many of the functions defined have been called.
 Statement coverage: how many of the statements in the program have been

executed.
 Branches coverage: how many of the branches of the control structures (if statements

for instance) have been executed.
 Condition coverage: how many of the boolean sub-expressions have been tested for a

true and a false value.

 Line coverage: how many of lines of source code have been tested.

CSE Page 77

These metrics are usually represented as the number of items actually tested, the
items found in your code, and a coverage percentage (items tested / items found).

These metrics are related, but distinct. In the trivial script below, we have a Javascript
function checking whether or not an argument is a multiple of 10. We'll use
that function later to check whether or not 100 is a multiple of 10. It'll help understand
the difference between the function coverage and branch coverage.

coverage-tutorial.js
function isMultipleOf10(x) { if (x % 10 == 0) return true; else return false; } cons
ole.log(isMultipleOf10(100));
We can use the coverage tool istanbul to see how much of our code is executed when
we run this script. After running the coverage tool we get a coverage report showing
our coverage metrics. We can see that while our Function Coverage is 100%,
our Branch Coverage is only 50%. We can also see that the isntanbul code coverage
tool isn't calculating a Condition Coverage metric.

This is because when we run our script, the else statement has not been executed. If
we wanted to get 100% coverage, we could simply add another line, essentially
another test, to make sure that all branches of the if statement is used.

coverage-tutorial.js
function isMultipleOf10(x) { if (x % 10 == 0) return true; else return false; } cons
ole.log(isMultipleOf10(100)); console.log(isMultipleOf10(34)); // This will make our cod
e execute the "return false;" statement.
A second run of our coverage tool will now show that 100% of the source is covered
thanks to our two console.log() statements at the bottom.

https://github.com/gotwarlost/istanbul

CSE Page 78

In this example, we were just logging results in the terminal but the same principal
applies when you run your test suite. Your code coverage tool will monitor the
execution of your test suite and tell you how much of the statements, branches,
functions and lines were run as part of your tests.

Code coverage is a metric that can help you understand how much of your source is
tested. It's a very useful metric that can help you assess the quality of your test suite,
and we will see here how you can get started with your projects.

How is code coverage calculated?

Code coverage tools will use one or more criteria to determine how your code was
exercised or not during the execution of your test suite. The common metrics that you
might see mentioned in your coverage reports include:

 Function coverage: how many of the functions defined have been called.
 Statement coverage: how many of the statements in the program have been

executed.
 Branches coverage: how many of the branches of the control structures (if statements

for instance) have been executed.
 Condition coverage: how many of the boolean sub-expressions have been tested for a

true and a false value.

 Line coverage: how many of lines of source code have been tested.
These metrics are usually represented as the number of items actually tested, the
items found in your code, and a coverage percentage (items tested / items found).

CSE Page 79

These metrics are related, but distinct. In the trivial script below, we have a Javascript
function checking whether or not an argument is a multiple of 10. We'll use
that function later to check whether or not 100 is a multiple of 10. It'll help understand
the difference between the function coverage and branch coverage.

coverage-tutorial.js
function isMultipleOf10(x) { if (x % 10 == 0) return true; else return false; } cons
ole.log(isMultipleOf10(100));
We can use the coverage tool istanbul to see how much of our code is executed when
we run this script. After running the coverage tool we get a coverage report showing
our coverage metrics. We can see that while our Function Coverage is 100%,
our Branch Coverage is only 50%. We can also see that the isntanbul code coverage
tool isn't calculating a Condition Coverage metric.

This is because when we run our script, the else statement has not been executed. If
we wanted to get 100% coverage, we could simply add another line, essentially
another test, to make sure that all branches of the if statement is used.

coverage-tutorial.js
function isMultipleOf10(x) { if (x % 10 == 0) return true; else return false; } cons
ole.log(isMultipleOf10(100)); console.log(isMultipleOf10(34)); // This will make our cod
e execute the "return false;" statement.
A second run of our coverage tool will now show that 100% of the source is covered
thanks to our two console.log() statements at the bottom.

https://github.com/gotwarlost/istanbul

CSE Page 80

In this example, we were just logging results in the terminal but the same principal
applies when you run your test suite. Your code coverage tool will monitor the
execution of your test suite and tell you how much of the statements, branches,
functions and lines were run as part of your tests.

