
SVR ENGINEERING COLLEGE 
AYYALURUMETTA (V), NANDYAL, 

KURNOOL DT.ANDHRA PRADESH – 

518502 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2020 – 2021 
 
 

LABORATORY MANUAL 

OF 
 

Database Management Systems Lab 

(19A05302P) 

(R-19 REGULATION) 

Prepared by 
 

Mr. M.N.MALLIKARJUNA REDDY 

Asso. 

Professor For 

B.Tech II YEAR – III SEM. (CSE) 

DEPARTMENT OF COMPUTER SCIENCE AND 

ENGINEERING 

SVR ENGINEERING COLLEGE 
(AFFILIATED TO JNTUA ANANTHAPURAM- AICITE-INDIA) 

AYYALURUMETTA (V), NANDYAL, 

KURNOOL DT.ANDHRA PRADESH – 

518502 



LAB MANUAL CONTENT 

DATABASE MANAGEMENT SYSTEMS 

LAB  

(19A05302P) 

1. Institute Vision & Mission, Department Vision & Mission 

2. PO, PEO& PSO Statements. 

3. List of Experiments 

4. CO-PO Attainment 

5. Experiment Code and Outputs 

 
 

1. Institute Vision & Mission, Department Vision & 

MissionInstitute Vision: 

To produce Competent Engineering Graduates & Managers with a strong 

base of Technical & Managerial Knowledge and the Complementary Skills 

needed to be Successful Professional Engineers & Managers. 

Institute Mission: 

To fulfill the vision by imparting Quality Technical & Management 

Education to the Aspiring Students, by creating Effective Teaching/Learning 

Environment and providing State – of the – Art Infrastructure and Resources. 

 
Department Vision: 

To produce Industry ready Software Engineers to meet the challenges of 

21st Century. 

 
Department Mission: 

 Impart core knowledge and necessary skills in Computer Science and 

Engineering through innovative teaching and learning methodology. 

 
 Inculcate critical thinking, ethics, lifelong learning and creativity needed 

for industry and society. 

 
 Cultivate the students with all-round competencies, for career, higher 

education and self-employability. 



2. PO, PEO& PSO  

 

StatementsPROGRAMME OUTCOMES (POs) 
 

PO-1:   Engineering   knowledge - Apply   the   knowledge   of   mathematics, science, 

engineering fundamentals of Computer Science& Engineering to solve complex real-life 

engineering problems related to CSE. 

PO-2: Problem analysis - Identify, formulate, review research literature, and analyze 

complex engineering problems related to CSE and reaching substantiated conclusions using 

first principles of mathematics, natural sciences, and engineering sciences. 

PO-3: Design/development of solutions - Design solutions for complex engineering 

problems related to CSE and design system components or processes that meet thespecified 

needs with appropriate consideration for the public health and safety, cultural, societal and 

environmental considerations. 

PO-4: Conduct investigations of complex problems - Use research-based knowledge and 

research methods, including design of experiments, analysis and interpretation of data and 

synthesis of the information to provide valid conclusions. 

PO-5: Modern tool usage - Select/Create and apply appropriate techniques, resources and 

modern engineering and IT tools and technologies for rapidly changing computing needs, 

including prediction and modeling to complex engineering activities, with an understanding 

of the limitations. 

PO-6: The engineer and society - Apply reasoning informed by the contextual knowledge 

to assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the CSE professional engineering practice. 

PO-7: Environment and Sustainability - Understand the impact of the CSE professional 

engineering solutions in societal and environmental contexts and demonstrate the 

knowledge of, and need for sustainable development. 

PO-8: Ethics - Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the relevant engineering practices. 

PO-9: Individual and team work - Function effectively as an individual, and as a 

member or leader in diverse teams, and in multidisciplinary settings. 

PO-10: Communication - Communicate effectively on complex engineering activities 

with the engineering community and with the society-at-large, such as, being able to 

comprehend and write effective reports and design documentation, make effective 

presentations, give and receive clear instructions. 

PO-11: Project management and finance - Demonstrate knowledge and understanding of 

the engineering and management principles and apply these to one’s own work, as a 

member and leader in a team, to manage projects and in multidisciplinary environments. 

PO-12: Life-long learning - Recognize the need for and have the preparation and ability to 

engage in independent and life-long learning in the broadcast context of technological 

changes. 



Program Educational Objectives (PEOs): 
 

PEO 1:Graduates will be prepared for analyzing, designing, developing and testing the 

software solutions and products with creativity and sustainability. 

PEO 2: Graduates will be skilled in the use of modern tools for critical problem solvingand 

analyzing industrial and societal requirements. 

PEO 3:Graduates will be prepared with managerial and leadership skills for career and 

starting up own firms. 

Program Specific Outcomes (PSOs): 

PSO 1:Develop creative solutions by adapting emerging technologies / tools for real time 

applications. 

PSO 2: Apply the acquired knowledge to develop software solutions and innovative mobile 

apps for various automation applications 

 
Subject Time Table 

SVR ENGINEERING COLLEGE::NANDYAL 

DEPARTMENT OF CSE 

Mr. M.N.MALLIKARJUNA REDDY II-III SEM 

Day/ 

Time 
9:30 AM 10:20 AM 

11:30 

AM 

12:20 

PM- 

LU
N

C
H

 B
R

EA
K

 

02:00 

PM 

02:50 

PM 

03:40 

PM 

 10:20 

AM 
11:10AM 

12:20 

PM 

01:10 

PM 

02:50 

PM 

03:40 

PM 

04:30 

PM 

MON        

TUE     DBMS LAB 

WED        

THU        

FRI        

SAT        



JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR 

Syllabus for (R19 Regulations) 
 

DATABASE MANAGEMENT SYSTEMS LAB (19A05302P) 

 

 

List of Experiments: 
 

 
 

Week-1: CREATION OF TABLES 

 

Week-2: QUERIES USING DDL AND DML 
 

Week-3: QUERIES USING AGGREGATE FUNCTIONS 

Week-4: PROGRAMS ON PL/SQL 

Week-5: PROCEDURES AND FUNCTIONS 

Week-6: TRIGGERS 

Week-7: PROCEDURES 

Week-8: CURSORS 

Week-9: CASE STUDY: BOOK PUBLISHING COMPANY 

Week-10: CASE STUDY GENERAL HOSPITAL 

Week-11: CASE STUDY: CAR RENTAL COMPANY 
 

Week-12: CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM 



DATABASE MANAGEMENT SYSTEMS LAB INDEX 
 

 

 

S. No 
Week 

wise 
Name of the Experiment Page No 

1 Week-1 CREATION OF TABLES 1-8 

2 Week-2 QUERIES USING DDL AND DML 9-24 

 

3 Week-3 QUERIES USING AGGREGATE FUNCTIONS 25-35 

 

4 Week-4 PROGRAMS ON PL/SQL 36-42 

 

5 Week-5 PROCEDURES AND FUNCTIONS 43-45 

 

6 Week-6 TRIGGERS 46-47 

 

7 Week-7 PROCEDURES 48-51 

 

8 Week-8 CURSORS 52-54 

 

9 Week-9 CASE STUDY: BOOK PUBLISHING COMPANY 55-56 

 

10 Week-10 CASE STUDY GENERAL HOSPITAL 57-58 

 

