
CSE Page 1

SVR ENGINEERING COLLEGE
AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

2020 – 2021

LABORATORY MANUAL

OF

PYTHON PROGRAMMING LABORATORY
(19A05304P)

(R-19 REGULATION)

Prepared by

Mr. G.MAHESH BABU

Asst. Professor

For

B.Tech II YEAR – I SEM. (CSE)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SVR ENGINEERING COLLEGE
(AFFILIATED TO JNTUA ANANTHAPURAM- AICITE-INDIA)

AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

CSE Page 2

LAB MANUAL CONTENT

PYTHON PROGRAMMING LABORATORY
(19A05304P)

1. Institute Vision & Mission, Department Vision & Mission

2. PO, PEO& PSO Statements.

3. List of Experiments

4. CO-PO Attainment

5. Experiment Code and Outputs

1. Institute Vision & Mission, Department Vision & Mission

Institute Vision:

To produce Competent Engineering Graduates & Managers with a strong

base of Technical & Managerial Knowledge and the Complementary Skills

needed to be Successful Professional Engineers & Managers.

Institute Mission:

To fulfill the vision by imparting Quality Technical & Management

Education to the Aspiring Students, by creating Effective Teaching/Learning

Environment and providing State – of the – Art Infrastructure and Resources.

Department Vision:

To produce Industry ready Software Engineers to meet the challenges of

21st Century.

Department Mission:

 Impart core knowledge and necessary skills in Computer Science and

Engineering through innovative teaching and learning methodology.

 Inculcate critical thinking, ethics, lifelong learning and creativity needed

for industry and society.

 Cultivate the students with all-round competencies, for career, higher

education and self-employability.

CSE Page 3

2. PO, PEO& PSO Statements

PROGRAMME OUTCOMES (POs)

PO-1: Engineering knowledge - Apply the knowledge of mathematics, science,

engineering fundamentals of Computer Science& Engineering to solve complex real-life

engineering problems related to CSE.

PO-2: Problem analysis - Identify, formulate, review research literature, and analyze

complex engineering problems related to CSE and reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions - Design solutions for complex engineering

problems related to CSE and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety, cultural,

societal and environmental considerations.

PO-4: Conduct investigations of complex problems - Use research-based knowledge and

research methods, including design of experiments, analysis and interpretation of data

and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage - Select/Create and apply appropriate techniques, resources and

modern engineering and IT tools and technologies for rapidly changing computing needs,

including prediction and modeling to complex engineering activities, with an

understanding of the limitations.

PO-6: The engineer and society - Apply reasoning informed by the contextual knowledge

to assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the CSE professional engineering practice.

PO-7: Environment and Sustainability - Understand the impact of the CSE professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of, and need for sustainable development.

PO-8: Ethics - Apply ethical principles and commit to professional ethics and

responsibilities and norms of the relevant engineering practices.

PO-9: Individual and team work - Function effectively as an individual, and as a member

or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication - Communicate effectively on complex engineering activities with

the engineering community and with the society-at-large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, give and receive clear instructions.

PO-11: Project management and finance - Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

PO-12: Life-long learning - Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadcast context of technological

changes.

CSE Page 4

Program Educational Objectives (PEOs):

PEO 1:Graduates will be prepared for analyzing, designing, developing and testing the

software solutions and products with creativity and sustainability.

PEO 2: Graduates will be skilled in the use of modern tools for critical problem solvingand

analyzing industrial and societal requirements.

PEO 3:Graduates will be prepared with managerial and leadership skills for career and

starting up own firms.

Program Specific Outcomes (PSOs):

PSO 1:Develop creative solutions by adapting emerging technologies / tools for real time

applications.