Getting started with code coverage

CSE Page 81

Find the right tool for your project

You might find several options to create coverage reports depending on the
language(s) you use. Some of the popular tools are listed below:

 Java: Atlassian Clover, Cobertura, JaCoCo
 Javascript: istanbul, Blanket.js
 PHP: PHPUnit
 Python: Coverage.py
 Ruby: SimpleCov

Some tools like istanbul will output the results straight into your terminal while others
can generate a full HTML report that lets you explore which part of the code are
lacking coverage.

What percentage of coverage should you aim for?

There's no silver bullet in code coverage, and a high percentage of coverage could still
be problematic if critical parts of the application are not being tested, or if the existing
tests are not robust enough to properly capture failures upfront. With that being said it
is generally accepted that 80% coverage is a good goal to aim for. Trying to reach a
higher coverage might turn out to be costly, while not necessary producing enough
benefit.

The first time you run your coverage tool you might find that you have a fairly low
percentage of coverage. If you're just getting started with testing it's a normal situation
to be in and you shouldn't feel the pressure to reach 80% coverage right away. The
reason is that rushing into a coverage goal might push your team to write tests that are
hitting every line of the code instead of writing tests that are based on the business
requirements of your application.

For instance, in the example above we reached 100% coverage by testing if 100 and 34
were multiples of 10. But what if we called our function with a letter instead of a
number? Should we get a true/false result? Or should we get an exception? It is
important that you give time to your team to think about testing from a user
perspective and not just by looking at lines of code. Code coverage will not tell you if
you're missing things in your source.

Focus on unit testing first

Unit tests consist in making sure that the individual methods of the classes and
components used by your application are working. They're generally cheap to
implement and fast to run and give you an overall assurance that the basis of the
platform is solid. A simple way to increase quickly your code coverage is to start by

https://www.atlassian.com/software/clover
http://cobertura.github.io/cobertura/
http://www.eclemma.org/jacoco/
https://github.com/gotwarlost/istanbul
http://blanketjs.org/
https://phpunit.de/
https://coverage.readthedocs.io/
https://github.com/colszowka/simplecov

CSE Page 82

adding unit tests as, by definition, they should help you make sure that your test suite
is reaching all lines of code.

Use coverage reports to identify critical misses in testing

Soon you'll have so many tests in your code that it will be impossible for you to know
what part of the application is checked during the execution of your test suite. You'll
know what breaks when you get a red build, but it'll be hard for you to understand
what components have passed the tests.

This is where the coverage reports can provide actionable guidance for your team.
Most tools will allow you to dig into the coverage reports to see the actual items that
weren't covered by tests and then use that to identify critical parts of your application
that still need to be tested.

Make code coverage part of your continuous integration flow when you're ready

When you've established your continuous integration (CI) workflow you can start
failing the tests if you don't reach a high enough percentage of coverage. Of course, as
we said it earlier, it would be unreasonable to set the failure threshold too high, and
90% coverage is likely to cause your build to fail a lot. If your goal is 80% coverage, you
might consider setting a failure threshold at 70% as a safety net for your CI culture.

Once again, be careful to avoid sending the wrong message as pressuring your team to

CSE Page 83

reach good coverage might lead to bad testing practices.

Good coverage does not equal good tests

Getting a great testing culture starts by getting your team to understand how the
application is supposed to behave when someone uses it properly, but also when
someone tries to break it. Code coverage tools can help you understand where you
should focus your attention next, but they won't tell you if your existing tests are
robust enough for unexpected behaviors.

Achieving great coverage is an excellent goal, but it should be paired with having a
robust test suite that can ensure that individual classes are not broken as well as verify
the integrity of the system.

Getting started with code coverage

Find the right tool for your project

You might find several options to create coverage reports depending on the
language(s) you use. Some of the popular tools are listed below:

 Java: Atlassian Clover, Cobertura, JaCoCo
 Javascript: istanbul, Blanket.js
 PHP: PHPUnit

https://www.atlassian.com/software/clover
http://cobertura.github.io/cobertura/
http://www.eclemma.org/jacoco/
https://github.com/gotwarlost/istanbul
http://blanketjs.org/
https://phpunit.de/

CSE Page 84

 Python: Coverage.py
 Ruby: SimpleCov

Some tools like istanbul will output the results straight into your terminal while others
can generate a full HTML report that lets you explore which part of the code are
lacking coverage.