11 Week-11 CASE STUDY: CAR RENTAL COMPANY 59-60 

 

12 Week-12 
CASE STUDY: STUDENT PROGRESS 

MONITORING SYSTEM 
61-62 



 

SVR ENGINEERING COLLEGE 

Department: 
 

COMPUTER SCIENCE & ENGINEERING 

 

Course Outcome Attainment - Internal Assessments 

 

Name of the faculty : 
 

M.N.MALLIKARJUNA REDDY 

 

Academic Year: 
 

2020-21 

 
Branch & Section: 

COMPUTER SCIENCE & 

ENGINEERING 

 
Exam: 

 
EXTERNAL LAB 

 
Course: 

Database Management Systems 

Lab 
 

Semester: 

 
II-I SEM 

 

Course Outcomes 
Internal 

Lab 

 Internal 

Lab 

University 

Exam 

 

 
19A05302P.1 

3 
 

3 3 

 
19A05302P.2 

3 
 

3 3 

 
19A05302P.3 

3 
 

3 3 

 
19A05302P.4 

3 
 

3 3 

 
19A05302P.5 

3 
 

3 3 

 

 
Course Outcomes 

Attainment 

Level 

19A05302P.1 The student will be able to operate optical instruments like microscope and spectrometer 3 

19A05302P.2 The student will be able to determine thickness of a hair/paper with the concept of interference 3 

19A05302P.3 
The student will be able to estimate the wavelength of different colors using diffraction grating 

and resolving power 
3 

19A05302P.4 
The student will be able to evaluate the acceptance angle of an optical fiber and numerical 

aperture 
3 

19A05302P.5 The student will be able to calculate the band gap of a given semiconductor 3 

 

Average Attainment 3 

 

Overall Course Attainment 
 

3 
 



  

  

 

 

 
 

SVR ENGINEERING COLLEGE 

 

 

 

 

 

 
 
DEPARTMENT 

 

 

 

 

 
CSE 

 

 

 

 

 
PROGRAM OUTCOME ATTAINMENT 

 

 

 

 

 
Name of Faculty: 

 

 

 

 

M.N.MALLIKARJUNA REDDY 

 

 

 

 
Academic Year 

 

 

 

 
2020-21 

 

 

 

 

 
Branch & Section: 

 

 

 

 
CSE 

 

 

 

 
SUB CODE: 

 

 

 

 
19A05302P 

 

 

 

 

 

 

 

 

 

 

 
Course: 

 

 

 

 

 

 

 

 

 
Database Management Systems 

Lab 

 

 

 

 

 

 

 

 

 

 
Semester: 

 

 

 

 

 

 

 

 

 

 
II-I 

 

  

 



 

 

 

 

 
COURSE OUTCOME ATTAINMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 
Course outcome 

attainment 

 

 

 

 

 

 

 

 

 

 

 

 
Inter 

nal 

lab 

  

 

 

 

 

 

 

 

 

 

 

 
Inter 

nal 

lab 

 

 

 

 

 

 

 

 

 

 

 

 
Exter 

nal 

lab 

 

 

 
 

19A05302P.1 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

19A05302P.2 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

19A05302P.3 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

19A05302P.4 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

19A05302P.5 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 
 



  

  

 

 

 

 

COURSE OUTCOMES AND PROGRAM OUTCOMES MAPPING 

 

 PO1 PO 
2 

PO3 PO4 PO 
5 

PO 
6 

PO 
7 

PO 
8 

PO 
9 

PO 
10 

PO 
11 

PO 
12 

PS 
O1 

PS 
O2 

 

 

 

 

 

19A05302P.1 

3 3 2 2 1 2   1  1 2 3 1  

 

 

 

 

19A05302P.2 

 2 1 1  1 3 1  3  1 2 2  

 

 

 

 

19A05302P.3 

3 3 2 2 2 1 1   1   2 1  

 

 

 

 

19A05302P.4 

3  1 2   3  2  2  2 2  

 

 

 

 

19A05302P.5 

3 2 2 2  2  2  1  3 3 1  

 

 

 

 

Average 

 

 

 

 

3.0 

 

 

 

 

2.5 

 

 

 

 

1.6 

 

 

 

 

1.8 

 

 

 

 

1.5 

 

 

 

 

1.5 

 

 

 

 

2.3 

 

 

 

 

1.5 

 

 

 

 

1.5 

 

 

 

 

1.7 

 

 

 

 

1.5 

 

 

 

 

2.0 

 

 

 

 

 
2.4 

 

 

 

 

 
1.4 

 

  



  

  

 

 

 

 

 

 

 
PO- 
ATTAINMEN 
T 

    

 

 
PO 

   

 

 
PO 

 

 

 
PO 

 

 

 
PO 

 

 

 
PO 

 

 

 
PO 

 

 

 
PO 

 

 

 
PO 

 

 

 
PO 

 

 

 
PS 

 

 

 
PS 

 

PO1 2 PO3 PO4 5 6 7 8 9 10 11 12 O1 O2 

    

IN
T

E
R

N
A

L
 

 

 

 
19A0530 

               

2P.1 9 9 6 6 3 6 3 3 6 9 3 

 

 

 
19A0530 

               

2P.2 6 3 3 3 9 3 9 3 6 6 

 

 

 
19A0530 

               

2P.3 9 9 6 6 6 3 3 3 6 3 

 

 

 
19A0530 

               

2P.4 9 3 6 9 6 6 6 6 

 

 
 
19A0530 

               

2P.5 9 6 6 6 6 6 3 9 9 3 

    

U
N

IV
E

R
S

IT
Y

 

 

 

 
19A0530 

               

2P.1 9 9 6 6 3 6 3 3 6 9 3 

 

 
 
19A0530 

               

2P.2 6 3 3 3 9 3 9 3 6 6 

 

 

 
19A0530 

               

2P.3 9 9 6 6 6 3 3 3 6 3 
  



  

   

 

 
19A0530 
2P.4 

 

 

 
 

9 

  

 

 
 

3 

 

 

 
 

6 

   

 

 
 

9 

  

 

 
 

6 

  

 

 
 

6 

  

 

 
 

6 

 

 

 
 

6 

  

 
 
19A0530 
2P.5 

 

 

 
 

9 

 

 

 
 

6 

 

 

 
 

6 

 

 

 
 

6 

  

 

 
 

6 

  

 

 
 

6 

  

 

 
 

3 

  

 

 
 

9 

 

 

 
 

9 

 

 

 
 

3 

 

    

O
V

E
R

A
L

L
 

 

 

 
19A0530 
2P.1 

 

 

 

 
3 

 

 

 

 
3 

 

 

 

 
3 

 

 

 

 
3 

 

 

 

 
3 

 

 

 

 
3 

   

 

 

 
3 

  

 

 

 
3 

 

 

 

 
3 

 

 

 

 
3 

 

 

 

 
3 

 

 

 

 
19A0530 
2P.2 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

  

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 

 
19A0530 
2P.3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

   

 

 
 

3 

   

 

 
 

3 

 

 

 
 

3 

 

 

 

 
19A0530 
2P.4 

 

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

   

 

 
 

3 

  

 

 
 

3 

  

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 

 
19A0530 
2P.5 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

  

 

 
 

3 

  

 

 
 

3 

  

 

 
 

3 

  

 

 
 

3 

 

 

 
 

3 

 

 

 
 

3 

 

 

 

 

 

 

 

 

 

 

 
Attainment 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

 

 

 

 

 
3 

 

 

 

 

 

M.N.MALLIKARJUN REDDY 

        

 

 

Head of the 

Department 

    

  



1  

Week-1: CREATION OF TABLES 

Exp 1: 

Aim: To create a table called Employee with the following Structure and Answer the 

following queries. 
 