PSO 2: Apply the acquired knowledge to develop software solutions and innovative mobile

apps for various automation applications

2.1 Subject Time Table

SVR ENGINEERING COLLEGE::NANDYAL

DEPARTMENT OF CSE

G.MAHESH BABU II-IIIRD SEM

Day/

Time
9:30 AM 10:20 AM

11:30

AM

12:20

PM-

LU
N

C
H

 B
R

EA
K

02:00

PM

02:50

PM

03:40

PM

 10:20

AM
11:10AM

12:20

PM

01:10

PM

02:50

PM

03:40

PM

04:30

PM

MON

TUE

WED

THU

FRI PP LAB

SAT

CSE Page 5

LIST OF EXPERIMENTS (SYLLABUS)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech – II-IIIRD Sem

19A05304P PYTHON PROGRAMMING LABORATORY

(Common to CSE & IT)

Course Objectives:

 To understand the object-oriented concepts using Python in problem solving.

 To understand the fundamentals of Python programming concepts and its applications.

 To elucidate solving mathematical problems using Python programming language

 To train the students in solving computational problems

Laboratory Experiments
1. Install Python Interpreter and use it to perform different Mathematical Computations. Try to do
all the operations present in a Scientific Calculator
2. Write a function that draws a grid like the following:

|

|

|

3. Write a function that draws a Pyramid with # symbols

4. Using turtles concept draw a wheel of your choice

5. Write a program that draws Archimedean Spiral

6. The letters of the alphabet can be constructed from a moderate number of basic elements, like
vertical and horizontal lines and a few curves. Design an alphabet that can be drawn with a minimal
number of basic elements and then write functions that draw the letters. The alphabet can belong to
any Natural language excluding English. You should consider at least Ten letters of the alphabet.

7. The time module provides a function, also named time that returns the current Greenwich Mean
Time in “the epoch”, which is an arbitrary time used as a reference point. On UNIX systems, the
epoch is 1 January 1970. >>> import time >>> time.time() 1437746094.573595Write a script that
reads the current time and converts it to a time of day in hours, minutes, and seconds, plus the
number of days since the epoch.

8. Given n+r+1 <= 2r . n is the input and r is to be determined. Write a program which computes
minimum value of r that satisfies the above.

+ - - - - + - - - +
| | |

| | |

| | |
| | |

+ - - - - + - - - +
| |

| |

| | |

| |

CSE Page 6

9. Write a program that evaluates Ackermann function

10. Choose any five built-in string functions of C language. Implement them on your own in Python.
You should not use string related Python built-in functions.

11. . Given a text of characters, Write a program which counts number of vowels, consonants and
special characters.

12. Given a word which is a string of characters. Given an integer say ‘n’, Rotate each character by ‘n’
positions and print it. Note that ‘n’ can be positive or negative.

13. Given rows of text, write it in the form of columns.

14. Given a page of text. Count the number of occurrences of each latter (Assume case

insensitivity and don’t consider special characters). Draw a histogram to represent the

same

15. Write program which performs the following operations on list’s. Don’t use built-in

functions

a) Updating elements of a list
b) Concatenation of list’s

c) Check for member in the list

d) Insert into the list

e) Sum the elements of the list

f) Push and pop element of list

g) Sorting of list

h) Finding biggest and smallest elements in the list

i) Finding common elements in the list

16. Write a program that reads a file, breaks each line into words, strips whitespace and

punctuation from the words, and converts them to lowercase.

17. Write a program illustrating the object oriented features supported by Python

18. Design a Python script using the Turtle graphics library to construct a turtle bar chart

representing the grades obtained by N students read from a file categorising them into distinction,

first class, second class, third class and failed.

19. Design a Python script to determine the difference in date for given two dates in

YYYY:MM:DD format(0 <= YYYY <= 9999, 1 <= MM <= 12, 1 <= DD <= 31) following the

leap year rules.

20. Design a Python Script to determine the time difference between two given times in

HH:MM:SS format.(0 <= HH <= 23, 0 <= MM <= 59, 0 <= SS <= 59)

CSE Page 7

5.0 EXPERIMENT CODE AND OUTPUTS

EXPERIMENT NO: 1

AIM: Install Python Interpreter and use it to perform different Mathematical

Computations. Try to do all the operations present in a Scientific Calculator

number_1 = int(input('Enter your first number: '))

number_2 = int(input('Enter your second number: '))

Addition

print('{} + {} = '.format(number_1, number_2))

print(number_1 + number_2)

Subtraction

print('{} - {} = '.format(number_1, number_2))

print(number_1 - number_2)