What percentage of coverage should you aim for?

There's no silver bullet in code coverage, and a high percentage of coverage could still
be problematic if critical parts of the application are not being tested, or if the existing
tests are not robust enough to properly capture failures upfront. With that being said it
is generally accepted that 80% coverage is a good goal to aim for. Trying to reach a
higher coverage might turn out to be costly, while not necessary producing enough
benefit.

The first time you run your coverage tool you might find that you have a fairly low
percentage of coverage. If you're just getting started with testing it's a normal situation
to be in and you shouldn't feel the pressure to reach 80% coverage right away. The
reason is that rushing into a coverage goal might push your team to write tests that are
hitting every line of the code instead of writing tests that are based on the business
requirements of your application.

For instance, in the example above we reached 100% coverage by testing if 100 and 34
were multiples of 10. But what if we called our function with a letter instead of a
number? Should we get a true/false result? Or should we get an exception? It is
important that you give time to your team to think about testing from a user
perspective and not just by looking at lines of code. Code coverage will not tell you if
you're missing things in your source.

Focus on unit testing first

Unit tests consist in making sure that the individual methods of the classes and
components used by your application are working. They're generally cheap to
implement and fast to run and give you an overall assurance that the basis of the
platform is solid. A simple way to increase quickly your code coverage is to start by
adding unit tests as, by definition, they should help you make sure that your test suite
is reaching all lines of code.

Use coverage reports to identify critical misses in testing

Soon you'll have so many tests in your code that it will be impossible for you to know
what part of the application is checked during the execution of your test suite. You'll

https://coverage.readthedocs.io/
https://github.com/colszowka/simplecov

CSE Page 85

know what breaks when you get a red build, but it'll be hard for you to understand
what components have passed the tests.

This is where the coverage reports can provide actionable guidance for your team.
Most tools will allow you to dig into the coverage reports to see the actual items that
weren't covered by tests and then use that to identify critical parts of your application
that still need to be tested.

Make code coverage part of your continuous integration flow when you're
ready

When you've established your continuous integration (CI) workflow you can start
failing the tests if you don't reach a high enough percentage of coverage. Of course, as
we said it earlier, it would be unreasonable to set the failure threshold too high, and
90% coverage is likely to cause your build to fail a lot. If your goal is 80% coverage, you
might consider setting a failure threshold at 70% as a safety net for your CI culture.

Once again, be careful to avoid sending the wrong message as pressuring your team to
reach good coverage might lead to bad testing practices.

Good coverage does not equal good tests

CSE Page 86

Getting a great testing culture starts by getting your team to understand how the
application is supposed to behave when someone uses it properly, but also when
someone tries to break it. Code coverage tools can help you understand where you
should focus your attention next, but they won't tell you if your existing tests are
robust enough for unexpected behaviors.

Achieving great coverage is an excellent goal, but it should be paired with having a
robust test suite that can ensure that individual classes are not broken as well as verify
the integrity of the system.

Experiment-21

Problem Statement:Define an appropriate metrics for at least 3 quality attributes for
any software application of your interest.

Procedure:
Quality Attributes
Quality may be defined from different perspectives. Now let’s see how one can
measure the Quality Attributes of a product or application.

The following factors are used to measure Software Development Quality. Each
attribute can be used to measure product performance. These attributes can be used
for Quality assurance as well as Quality control.
Quality Assurance activities are oriented towards the prevention of the introduction
of defects and Quality Control activities are aimed at detecting defects in products
and services.

1) Reliability
Measure if the product is reliable enough to sustain in any condition. Should give the
correct results consistently. Product reliability is measured in terms of working of the
project under different working environments and different conditions.

2) Maintainability
Different versions of the product should be easy to maintain. For development, it
should be easy to add code to the existing system, should be easy to upgrade for new
features and new technologies from time to time.

Maintenance should be cost-effective and easy. The system is easy to maintain and
correct defects or make a change in the software.

3) Usability

https://www.softwaretestinghelp.com/quality-assurance-vs-quality-control/

CSE Page 87

This can be measured in terms of ease of use. The application should be user-friendly.
It should be easy to learn. Navigation should be simple.

The system must be:
 Easy to use for input preparation, operation, and interpretation of the output.
 Provide consistent user interface standards and conventions with our other

frequently used systems.