Name Type 

Empno Number 

Ename Varchar2(20) 

Job Varchar2(20) 

Mgr Number 

Sal Number 

Sql>createtable Employee (Empnonumber,Ename varchar2(20),job varchar2(20), 

Mgrnumber,Sal number); 

Or 

Sql>createtable Employee (Empnonumber,Ename varchar2(20),job varchar2(20), Mgrnumber,Sal 

number); constraintpk_employeesprimarykey (empno), 

constraintfk_employees_deptnoforeignkey (deptno) references DEPARTMENTS (deptno)); 

 

Sql> Select * from Employee; 

Output: 

 

 

 

 

 

 
a. Add a column commission with domain to the Employee table 

Sql> Altertable employee add commission number; 

Output: 

 

 

 

b. Insert any five records in to the table. 

Sql> INSERT INTO Employee VALUES (1, 'King', 'ITmanager', '100', '20000' ); 

Sql> INSERT INTO Employee VALUES (5, 'blake', 'IT', '200', '30000' ); 

Sql> INSERT INTO Employee VALUES (9, 'raj', 'manager', '300', '40000' ); 

Sql> INSERT INTO Employee VALUES (19, 'clarke', 'Assistant', '400', '50000' ); 

Sql> INSERT INTO Employee VALUES (25, 'mohan', 'clerk', '500', '60000' ); 

Output: 



2  

 

 

 

 

 

c. Update the column details of job 

Sql> UPDATE EMPLOYEE SET JOB = 'MANAGER'WHERE JOB IS NULL; 

Output: 

 

 

 

 

 
d. Rename the column of Employ table using alter command. 

Sql>ALTER TABLE Employee RENAME COLUMN Ename TO Employname; 

Output: 

 

 

 

 

e. Delete the employee whose empno is19. 

Sql>DELETEempno FROM Employee WHERE empno=19; 

Output: 



3  

Exp 2: 

Aim: Create department table with the following structure and answer the following quries. 
 

Name Type 
Deptno Number 

Deptname Varchar2(20) 

location Varchar2(20) 

 
Sql>CREATE TABLE dept (Deptnonumber,Deptnamevarchar2(20), location varchar2(20) );or 

create table dept( deptno number(2,0), dname varchar2(14), loc varchar2(13), 

constraint pk_dept primary key (deptno)); 



4  

Output: 

 

 

 

 

 

 

a.Add column designation to the department table. 

Sql>Altertable det add designation varchar2(20); 

Output: 

 

 

 

 

b. Insert values into the table. 

Sql> insert into dept values(101, „cse‟, „ nellore‟, „assistant‟); 

Sql> insert into dept values(102, „Ece‟, „ tpty‟, „assistant‟); 

Sql> insert into dept values(103, „eee‟, „banglore‟, „HR‟); 

Sql> insert into dept values(104, „civil‟, „Hyd‟, „manager‟); 

Sql> insert into dept values(101, „cse‟, „ chittoor‟, „assistant‟); 

Output: 

 

 

 

 

c. List the records of emp table grouped by dept no 

Sql>SELECT empno from emp, dept , GROUP BY deptno; 

Output: 

 

 

 

 

 

 

 

d. Update the record where dept no is9. 



5  

Sql> Update table dept set deptno=9 where location= „tpty‟; 

Output: 

 

 

 

 

 

 

 

e. Delete any column data from the table 

Sql>DELETE location FROM dept; 

Output: 

 

 

 

 

Exp 3: 

Aim: To create a table called Customer table and answer the following queries. 
 

Name Name Type 

Custname Varchar2(20) 

custstreet Varchar2(20) 

custcity Varchar2(20) 

 
Sql>CREATE TABLE customer ( custname varchar2(20), custstreetvarchar2(20), 

custcityvarchar2(20)); 

a. Insert records into the table 

Sql> insert into customer values(„kumar‟, „4street‟, „hyd‟); 

Sql> insert into customer values(„rmesh‟, „avanue‟, „hyd‟); 

Sql> insert into customer values(„mahesh‟, „amerpet‟, „hyd‟); 

Sql> insert into customer values(„vasu‟, „marthali‟, „Banglore‟); 

Sql> insert into customer values(„hari‟, „siliconcity‟, „Banglore‟); 

Output: 



6  

b. Add salary column to the table 

Sql> Update table customer add salary number; 

Output: 

 

 

 
c.Alter the table column domain. 

Sql> Alter table customer set custname = „cname‟; 

Output: 

 

 

 
d. Drop salary column of the customer table. 

Sql> Alter table customer drop column salary; 

Output: 

 

e.Delete the rows of customer table whose ust_city is „hyd‟. 

Sql>DELETEFROMcustomer WHERE custcity = „hyd‟; 

Output: 

 

 

 

 

 

 

 

f.Create a table called branch table. 
 

Name Name Type 

branchname Varchar2(20) 

Branch Varchar2(20) 
asserts Varchar2(20) 

Sql> Create table branch ( branchname varchar2(20), Branch varchar2(20), asserts varchar2(20); 

Output: 



7  

 

 

 

 
 

Exp 4: 

Aim: To increase the size of data type for asserts to the branch and answer the following 

queries 

a) Add and drop a column to the branch table. 

Sql> Alter table branch add branchid number; 

Output: 

 

 

 
Sql> Alter table branch drop column branchid; 

Output: 

 
 

b) Insert values to the table. 

Sql> insert into branch values („kukatpally‟, „Iron‟, „Iron_rods‟); 

Sql> insert into branch values („amerpet‟, „steel‟, „steel_plates‟); 

Sql> insert into branch values („SRNagar‟, „soap‟, „soapplant‟); 

Output: 

 

 

 

 

 

 
c) Update the branch name column 

Sql> update table branch set branchname = „bname‟; 

Output: 

 

 

 

 

 
d) Delete any two columns from the table 

Sql> Alter table branch drop(bname, asserts); 

Output: 

 

 

 

 

Exp 5: 



8  

Aim: Create a table called sailor table and answer the following queries 

Sailors(sid: integer, sname: string, rating: integer, age: real); 

SQL>CREATE TABLE sailors ( sid integer not null,sname varchar(32),rating 

integer,CONSTRAINT PK_sailors PRIMARY KEY (sid) ); 

a.Add column age to the sailortable. 

Sql> alter table sailors add column age real; 

Output: 

 
 
 
 
 

b. Insert values into the sailortable. 

Sql> INSERT INTO sailors ( sid, sname, rating, age ) VALUES ( 22, 'Dustin', 7, 45.0 ); 

Sql> INSERT INTO sailors ( sid, sname, rating, age ) VALUES ( 22, 'brutes', 9, .60.0 ); 

Sql> INSERT INTO sailors ( sid, sname, rating, age ) VALUES ( 22, 'luber', 8, 58.0 ); 

c. Delete the row with rating>8. 