Multiplication

print('{} * {} = '.format(number_1, number_2))

print(number_1 * number_2)

Division

print('{} / {} = '.format(number_1, number_2))

print(number_1 / number_2)

import math

print("""

press -

1 - Addition(x, y)
2 - subtraction(x,y)
3-multiplication(x,y)

4 - division(x, y)

5- exponent(x, y)

6 - tan(x, y)
7 - sin(x)
8 - cos(x)

9 - factorial(x)
10 - log(x)
""")

o = input("")

if o == "1":

x = int(input("1st number -"))

y = int(input("2nd number -"))

add(x, y)

print(x + y)

elif o == "2":

x = int(input())

y = int(input())

subtract(x, y)

print(x-y)

elif o == "3":

x = int(input())

CSE Page 8

OUTPUT:

y = int(input())

print(x*y)

elif o == "4":

x = int(input())

y = int(input())

print(x/y)

elif o == "5":

x = int(input())

y = int(input())

print(x**y)

elif o == "6":

x = int(input())

y = int(input())

print(math.tan(x))

elif o == "7":

x = int(input())

print(math.sin(x))

elif o == "8":

x = int(input())

cos(x)

elif o == "9":

x = int(input())

print(math.factorial(x))

elif o == "10":

x = int(input())

print(math.log(x))

EXPERIMENT NO: 2

CSE Page 2

AIM: . Write a function that draws a grid like the following:

|

|

|

def grid(row, col):
x = ('+ --- ' * col + '+')
y = ('\n' +'| ' * (col+1))
return ((x + 4*y) +'\n')*row + x

print(grid(2,2))

OUTPUT:

+ - - - - + - - - +
| | |

| | |

| | |
| | |

+ - - - - + - - - +

| |

| |

| | |

| |

EXPERIMENT NO: 3

CSE Page 3

AIM: Write a function that draws a Pyramid with # symbols

OUTPUT:

n = 0

r = 12

for m in range(1, r+1):

for gap in range(1, (r-m)+1):

print(end=" ")

while n != (2*m-1):

print("# ", end="")

n = n + 1

n = 0

print()

EXPERIMENT NO: 4

CSE Page 4

AIM: Using turtles concept draw a wheel of your choice
Python program to draw square

using Turtle Programming

import turtle

skk = turtle.Turtle()

for i in range(4):

skk.forward(50)

skk.right(90)

turtle.done()

Python program to draw star

using Turtle Programming

import turtle

star = turtle.Turtle()

star.right(75)

star.forward(100)

for i in range(4):

star.right(144)

star.forward(100)

turtle.done()

Python program to draw hexagon

using Turtle Programming

import turtle

polygon = turtle.Turtle()

num_sides = 6

side_length = 70

angle = 360.0 / num_sides

for i in range(num_sides):

polygon.forward(side_length)

polygon.right(angle)

turtle.done()

OUTPUT:

EXPERIMENT NO: 5

CSE Page 5

AIM: Write a program that draws Archimedean Spiral
def spiral(turtle, rotations=6, a=0.0, b=5):

theta = 0.0

while theta < rotations * 2 * pi:
radius = a + b * theta
x, y = radius * cos(theta), radius * sin(theta)
turtle.goto(x, y)
theta += 0.1

OUTPUT:

EXPERIMENT NO: 6

CSE Page 6

AIM: The letters of the alphabet can be constructed from a moderate number of basic elements,

like vertical and horizontal lines and a few curves. Design an alphabet that can be drawn

with a minimal number of basic elements and then write functions that draw the letters.