 Easy for new or infrequent users to learn to use the system.
4) Portability
This can be measured in terms of Costing issues related to porting, Technical issues
related to porting, and Behavioral issues related to porting.

5) Correctness
The application should be correct in terms of its functionality, calculations used
internally and the navigation should be correct. This means that the application should
adhere to functional requirements.

6) Efficiency
It is one of the major system quality attributes. It is measured in terms of time required
to complete any task given to the system. For example, the system should utilize
processor capacity, disk space, and memory efficiently.
If the system is using all the available resources then the user will get degraded
performance failing the system for efficiency. If the system is not efficient, then it
cannot be used in real-time applications.

Recommended Reading =>> What is Efficiency Testing?
7) Integrity or Security
Integrity comes with security. System integrity or security should be sufficient to
prevent unauthorized access to system functions, prevent information loss, ensure
that the software is protected from virus infection, and protect the privacy of data
entered into the system.

8) Testability
The system should be easy to test and find defects. If required, it should be easy to
divide into different modules for testing.

9) Flexibility
Should be flexible enough to modify. Adaptable to other products with which it needs
interaction. Should be easy to interface with other standard 3rd party components.

10) Reusability
Software reuse is a good cost-efficient and time-saving development method. Different

https://www.softwaretestinghelp.com/efficiency-testing/

CSE Page 88

code library classes should be generic enough to be easily used in different application
modules. Divide the application into different modules so that modules can be reused
across the application.

Recommended reading =>> Cost of Quality and Cost of Poor Quality
11) Interoperability
Interoperability of one system to another should be easy for the product to exchange
data or services with other systems. Different system modules should work on
different operating system platforms, different databases, and protocol conditions.

Conclusion
By applying the above quality attributes standards we can determine whether the
system meets the requirements of quality or not.

As specified above all these attributes are applied to QA and QC process so that both
the tester as well as the customer can find the quality of the application or system.

Experiment-22
Problem Statement:Define a complete call graph for any C/C++ code. (Note: The
student may use any tool that generate call graph for source code)

Procedure:

path1: A -> B -> C -> D
path2: A -> B -> X -> Y -> D

path3: A -> G -> M -> N -> O -> P -> S -> D
...
path n: ...
staticvoidD(){ }
staticvoidY(){ D(); }
staticvoidX(){ Y(); }
staticvoidC(){ D(); X(); }
staticvoidB(){ C(); }

staticvoidS(){ D(); }
staticvoidP(){ S(); }
staticvoidO(){ P(); }
staticvoidN(){ O(); }
staticvoidM(){ N(); }
staticvoidG(){ M(); }
staticvoidA(){ B(); G(); }

https://www.softwaretestinghelp.com/coq-cost-of-quality-tutorial/

CSE Page 89

Then

Yields some shiny picture (there is an "external node", because main has external
linkage and might be called from outside that translation unit too):

You may want to postprocess this with c++filt, so that you can get the unmangled
names of the functions and classes involved. Like in the following

intmain(){
A();

}

$ clang++ -S -emit-llvm main1.cpp -o - | opt -analyze -dot-callgraph
$ dot -Tpng -ocallgraph.png callgraph.dot

#include<vector>

CSE Page 90

Yields this beauty (oh my, the size without optimizations turned on was too big!)

That mystical unnamed function, Node0x884c4e0, is a placeholder assumed to be

called by any function whose definition is not known.

structA {
A(int);

voidf(); // not defined, prevents inlining it!
};

intmain(){
std::vector<A> v;
v.push_back(42);
v[0].f();
}

$ clang++ -S -emit-llvm main1.cpp -o - |
opt -analyze -std-link-opts -dot-callgraph
$ cat callgraph.dot |
c++filt |
sed's,>,\\>,g; s,-\\>,->,g; s,<,\\<,g' |
gawk'/external node/{id=$1} $1 != id' |
dot -Tpng -ocallgraph.png