Sql> delete from sailors where ratting>8; 

Output: 

 

 

 
d. Update the column details ofsailor. 

Sql> Update table sailors set sname = „sailorname‟; 

Output: 

 

 

 

 

e. Insert null values into thetable. 

Sql> INSERT INTO sailors ( sid, sname, rating, age ) VALUES ( 22, 'Dustin', , 45.0 ); 

Sql> INSERT INTO sailors ( sid, sname, rating, age ) VALUES ( 22, ' ', 7, 45.0 ); 

Output: 

 

Exp 6: 



9  

Aim: To Create a table called reserves table and answer the following queries 

Reserves(sid: integer, bid: integer, day: date) 

Sql> CREATE TABLE reserves ( sid integer not null, bid integer not null, day datetime not null, 

CONSTRAINT PK_reserves PRIMARY KEY (sid, bid, day), FOREIGN KEY (sid) REFERENCES sailors(sid), 

FOREIGN KEY (bid) REFERENCES boats(bid) ); 

a. Insert values into the reserves table. 

Sql> INSERT INTO reserves ( sid, bid, day ) VALUES ( 22, 101, '1998-10-10'); 

Sql> INSERT INTO reserves ( sid, bid, day ) VALUES ( 31, 101, '1998-10-10'); 

Sql> INSERT INTO reserves ( sid, bid, day ) VALUES ( 22, 102, '1998-10-09'); 

Sql> INSERT INTO reserves ( sid, bid, day ) VALUES ( 64, 102, '1998-10-08'); 

Output: 

 
 

 
b. Add column time to the reserves table. 

Sql> Alter table reserves add column bname varchar2(20); 

Output: 

 

c. Alter the column day data type to date. 

Sql> Alter table reserves modify day date; 

Output: 

 
 

 
d. Drop the column time in the table. 

Sql> Alter table reserves drop column sid where day= ‘1998-10-10’; 

Output: 

 
 
 
 

 
e. Delete the row of the table with some condition. 

Sql> Delete table reserves; 

Output: 

Week 2: QUERIES USING DDL AND DML 



10  

SQL (Structured Query Language): 

 

Structured    Query    Language is    a databasecomputer     language designed     for 

managing data in relational database management systems(RDBMS),   and originally based 

upon Relational Algebra. Its scope includes data query and update, schema creation and 

modification, and data access control. SQL was one of the first languages for Edgar F. 

Codd's relational model in his influential 1970 paper, "A Relational Model of Data for Large 

Shared Data Banks"[3] and became the most widely used language for relational databases. 

 IBM developed SQL in mid of 1970‟s. 

 Oracle incorporated in the year 1979. 

 SQL used by IBM/DB2 and DS Database Systems. 

 SQL adopted as standard language for RDBS by ASNI in 1989. 

DATA TYPES: 

 

1. CHAR (Size): This data type is used to store character strings values of fixed length. The 

size in brackets determines the number of characters the cell can hold. The maximum 

number of character is 255 characters. 

2. VARCHAR (Size) / VERCHAR2 (Size): This data type is used to store variable length 

alphanumeric data. The maximum character can hold is 2000 character. 

3. NUMBER (P, S): The NUMBER data type is used to store number (fixed or floating point). 

Number of virtually any magnitude may be stored up to 38 digits of precision. Number as 

large as 9.99 * 10 124. The precision (p) determines the number of places to the right of the 

decimal. If scale is omitted then the default is zero. If precision is omitted, values are stored 

with their original precision up to the maximum of 38 digits. 

4. DATE: This data type is used to represent date and time. The standard format is DD-MM- 

YY as in 17-SEP-2009. To enter dates other than the standard format, use the appropriate 

functions. Date time stores date in the 24-Hours format. By default the time in a date field is 

12:00:00 am, if no time portion is specified. The default date for a date field is the first day 

the current month. 

5. LONG: This data type is used to store variable length character strings containing up to 

2GB. Long data can be used to store arrays of binary data in ASCII format. LONG values 

cannot be indexed, and the normal character functions such as SUBSTR cannot be applied. 

6. RAW: The RAW data type is used to store binary data, such as digitized picture or image. 

Data loaded into columns of these data types are stored without any further conversion. 

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Relational_Algebra
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/SQL#cite_note-codd-relational-model-2%23cite_note-codd-relational-model-2


11  

RAW data type can have a maximum length of 255 bytes. LONG RAW data type can 

contain up to 2GB. 

There are five types of SQL statements. They are: 

 

1. DATA DEFINITION LANGUAGE (DDL) 

 
2. DATA MANIPULATION LANGUAGE (DML) 

 
3. DATA RETRIEVAL LANGUAGE (DRL) 

 
4. TRANSATIONAL CONTROL LANGUAGE (TCL) 

 
5. DATA CONTROL LANGUAGE (DCL) 

 
 
 

EXP 7: TO PRACTICE DDL COMMANDS USING ORACLE 

 
1. DATA DEFINITION LANGUAGE (DDL):The Data Definition Language (DDL) is used to 

create and destroy databases and database objects. These commands will primarily be used by 

database administrators during the setup and removal phases of a database project. Let's take a 

look at the structure and usage of four basic DDL commands: 

1. CREATE 2. ALTER 3. DROP 4. RENAME 

 
1. CREATE: 

 
(a) CREATE TABLE:This is used to create a new relation and the corresponding 

 
Syntax: CREATE TABLE relation_name 

 

(field_1 data_type(Size),field_2 data_type(Size), .. . ); 

 

Example: 

 
SQL>CREATE TABLE Student (snoNUMBER(3),snameCHAR(10),class CHAR(5)); 

 

(b) CREATE TABLE..AS SELECT .. This is used to create the structure of a new relation from 

the structure of an existing relation. 

Syntax: CREATE TABLE (relation_name_1, field_1,field_2,.....field_n) AS 

SELECT field_1,field_2,...........field_nFROM relation_name_2; 

Example: SQL>CREATE TABLE std(rno,sname) AS SELECT sno,snameFROM student; 
 

Output: 



12  

 

 

 

SQL>Descstd; 

 

Output: 

2. ALTER: 

 
(a) ALTER TABLE ...ADD...: This is used to add some extra fields into existing relation. 

 
Syntax:ALTER TABLE relation_nameADD(new field_1 data_type(size), new 

field_2 data_type(size),..); 

Example :SQL>ALTER TABLE std ADD(Address CHAR(10)); 
 

(b) ALTER TABLE...MODIFY...: This is used to change the width as well as data type of fields of 

existing relations. 

Syntax:ALTER TABLE relation_nameMODIFY (field_1 newdata_type(Size), 

field_2 newdata_type(Size),... field_newdata_type(Size)); 

Example:SQL>ALTER TABLE student MODIFY(snameVARCHAR(10),class 

VARCHAR(5)); 

Output: 

 

 

 

 
3. DROP TABLE: This is used to delete the structure of a relation. It permanently deletes the 

records in the table. 

Syntax: DROP TABLE relation_name; 

 

Example: SQL>DROP TABLE std; 
 

Output: 

 

 

 

 
4. RENAME: It is used to modify the name of the existing database object. 

 
Syntax: RENAME TABLE old_relation_name TO new_relation_name; 

 

Example: SQL>RENAME TABLE stdTO std1; 



13  

Output: 

 

 
 

5. TRUNCATE: This command will remove the data permanently. But structure will not be 

removed. 