The alphabet can belong to any Natural language excluding English. You should consider

at least Ten letters of the alphabet.

from future
import
print_function,
division

import string
import turtle
"""
To use this typewriter, you have to provide a module named letters.py
that contains functions with names like draw_a, draw_b, etc.
"""
check if the reader has provided letters.py
try:

import letters
except ImportError as e:

message = e.args[0]
if message.startswith('No module'):

raise ImportError(message +
'\nYou have to provide a module named

letters.py')
def teleport(t, x, y):

"""Moves the turtle without drawing a line.
Postcondition: pen is down
t: Turtle
x: coordinate
y: coordinate
"""
t.pu()
t.goto(x, y)
t.pd()

def keypress(char):
char: string, letter to draw
"""
if we're still drawing the previous letter, bail out
if bob.busy:

return
else:

bob.busy = True
figure out which function to call, and call it
try:

name = 'draw_' + char
func = getattr(letters, name)

except AttributeError:
print("I don't know how to draw an", char)
bob.busy = False
return

func(bob, size)
letters.skip(bob, size/2)
bob.busy = False

def carriage_return():
"""Moves to the beginning of the next line.
"""
teleport(bob, -180, bob.ycor() - size*3)
bob.busy = False

def presser(char):
def func():

keypress(char)
return func

CSE Page 7

create and position the turtle
size = 20
bob = turtle.Turtle()
bob.busy = False
teleport(bob, -180, 150)
tell world to call keypress when the user presses a key
screen = bob.getscreen()
for char in string.ascii_lowercase:

screen.onkey(presser(char), char)
screen.onkey(carriage_return, 'Return')
screen.listen()
turtle.mainloop()

OUTPUT:

CSE Page 8

EXPERIMENT NO: 7

AIM: The time module provides a function, also named time that returns the current Greenwich

Mean Time in “the epoch”, which is an arbitrary time used as a reference point. On UNIX

systems, the epoch is 1 January 1970.

>>> import time
>>> time.time()

1437746094.5735958

import time

epoch = time.time()
seconds_in_a_day = 24 * 60 * 60
seconds_in_an_hour = 60 * 60
seconds_in_a_minute = 60

days = epoch // seconds_in_a_day
hours = (epoch % seconds_in_a_day) // seconds_in_an_hour + 8
minutes = (epoch % seconds_in_a_day) % seconds_in_an_hour // seconds_in_a_minute
seconds = (epoch % seconds_in_a_day) % seconds_in_an_hour % seconds_in_a_minute
print("%s: %s: %s: %s" %(days, hours, minutes, seconds))
print("Beijing Current time is %d: %d: %d: %d" %(days, hours, minutes, seconds"))

OUTPUT:

CSE Page 9

EXPERIMENT NO: 8(A)

AIM: Given n+r+1 <= 2r . n is the input and r is to be determined. Write a program which

computes minimum value of r that satisfies the above.

Python3 Program to find

minimum value of X

in equation X = P * A + Q * B

Function to return gcd of a and b

def gcd(a, b):

if a == 0:

return b

return gcd(b % a, a)

a = 2

b = 4

print(gcd(a, b))

OUTPUT:

EXPERIMENT NO: 8(B)

AIM: Given n+r+1 <= 2r . n is the input and r is to be determined. Write a program which

computes minimum value of r that satisfies the above.

def solution (a, b, n):

traverse for all possible values

i = 0

while i * a <= n:

check if it is satisfying

the equation

if (n - (i * a)) % b == 0:

print("x = ",i ,", y = ",

int((n - (i * a)) / b))

return 0

i = i + 1

print("No solution")

driver program to test the above function

a = 2

b = 3

n = 7

solution(a, b, n)

OUTPUT:

EXPERIMENT NO: 9

CSE Page 9

AIM: Write a program that evaluates Ackermann function
Python program to illustrate Ackermann function

def A(m, n, s ="% s"):

print(s % ("A(% d, % d)" % (m, n)))

if m == 0:

return n + 1

if n == 0:

return A(m - 1, 1, s)

n2 = A(m, n - 1, s % ("A(% d, %% s)" % (m - 1)))

return A(m - 1, n2, s)

print(A(1, 2))

OUTPUT:

EXPERIMENT NO: 10

CSE Page 10

AIM: . Choose any five built-in string functions of C language. Implement them on your

own in Python. You should not use string related Python built-in functions.

defining strings in Python
all of the following are equivalent
my_string = 'Hello'
print(my_string)

my_string = "Hello"
print(my_string)

my_string = '''Hello'''
print(my_string)

triple quotes string can extend multiple lines
my_string = """Hello, welcome to

the world of Python"""
print(my_string)
#Accessing string characters in Python
str = 'programiz'
print('str = ', str)

#first character
print('str[0] = ', str[0])

#last character
print('str[-1] = ', str[-1])

#slicing 2nd to 5th character
print('str[1:5] = ', str[1:5])

#slicing 6th to 2nd last character
print('str[5:-2] = ', str[5:-2])

EXPERIMENT NO: 11

CSE Page 11

AIM: Write a program which counts number of vowels, consonants and special characters.
Python3 Program to count vowels,

consonant, digits and special

character in a given string.