CSE Page 91

	1. Institute Vision & Mission, Department Vision & Mission Institute Vision:
	Institute Mission:
	Department Vision:
	Department Mission:
	2. PO, PEO& PSO Statements PROGRAMME OUTCOMES (POs)
	Program Educational Objectives (PEOs):
	Program Specific Outcomes (PSOs):
	Problem Statement: Draw the Work Breakdown Structure for the system to be automated
	Experiment-2
	Procedure:
	Planning, Scheduling & Control
	The Framework for PERT and CPM
	Drawing the CPM/PERT Network
	Experiment-3
	Procedure: (1)
	1. Who uses ‘Use Case’ documents?
	Uses of the Documents:
	1.1 Elements in Use Cases
	Experiment-4
	Procedure: (2)
	Example:
	Create a Healthcare Risk Management Plan
	Education & Training:
	Patient & Family Grievances:
	Purpose, Goals, &Metrics:
	Communication Plan:
	Contingency Plans:
	Reporting Protocols:
	Response & Mitigation:
	Experiment-5
	Procedure: (3)
	How to create a fishbone diagram
	When to use a fishbone diagram
	Experiment-6
	Procedure: (4)
	Some basic configuration before you start
	Setting change 1: Make Auto Scheduling the default o to File –> Options
	Setting change 2: Enable immediate calculation
	Now, let’s schedule a simple project!
	Step 1: Create a new project
	Step 2: Enter a project start date
	tep 3: Enter the list of tasks
	 Create business plan
	 Set up bank account
	 Pick a business location
	 Hire team
	Step 4: Enter task durations
	Experiment-7
	Procedure: (5)
	Summary
	Experiment-8
	Example:
	Example: (1)
	Example: (2)
	Example: (3)

	Experiment-9
	1. Use case Vs. Features
	Traceability Matrix is used in entire software development life cycle phases:
	In this topic we will discuss:
	Types of Traceability Matrix:
	Why Bi- Directional
	required?
	Traceability matrix is the answer of the following questions of any Software Project:
	Disadvantages of not using Traceability Matrix [some possible (seen) impact]:
	Benefits of using Traceability Matrix
	Steps to create Traceability Matrix:
	Properties of Use Cases Name
	Brief Description
	Flow of Events
	Flow of Events - Structure
	Special Requirements
	Preconditions and Post-conditions
	Examples
	Experiment-10
	1. Function point metric
	Brief Description of the Test Estimation Process
	Test Estimation Examples
	Here is the detailed process of the Use case point estimation method:
	Function point metric:
	Internal Logical Files
	External Interface Files
	External Inputs
	External Outputs
	External Inquiries
	Experiment-11
	Procedure: (6)
	Experiment-12
	Procedure: (7)
	Example - Tight Coupling Tester.java
	Example - Loose Coupling Tester.java
	Output
	Experiment-13
	Procedure: (8)
	// Java program to illustrate
	Output (1)
	Output (2)
	Difference between high cohesion and low cohesion:
	Experiment-15
	Procedure: (9)
	An Example
	Design Steps
	Experiment-17
	Procedure: (10)
	Why invest in documentation design? Clarify project requirements
	Streamline design implementation
	Motivate your team
	A list of essential docs
	Properly documenting design
	Make documentation usable for the target audience
	Provide up-to-date documentation
	Work on design documentation incrementally
	Test documentation
	Avoid jargon
	Create easy access
	Provide visual or code samples in the doc
	Update documentation automatically
	Find patterns in existing docs and turn them into templates
	Conclusion
	Experiment-18
	Procedure: (11)
	Topics and Features:
	Experiment-19
	Procedure: (12)
	Configuration for using JUnit 5
	How to define a test in JUnit?
	Example for developing a JUnit 5 test for another class
	JUnit test class naming conventions
	Where should the test be located?
	Static imports and unit testing
	2. Assertions and assumptions
	Experiment-20
	Procedure: (13)
	How is code coverage calculated?
	coverage-tutorial.js
	coverage-tutorial.js (1)
	coverage-tutorial.js (2)
	coverage-tutorial.js (3)
	Experiment-21
	Procedure: (14)
	1) Reliability
	2) Maintainability
	3) Usability
	The system must be:
	4) Portability
	5) Correctness
	6) Efficiency
	Recommended Reading =>> What is Efficiency Testing?
	8) Testability
	9) Flexibility
	10) Reusability
	Recommended reading =>> Cost of Quality and Cost of Poor Quality
	Conclusion (1)
	As specified above all these attributes are applied to QA and QC process so that both the tester as well as the customer can find the quality of the application or system.
	Procedure: (15)