Syntax: TRUNCATE TABLE<Table name> 

 

Example TRUNCATE TABLE student; 

 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 
EXP 8: 

 
AIM: TO PRACTICE DML COMMANDS USING ORACLE 

 
DATA MANIPULATION LANGUAGE (DML):The Data Manipulation Language (DML) is used to 

retrieve, insert and modify database information. These commands will be used by all database 

users during the routine operation of the database. Let's take a brief look at the basic DML 

commands: 

1. INSERT 2. UPDATE 3. DELETE 

 
1. INSERT INTO: This is used to add records into a relation. These are three type of INSERT 

INTO queries which are as 

a) Inserting a single record 

 
Syntax: INSERT INTOrelationname(field_1,field_2,.field_n)VALUES 

 

(data_1,data_2, ....... data_n); 

 

Example: SQL>INSERT INTO student(sno,sname,class,address)VALUES 



14  

(1,’Ravi’,’M.Tech’,’Palakol’); 
 

Output: 

 

 

 

 

 
 

b) Inserting all records from another relation 

 
Syntax: INSERT INTO relation_name_1 SELECTField_1,field_2,field_n 

FROM relation_name_2 WHERE field_x=data; 

Example: SQL>INSERT INTO stdSELECT sno,snameFROM student 

WHERE name = ‘Ramu‘; 

Output: 

 

 

 

 

 
 

c) Inserting multiple records 

 
Syntax: INSERT INTO relation_namefield_1,field_2,.....field_n) VALUES 

(&data_1,&data_2, ....... &data_n); 

Example: SQL>INSERT INTO student(sno,sname,class,address) 

VALUES(&sno,’&sname’,’&class’,’&address’); 

Enter value for sno: 101 

Enter value for name: Ravi 

Enter value for class: M.Tech 

Enter value for name: Palakol 

Output: 

 

 

 

 
2. UPDATE-SET-WHERE: This is used to update the content of a record in a relation. 



15  

Syntax: SQL>UPDATE relation name SET Field_name1=data,field_name2=data, 

WHERE field_name=data; 

Example: SQL>UPDATE student SETsname = ‘kumar’ WHERE sno=1; 

 
Output: 

 

 

 

 

 
3. DELETE-FROM: This is used to delete all the records of a relation but it will retain the 

structure of that relation. 

a) DELETE-FROM: This is used to delete all the records of relation. 

 
Syntax: SQL>DELETE FROM relation_name; 

 

Example: SQL>DELETE FROM std; 

 

Output: 

b) DELETE -FROM-WHERE: This is used to delete a selected record from a relation. 

 
Syntax: SQL>DELETE FROM relation_name WHERE condition; 

 

Example: SQL>DELETE FROM student WHERE sno = 2; 

 

Output: 

 

 
 

DRL(DATA RETRIEVAL LANGUAGE):Retrieves data from one or more tables. 

 

1. SELECT FROM: To display all fields for all records. 

 
Syntax : SELECT * FROM relation_name; 

Example : SQL> select * from dept; 

Output: 

 

 

 
2. SELECT FROM: To display a set of fields for all records of relation. 



16  

Syntax: SELECT a set of fields FROM relation_name; 

Example: SQL> select deptno, dname from dept; 

Output: 

 

 

 

 
3. SELECT - FROM -WHERE: This query is used to display a selected set of fields for a selected 

set of records of a relation. 

Syntax: SELECT a set of fields FROMrelation_nameWHERE condition; 

 

Example: SQL> select * FROM dept WHERE deptno<=20; 
 

Output: 

 

 

 

 
 

4. SELECT - FROM -GROUP BY: This query is used to group to all the records in a relation 

together for each and every value of a specific key(s) and then display them for a selected set of 

fields the relation. 

Syntax: SELECT a set of fields FROM relation_nameGROUP BY field_name; 

 

Example: SQL> SELECT EMPNO, SUM (SALARY) FROM EMP GROUP BY EMPNO; 

 

Output: 

 

 
5. SELECT - FROM -ORDER BY: This query is used to display a selected set of fields from a 

relation in an ordered manner base on some field. 

Syntax: SELECT a set of fields FROM relation_name 

ORDER BY field_name; 

Example: SQL> SELECT empno,ename,job FROM emp ORDER BY job; 
 

Output: 



17  

6. JOIN using SELECT - FROM - ORDER BY: This query is used to display a set of fields from 

two relations by matching a common field in them in an ordered manner based on some fields. 

Syntax: SELECT a set of fields from both relations FROM relation_1, 

relation_2 WHERE relation_1.field_x = relation_2.field_y ORDER BY 

field_z; 

Example: SQL>SELECT empno,ename,job,dname FROM emp,deptWHERE emp.deptno = 

20 ORDER BY job; 

 

Output: 

 

 

 

 

 

 

 
 

7. JOIN using SELECT - FROM - GROUP BY: This query is used to display a set of fields from 

two relations by matching a common field in them and also group the corresponding records for 

each and every value of a specified key(s) while displaying. 

Syntax: SELECT a set of fields from both relations FROM 

relation_1,relation_2 WHERE relation_1.field-x=relation_2.field-y 

GROUP BY field-z; 

Example: SQL> SELECT empno,SUM(SALARY) FROM emp,deptWHERE emp.deptno 

=20 GROUP BY empno; 

 

Output: 

 

 
8. UNION: This query is used to display the combined rows of two different queries, which are 

having the same structure, without duplicate rows. 

Syntax: SELECT field_1,field_2,....... FROM relation_1 WHERE (Condition) 

UNION SELECT field_1,field_2,....... FROM relation_2 WHERE (Condition); 

Example: 

 
SQL> SELECT * FROM STUDENT; 

 

Output: 



18  

SQL> SELECT * FROM STD; 

 

Output: 

 

 

 

SQL> SELECT * FROM student UNION SELECT * FROM std; 

Output: 

 

 

 

 

 

 

 
9. INTERSET: This query is used to display the common rows of two different queries, which are 

having the same structure, and to display a selected set of fields out of them. 

Syntax: SELECT field_1,field_2,.. FROM relation_1 WHERE 

 

(Condition) INTERSECT SELECT field_1,field_2,.. FROM relation_2 

WHERE(Condition); 

Example :SQL> SELECT * FROM student INTERSECT SELECT * FROM std; 
 

Output: 

 

 

 

 
 

10. MINUS: This query is used to display all the rows in relation_1,which are not having in the 

relation_2. 

Syntax: SELECT field_1,field_2,......FROM relation_1 

WHERE(Condition) MINUS SELECT field_1,field_2,..... 

FROM relation_2 WHERE(Conditon); 

 

SQL> SELECT * FROM student MINUS SELECT * FROM std; 

 

Output: 



19  

 

 

 

 
 

TRANSATIONAL CONTROL LANGUAGE (T.C.L): 
 

A transaction is a logical unit of work. All changes made to the database can be referred 

to as a transaction. Transaction changes can be mode permanent to the database only if they 

are committed a transaction begins with an executable SQL statement & ends explicitly with 

either role back or commit statement. 

1. COMMIT: This command is used to end a transaction only with the help of the commit 

command transaction changes can be made permanent to the database. 