Function to count number of vowels,

consonant, digits and special

character in a string.

def countCharacterType(str):

Declare the variable vowels,

consonant, digit and special

characters

vowels = 0

consonant = 0

specialChar = 0

digit = 0

str.length() function to count

number of character in given string.

for i in range(0, len(str)):

ch = str[i]

if ((ch >= 'a' and ch <= 'z') or

(ch >= 'A' and ch <= 'Z')):

To handle upper case letters

ch = ch.lower()

if (ch == 'a' or ch == 'e' or ch == 'i'

or ch == 'o' or ch == 'u'):

vowels += 1

else:

consonant += 1

elif (ch >= '0' and ch <= '9'):

digit += 1

else:

specialChar += 1

print("Vowels:", vowels)

print("Consonant:", consonant)

print("Digit:", digit)

print("Special Character:", specialChar)

Driver function.

str = "geeks for geeks121"

countCharacterType(str)

EXPERIMENT NO: 12

CSE Page 12

AIM: Given a word which is a string of characters. Given an integer say ‘n’, Rotate each

character by ‘n’ positions and print it. Note that ‘n’ can be positive or negative.
Python program to right rotate a list by n

Returns the rotated list

def rightRotate(lists, num):

output_list = []

Will add values from n to the new list

for item in range(len(lists) - num, len(lists)):

output_list.append(lists[item])

Will add the values before

n to the end of new list

for item in range(0, len(lists) - num):

output_list.append(lists[item])

return output_list

Driver Code

rotate_num = 3

list_1 = [1, 2, 3, 4, 5, 6]

print(rightRotate(list_1, rotate_num))

OUTPUT:

EXPERIMENT NO: 13

CSE Page 13

AIM: Given rows of text, write it in the form of columns.
Import pandas package

import pandas as pd

Define a dictionary containing Students data

data = {'Name': ['Jai', 'Princi', 'Gaurav', 'Anuj'],

'Height': [5.1, 6.2, 5.1, 5.2],

'Qualification': ['Msc', 'MA', 'Msc', 'Msc']}

Convert the dictionary into DataFrame

df = pd.DataFrame(data)

Declare a list that is to be converted into a column

address = ['Delhi', 'Bangalore', 'Chennai', 'Patna']

Using 'Address' as the column name

and equating it to the list

df['Address'] = address

Observe the result

print(df)

OUTPUT:

EXPERIMENT NO: 14

CSE Page 14

with
file_input

AIM: Given a page of text. Count the number of occurrences of each latter (Assume case

insensitivity and don’t consider special characters). Draw a histogram to represent the

same

import collections
import pprint

= input('File Name: ')
open(file_input, 'r') as info:

count = collections.Counter(info.read().upper())
value = pprint.pformat(count)

print(value)

OUTPUT:

EXPERIMENT NO: 15

CSE Page 15

#!/usr/bin/python

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2]

list[2] = 2001;

print "New value available at index 2 : "

print list[2]

AIM: Write program which performs the following operations on list’s. Don’t use built-in

functions

a) Updating elements of a list
b) Concatenation of list’s

c) Check for member in the list

d) Insert into the list

e) Sum the elements of the list

f) Push and pop element of list

g) Sorting of list

h) Finding biggest and smallest elements in the list
i) Finding common elements in the list

a)

b) # Python3 code to demonstrate list
concatenation using naive method

Initializing lists

test_list1 = [1, 4, 5, 6, 5]

test_list2 = [3, 5, 7, 2, 5]

using naive method to concat

for i in test_list2 :

test_list1.append(i)

Printing concatenated list

print ("Concatenated list using naive method : "