Syntax:SQL>COMMIT; 
 

Example: SQL>COMMIT; 
 

Output: 

 

 

 

 
2. SAVE POINT: Save points are like marks to divide a very lengthy transaction to smaller once. 

They are used to identify a point in a transaction to which we can latter role back. Thus, save 

point is used in conjunction with role back. 

Syntax: SQL>SAVE POINT ID; 
 

Example: SQL>SAVE POINT xyz; 

 

Output: 

 

 

 

 
3. ROLE BACK: A role back command is used to undo the current transactions. We can role 

back the entire transaction so that all changes made by SQL statements are undo (or) role back 

a transaction to a save point so that the SQL statements after the save point are role back. 

Syntax: ROLE BACK( current transaction can be role back) 

ROLE BACK to save point ID; 



20  

Example: SQL>ROLE BACK; 

 

SQL>ROLE BACK TO SAVE POINT xyz; 

 

Output: 

 

 

 

 

 

 

 

 

 

DATA CONTROL LANGUAGE (D.C.L): 
 

DCL provides uses with privilege commands the owner of database objects (tables), has 

the soul authority ollas them. The owner (data base administrators) can allow other data base 

uses to access the objects as per their requirement 

 
 

1. GRANT: The GRANT command allows granting various privileges to other users and allowing 

them to perform operations with in their privileges 

For Example, if a uses is granted as ‘SELECT’ privilege then he/she can only view data but 

cannot perform any other DML operations on the data base object GRANTED privileges can also 

be withdrawn by the DBA at any time 

 
 

Syntax: SQL>GRANT PRIVILEGES on object_name To user_name; 
 

Example:       SQL>GRANT SELECT, UPDATE on empTohemanth; 

 

Output: 

 

 

 

 

 
2. REVOKE: To with draw the privileges that has been GRANTED to a uses, we use the 

REVOKE command 

Syntax: SQL>REVOKE PRIVILEGES ON object-name FROM user_name; 



21  

Example: SQL>REVOKE SELECT, UPDATE ONemp FROM ravi; 

 
Output: 

 

 

 

 

 

 

 

 

 
1. Creation, altering and dropping of tables and inserting rows into a table (use 

constraints while creating tables) examples using SELECT command. 

1. CREATE: 

 
(a)CREATE TABLE:This is used to create a new relation 

 
Syntax: CREATE TABLE relation_name 

 

(field_1 data_type(Size),field_2 data_type(Size), .. . ); 

 

Example: 

 
SQL>CREATE TABLE Student (snoNUMBER(3)PRIMARY KEY,sname 

 

CHAR(10),classCHAR(5)); 

 

Output: 

 

 

 

 
2. ALTER: 

 
(a) ALTER TABLE ...ADD...: This is used to add some extra fields into existing relation. 

 
Syntax:ALTER TABLE relation_name ADD(new field_1 data_type(size), new 

field_2 data_type(size),..); 

Example :SQL>ALTER TABLE std ADD(Address CHAR(10)); 
 

Output: 



22  

 

(b) ALTER TABLE...MODIFY...: This is used to change the width as well as data type of fields of 

existing relations. 

Syntax:ALTER TABLE relation_nameMODIFY (field_1 newdata_type(Size), 

field_2 newdata_type(Size),... field_newdata_type(Size)); 

Example:SQL>ALTER TABLE student MODIFY(snameVARCHAR(10),classVARCHAR(5)); 
 

Output: 

3. DROP TABLE: This is used to delete the structure of a relation. It permanently deletes the 

records in the table. 

Syntax: DROP TABLE relation_name; 

 

Example: SQL>DROP TABLE std; 
 

Output: 

 

 
4. INSERT: 

 
Syntax: INSERT INTO relation_namefield_1,field_2,.....field_n) VALUES 

(&data_1,&data_2, ....... &data_n); 

Example: SQL>INSERT INTO student(sno,sname,class,address) 

VALUES(&sno,’&sname’,’&class’,’&address’); 

Output: 

 

 

 

 
5. SELECT FROM: To display all fields for all records. 

 
Syntax : SELECT * FROM relation_name; 

Example : SQL> select * from student; 

Output: 



23  

 

2. SELECT FROM: To display a set of fields for all records of relation. 

 
Syntax: SELECT a set of fields FROM relation_name; 

Example: SQL> select sno, sname from student; 

Output: 

 

3. SELECT - FROM -WHERE: This query is used to display a selected set of fields for a selected 

set of records of a relation. 

Syntax: SELECT a set of fields FROMrelation_nameWHERE condition; 

 

Example: SQL> select * FROM student WHERE class=’CSE’; 
 

Output: 

 

 

 

 

 

 
There are 5 constraints available in ORACLE: 

 
1. NOT NULL: When a column is defined as NOTNULL, then that column becomes a mandatory 

column. It implies that a value must be entered into the column if the record is to be accepted for 

storage in the table. 

Syntax: 

 
CREATE TABLETable_Name(column_namedata_type(size) NOT NULL, ); 

 

Example: 

 
CREATE TABLE student (snoNUMBER(3)NOT NULL, nameCHAR(10)); 

 

Output: 

 

 

 

 
2. UNIQUE: The purpose of a unique key is to ensure that information in the column(s) is unique 

i.e. a value entered in column(s) defined in the unique constraint must not be repeated across 

the column(s). A table may have many unique keys. 



24  

Syntax: 

 
CREATE TABLETable_Name(column_namedata_type(size) UNIQUE, ….); 

 

Example: 

 
CREATE TABLE student (snoNUMBER(3) UNIQUE, name CHAR(10)); 

 

Output: 

 

 
3. CHECK: Specifies a condition that each row in the table must satisfy. To satisfy the constraint, 

each row in the table must make the condition either TRUE or unknown (due to a null). 

Syntax: 

 
CREATE TABLETable_Name(column_namedata_type(size) CHECK(logical 

expression), ….); 

Example: CREATE TABLE student (snoNUMBER (3), nameCHAR(10),class 

CHAR(5),CHECK(class IN(‘CSE’,’CAD’,’VLSI’)); 

 

Output: 

 

 

 

 
4. PRIMARY KEY: A field which is used to identify a record uniquely. A column or combination of 

columns can be created as primary key, which can be used as a reference from other tables. A 

table contains primary key is known as Master Table. 

 It must uniquely identify each record in a table. 

 It must contain unique values. 

 It cannot be a null field. 

 It cannot be multi port field. 

 It should contain a minimum no. of fields necessary to be called unique. 

Syntax: 

 
CREATE TABLETable_Name(column_namedata_type(size) PRIMARY KEY, ….); 

 

Example: 

 
CREATE TABLE faculty (fcodeNUMBER(3) PRIMARY KEY,fname CHAR(10)); 

 

Output: 



25  

 

5. FOREIGN KEY: It is a table level constraint. We cannot add this at column level. To reference 

any primary key column from other table this constraint can be used. The table in which the 

foreign key is defined is called a detail table. The table that defines the primary key and is 

referenced by the foreign key is called the master table. 

Syntax: CREATE TABLETable_Name(column_namedata_type(size) 

FOREIGN KEY(column_name) REFERENCEStable_name); 

Example: 

 
CREATE TABLE subject (scodeNUMBER (3) PRIMARY KEY, 

 
subname CHAR(10),fcodeNUMBER(3), 

FOREIGN KEY(fcode) REFERENCE faculty ); 

Output: 

 

 

 

 

 

 

 
Defining integrity constraints in the alter table command: 

 
 

 

Syntax: ALTER TABLETable_NameADDPRIMARY KEY (column_name); 

 

Example: ALTER TABLE student ADDPRIMARY KEY (sno); 

 
(Or) 

 
Syntax: ALTER TABLE table_name ADD CONSTRAINT constraint_name 

 
PRIMARY KEY(colname) 

 

Example: ALTER TABLE student ADD CONSTRAINT SN PRIMARY KEY(SNO) 

 

Output: 



26  

Dropping integrity constraints in the alter table command: 
 

Syntax: ALTER TABLETable_NameDROPconstraint_name; 

 

Example: ALTER TABLE student DROPPRIMARY KEY; 

 
(or) 

Syntax: ALTER TABLE student DROP CONSTRAINT constraint_name; 

 

Example: ALTER TABLE student DROP CONSTRAINT SN; 

 

 

 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Week-3:QUERIES USING AGGREGATE FUNCTIONS 

 
Exp 9: 

 
Aim:To Practice Aggregate functions using oracle. 

 
Aggregative operators: In addition to simply retrieving data, we often want to perform some 

computation or summarization. SQL allows the use of arithmetic expressions. We now consider 

a powerful class of constructs for computing aggregate values such as MIN and SUM. 



27  

1. Count: COUNT following by a column name returns the count of tuple in that column. If 

DISTINCT keyword is used then it will return only the count of unique tuple in the column. 

Otherwise, it will return count of all the tuples (including duplicates) count (*) indicates all the 

tuples of the column. 

Syntax: COUNT (Column name) 

 

Example:SELECT COUNT (Sal) FROM emp; 

Output: 

 

 

 

 

2. SUM: SUM followed by a column name returns the sum of all the values in that column. 

 
Syntax:SUM (Column name) 

 

Example: SELECT SUM (Sal) From emp; 

Output: 

 

 

 

 

3. AVG: AVG followed by a column name returns the average value of that column values. 

 
Syntax:AVG (n1,n2..) 

 

Example: Select AVG(10, 15, 30) FROM DUAL; 
 

 

 

Output: 

 
4. MAX: MAX followed by a column name returns the maximum value of that column. 

 
Syntax: MAX (Column name) 

 

Example: SELECT MAX (Sal) FROM emp; 

Output: 



28  

 

SQL> select deptno,max(sal) from emp group by deptno; 

Output: 

 

 

 

 

 

 
SQL> select deptno,max(sal) from emp group by deptno having 

max(sal)<3000; 

Output: 

 

 

 

 

 
5. MIN: MIN followed by column name returns the minimum value of that column. 

 
Syntax: MIN (Column name) 

 

Example: SELECT MIN (Sal) FROM emp; 

 
SQL>select deptno,min(sal) from emp group by deptno having 

min(sal)>1000; 

Output: 

 

 

 

 

 

 

 

 
VIEW: In SQL, a view is a virtual table based on the result-set of an SQL statement. 

 
A view contains rows and columns, just like a real table. The fields in a view are fields 

from one or more real tables in the database. 

You can add SQL functions, WHERE, and JOIN statements to a view and present the 

data as if the data were coming from one single table. 

A view is a virtual table, which consists of a set of columns from one or more tables. It is 

similar to a table but it doest not store in the database. View is a query stored as an object. 



29  

Syntax: CREATE VIEW view_name AS SELECT set of fields FROM relation_name 

WHERE (Condition) 

 

 

SQL>CREATE VIEW employee AS SELECT empno,ename,jobFROM EMP 

WHERE job = ‘clerk’; 

OUTPUT: 

 

 

 

SQL> SELECT * FROM EMPLOYEE; 

OUTPUT: 

 

 

2.Example: 
 

CREATE VIEW [Current Product List] AS 

SELECT ProductID,ProductName 

FROM Products 

WHERE Discontinued=No 

 

 

 

DROP VIEW:This query is used to delete a view , which has been already created. 

 
Syntax: DROP VIEW View_name; 

 

Example : SQL> DROP VIEW EMPLOYEE; 

 

Output: 

 

 
Exp 10: 

 
Aim: To practice String & Character functions using sql 

 
CONVERSION FUNCTIONS: 

 

To_char: TO_CHAR (number) converts n to a value of VARCHAR2 data type, using the 

optional number format fmt. The value n can be of type NUMBER, BINARY_FLOAT, or 

BINARY_DOUBLE. 



30  

SQL>select to_char(65,'RN')from dual; LXV 

To_number : TO_NUMBER converts expr to a value of NUMBER data type. 

SQL>Select to_number ('1234.64') from Dual; 

Output: 

 

 
 

To_date:TO_DATE converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data 

type to a value of DATE data type. 

SQL>SELECT TO_DATE('January 15, 1989, 11:00 A.M.')FROM DUAL; 

Output: 

 

 
 

STRING FUNCTIONS: 

 

Concat: CONCAT returns char1 concatenated with char2. Both char1 and char2 can be 

any of the datatypes 

SQL>SELECT CONCAT(„ORACLE‟,‟CORPORATION‟)FROM DUAL; 

Output: 

 
 

Lpad: LPAD returns expr1, left-padded to length n characters with the sequence of 

characters in expr2. 

SQL>SELECT LPAD(„ORACLE‟,15,‟*‟)FROM DUAL; 

Output: 

 

 

 

 
Rpad: RPAD returns expr1, right-padded to length n characters with expr2, replicated as 

many times as necessary. 

SQL>SELECT RPAD („ORACLE‟,15,‟*‟)FROM DUAL; 

Output: 

 

Ltrim: Returns a character expression after removing leading blanks. 

SQL>SELECT LTRIM(„SSMITHSS‟,‟S‟)FROM DUAL; 

Output: 



31  

 

Rtrim: Returns a character string after truncating all trailing blanks 

SQL>SELECT RTRIM(„SSMITHSS‟,‟S‟)FROM DUAL; 

Output: 

 

Lower: Returns a character expression after converting uppercase character data to 

lowercase. 

SQL>SELECT LOWER(„DBMS‟)FROM DUAL; 

Output: 

 

 

Upper: Returns a character expression with lowercase character data converted to uppercase 

SQL>SELECT UPPER(„dbms‟)FROM DUAL; 

Output: 

 

 
Length: Returns the number of characters, rather than the number of bytes, of the 

given string expression, excluding trailing blanks. 

SQL>SELECT LENGTH(„DATABASE‟)FROM DUAL; 
Output: 

 
 

Substr: Returns part of a character, binary, text, or image expression. 

SQL>SELECT SUBSTR(„ABCDEFGHIJ‟3,4) FROM DUAL; 

Output: 

 

Instr: The INSTR functions search string for substring. The function returns an integer 

indicating the position of the character in string that is the first character of this occurrence. 