+ str(test_list1))

c) Python code to demonstrate
checking of element existence

using List count() method

"""

Initializing list

test_list = [10, 15, 20, 7, 46, 2808]

print("Checking if 15 exists in list")

number of times element exists in list

exist_count = test_list.count(15)

checking if it is more then 0

if exist_count > 0:

CSE Page 16

print("Yes, 15 exists in list")

else:

print("No, 15 does not exists in list")

d)

create a list of prime numbers
prime_numbers = [2, 3, 5, 7]

 # insert 11 at index 4

prime_numbers.insert(4, 11)
print('List:', prime_numbers)

e) # Python program to find sum of elements in list
total = 0

creating a list

list1 = [11, 5, 17, 18, 23]

Iterate each element in list

and add them in variable total

for ele in range(0, len(list1)):

total = total + list1[ele]

printing total value

print("Sum of all elements in given list: ", total)

f)

g) # A function that returns the length of the value:
def myFunc(e):
return len(e)

cars = ['Ford', 'Mitsubishi', 'BMW', 'VW']
cars.sort(reverse=True, key=myFunc)

i) list1 = [1, 2]

list2 = [1, 3]

list=[]
list.append(1) # append 1
print("push:",list)
list.append(2) # append 2
print("push:",list)
list.append(3) # append 3
print("push:",list)
list.pop() # pop 3
print("pop:",list)
print("peek:",list[-1]) # get top most element
list.pop() # pop 2
print("pop:",list)
print("peek:",list[-1]) # get top most element

h) lst = []
num = int(input('How many numbers: '))for n in range(num):

numbers = int(input('Enter number '))

lst.append(numbers)print("Maximum element in the list is :",

max(lst), "\nMinimum element in the list is :", min(lst))

CSE Page 17

list1_as_set = set(list1)
intersection = list1_as_set.intersection(list2)

Find common elements of set and list
intersection_as_list = list(intersection)

print(intersection_as_list)

OUTPUTS:

A)

B)

C)

D)

E)

F)

CSE Page 18

EXPERIMENT NO: 16

AIM: Write a program that reads a file, breaks each line into words, strips whitespace and

punctuation from the words, and converts them to lowercase.

from string

import

punctuation,

whitespace

book = 'origin.txt'

with open(book, 'r') as fd:

words = fd.read().split()

#remove punctuation, whitespace, uppercase

def clean(word):

cleansed = ''

for char in word:

if ((char in punctuation) or (char in whitespace)):

pass

else:

cleansed += char.lower()

return cleansed

print "{} has {} 'words'".format(book, len([clean(word) for word in words]))

OUTPUT:

CSE Page 19

EXPERIMENT NO: 17(A)

AIM: Write a program illustrating the object oriented features supported by Python

class car:

def init (self,modelname, year):

self.modelname = modelname

self.year = year

def display(self):

print(self.modelname,self.year)

c1 = car("Toyota", 2016)

c1.display()

EXPERIMENT NO: 17(B)

AIM: Write a program illustrating the object oriented features supported by Python

class Employee:

id = 10

name = "John"

def display(self):

print("ID: %d \nName: %s" % (self.id, self.name))

Creating a emp instance of Employee class

emp = Employee()

Deleting the property of object

del emp.id

Deleting the object itself

del emp

emp.display()

OUTPUT:

EXPERIMENT NO: 18

CSE Page 18

AIM: Design a Python script using the Turtle graphics library to construct a turtle bar

chart representing the grades obtained by N students read from a file categorising them

into distinction, first class, second class, third class and failed.

import turtle

def drawBar(t, height):
""" Get turtle t to draw one bar, of height. """
t.begin_fill() # start filling this shape
t.left(90)
t.forward(height)
t.write(str(height))
t.right(90)
t.forward(40)
t.right(90)
t.forward(height)
t.left(90)
t.end_fill() # stop filling this shape

xs = [48, 117, 200, 240, 160, 260, 220] # here is the data
maxheight = max(xs)
numbars = len(xs)
border = 10

wn = turtle.Screen() # Set up the window and its attributes
wn.setworldcoordinates(0-border, 0-border, 40*numbars+border, maxheight+border)
wn.bgcolor("lightgreen")

tess = turtle.Turtle() # create tess and set some attributes
tess.color("blue")
tess.fillcolor("red")
tess.pensize(3)

for a in xs:

drawBar(tess, a)
wn.exitonclick()

OUTPUT:

EXPERIMENT NO: 19

CSE Page 19

date1
date2

a
b

AIM: Design a Python script to determine the difference in date for given two dates in

YYYY:MM:DD format(0 <= YYYY <= 9999, 1 <= MM <= 12, 1 <= DD <= 31) following the

leap year rules.

Ex-1:

from datetime import date
a = date(2000,2,28)
b = date(2001,2,28)
print(b-a)

Ex-2:
import datetime
from datetime import date
def differ_days(date1, date2):

=
=

return (a-b).days
print()
print(differ_days((date(2016,10,12)), date(2015,12,10)))
print(differ_days((date(2016,3,23)), date(2017,12,10)))
print()

OUTPUTS:

EXPERIMENT NO: 20

CSE Page 20

AIM: Design a Python Script to determine the time difference between two given times in

HH:MM:SS format.(0 <= HH <= 23, 0 <= MM <= 59, 0 <= SS <= 59)
Python 3 program to find difference between two

given times.

Remove ':' and convert it into an integer

def removeColon(s):

if (len(s) == 4):

s = s[:1] + s[2:]

if (len(s) == 5):

s = s[:2] + s[3:]

return int(s)

Main function which finds difference

def diff(s1, s2):

Change string

(eg. 2:21 --> 221, 00:23 --> 23)

time1 = removeColon(s1)

time2 = removeColon(s2)

Difference between hours

hourDiff = time2 // 100 - time1 // 100 - 1;

Difference between minutes

minDiff = time2 % 100 + (60 - time1 % 100)

if (minDiff >= 60):

hourDiff += 1

minDiff = minDiff - 60

Convert answer again in string with ':'

res = str(hourDiff) + ':' + str(minDiff)

return res

Driver code

s1 = "14:00"

s2 = "16:45"

print(diff(s1, s2))

OUTPUT:

	2020 – 2021
	Mr. G.MAHESH BABU
	1. Institute Vision & Mission, Department Vision & Mission Institute Vision:
	Institute Mission:
	Department Vision:
	Department Mission:
	2. PO, PEO& PSO Statements PROGRAMME OUTCOMES (POs)
	Program Educational Objectives (PEOs):
	Program Specific Outcomes (PSOs):
	LIST OF EXPERIMENTS (SYLLABUS)
	B.Tech – II-IIIRD Sem
	(Common to CSE & IT)
	14. Given a page of text. Count the number of occurrences of each latter (Assume case insensitivity and don’t consider special characters). Draw a histogram to represent the same
	5.0 EXPERIMENT CODE AND OUTPUTS
	AIM: Install Python Interpreter and use it to perform different Mathematical Computations. Try to do all the operations present in a Scientific Calculator
	# Python program to draw star # using Turtle Programming import turtle
	# Python program to draw hexagon # using Turtle Programming import turtle

	EXPERIMENT NO: 7
	EXPERIMENT NO: 8(A)
	EXPERIMENT NO: 8(B)
	AIM: Write a program that evaluates Ackermann function
	OUTPUT:
	AIM: Write a program which counts number of vowels, consonants and special characters.
	AIM: Given a word which is a string of characters. Given an integer say ‘n’, Rotate each character by ‘n’ positions and print it. Note that ‘n’ can be positive or negative.
	AIM: Given rows of text, write it in the form of columns.
	b) # Python3 code to demonstrate list # concatenation using naive method
	c) Python code to demonstrate checking of element existence using List count() method
	EXPERIMENT NO: 17(A)
	EXPERIMENT NO: 17(B)
	AIM: Design a Python script to determine the difference in date for given two dates in YYYY:MM:DD format(0 <= YYYY <= 9999, 1 <= MM <= 12, 1 <= DD <= 31) following the

	Ex-2:
	OUTPUTS:

	OUTPUT: (1)