SQL>SELECT INSTR('CORPORATE FLOOR','OR',3,2) FROM DUAL; 

Output: 

DATE FUNCTIONS: 

 
Sysdate: 

SQL>SELECT SYSDATE FROM DUAL; 29-DEC-08 

Output: 

next_day: 

SQL>SELECT NEXT_DAY(SYSDATE,‟WED‟)FROM DUAL; 



32  

Output: 

add_months: 

SQL>SELECT ADD_MONTHS(SYSDATE,2)FROM DUAL; 

Output: 

last_day: 

SQL>SELECT LAST_DAY(SYSDATE)FROM DUAL; 

 

Output: 

 

 
months_between: 

SQL>SELECT MONTHS_BETWEEN(SYSDATE,HIREDATE)FROM EMP; 

Output: 

 

Least: 

SQL>SELECT LEAST('10-JAN-07','12-OCT-07')FROM DUAL; 

 

Output: 

Greatest: 

SQL>SELECT GREATEST('10-JAN-07','12-OCT-07')FROM DUAL; 

 

Output: 

Trunc: 

SQL>SELECT TRUNC(SYSDATE,'DAY')FROM DUAL; 

Output: 

Round: 

SQL>SELECT ROUND(SYSDATE,'DAY')FROM DUAL; 

Output: 

to_char: 

SQL> select to_char(sysdate, "dd\mm\yy") from dual; 

Output: 

to_date: 

SQL> select to date (sysdate, "dd\mm\yy") from dual; 

Output: 



33  

Truncate: 

SQL>SELECT TRUNC(SYSDATE,'DAY')FROM DUAL; 

Output: 

 

Round: 

SQL>SELECT ROUND(SYSDATE,'DAY')FROM DUAL; 

Output: 

 

to_char: 

SQL> select to_char(sysdate, "dd\mm\yy") from dual; 

Output: 

 
 

to_date: 

SQL> select to date (sysdate, "dd\mm\yy") from dual; 

Output: 

 

 

 

 

 

 

 

 

 

 
Exp 11: 

 
Aim: Consider the following schema: 

Sailors (sid,sname, rating, age) 

Boats (bid, bname, color) 

Reserves (sid, bid,day(date)) 

Write subquery statement for the following queries. 

create table sailors ( 

sidint primary key, 

sname varchar(38), 

rating int, 

age float check (age > 16 and age < 110) 

); 

 

create table boats ( 

bid int primary key, 

bname varchar(25), 

color varchar(21) 
); 



34  

create table reserves ( 

sidint, 

bid int, 

day date, 

foreign key (sid) references sailors (sid), 

foreign key (bid) references boats (bid) 

); 

 

 

 

 

1. Find the names of the sailors who have reserved both a red or a yellow boat. 

SQL> select s.sname from sailors s, boats b, reserves r where s.sid=r.sid and 

b.bid=r.bid and (b.color='red' or b.color='yellow'); 
 

Output: 

 

 

 

 

2. Find all sids of sailors who have a rating of 10 or have reserved boat 111. 
 

SQL> select s.sid from sailors s where s.rating = 10 union select r.sid from 
reserves r where r.bid = 111; 

 

Output: 

 

 

 

 

 

3. Find all sids of sailors who have reserved red boats but not yellow boats 

 

SQL> select s.sid from sailors s, boats b, reserves r where s.sid = r.sid and r.bid = 
b.bid and b.color = 'red' 

minus 

select s2.sid from sailors s2, boats b2, reserves r2 where s2.sid = r2.sid and 
r2.bid = b2.bid and b2.color = 'yellow'; 

Output: 



35  

4. Find the names of the sailors who have reserved both a red and a yellow boat. 
 

SQL> select s.sname from sailors s, boats b, reserves r where s.sid = r.sid and 

r.bid = b.bid and b.color = 'red' 

intersect 
select s2.sname from sailors s2, boats b2, reserves r2 where s2.sid = r2.sid 

and r2.bid = b2.bid and b2.color = 'yellow'; 

Output: 

 

 

 

 

5. Find the names of sailors who have reserved a red boat, and list in the order of age. 

SQL>SELECT S.sname, S.ageFROM Sailors S, Reserves R, Boats B 

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = „red‟ORDER BY S.age; 

Output: 

 

 

6. Find the names of sailors who have reserved at least one boat. 

SQL>SELECT snameFROM Sailors S, Reserves RWHERE S.sid = R.sid; 

 

Output: 

 

 

 

7. Find the ids and names of sailors who have reserved two different boats on the same 

day. 

SQL>SELECT DISTINCT S.sid, S.snameFROM Sailors S, Reserves R1, Reserves 

R2WHERE S.sid = R1.sid AND S.sid = R2.sidAND R1.day = R2.day AND R1.bid <> 

R2.bid; 

 

Output: 

 

 

 

 

8. Using Expressions and Strings in the SELECT Command. 

SQL>ELECT sname, age, rating + 1 as sth 



36  

FROM Sailors 
WHERE 2* rating – 1 < 10 AND sname like „B_%b‟; 

Output: 

 

 

 

9. Nested Query 

Find the names of sailors who have reserved boat 103. 

 

SQL>SELECT S.snameFROM Sailors SWHERE S.sid 

IN ( SELECT R.sidFROM Reserves RWHERE R.bid = 103 ) 
Output: 

 

 

 

 

 

 
SQL>SELECT S.snameFROM Sailors SWHERE 

EXISTS ( SELECT *FROM Reserves RWHERE R.bid = 103AND R.sid 
= S.sid ) 

Output: 

 

 

 

 
10. Find the name and the age of the youngest sailor. 

SQL>SELECT S.sname, S.ageFROM Sailors SWHERE S.age<= ALL ( 

SELECT ageFROM Sailors ) 

 

Output: 

 

Week-4: PROGRAMS ON PL/SQL 
 

Exp 12: 

PL/SQL Introduction 



37  

PL/SQL stands for Procedural Language extension of SQL. PL/SQL is a combination of 

SQL along with the procedural features of programming languages. It was developed by Oracle 

Corporation in the early 90’s to enhance the capabilities of SQL. 

Oracle uses a PL/SQL engine to processes the PL/SQL statements. A PL/SQL code can 

be stored in the client system (client-side) or in the database (server-side). 

Advantages of PL/SQL: 

 
 Block Structures: PL SQL consists of blocks of code, which can be nested within each 

other. Each block forms a unit of a task or a logical module. PL/SQL Blocks can be stored 

in the database and reused. 

 Procedural Language Capability: PL SQL consists of procedural language constructs 

such as conditional statements (if else statements) and loops like (FOR loops). 

 Better Performance: PLSQL engine processes multiple SQL statements simultaneously 

as a single block, thereby reducing network traffic. 

 Error Handling: PL/SQL handles errors or exceptions effectively during the execution of 

a PL/SQL program. Once an exception is caught, specific actions can be taken 

depending upon the type of the exception or it can be displayed to the user with a 

message. 

Syntax of PL/SQL program: 

Declare 

Variable declaration; 

Begin 

 

 
end; 

 

 
Executable statements; 

 

 

Conditional Statements in PL/SQL 
 

As the name implies, PL/SQL supports programming language features like conditional 

statements, iterative statements.The programming constructs are similar to how you use in 

programming languages like Java and C++. In this section I will provide you syntax of how to use 

conditional statements in PL/SQL programming. 

IF THEN ELSE STATEMENT: 

 
IF condition THEN 

statement 1; 
 

ELSE 



38  

statement 2; 

END IF; 

 

IF condition 1 THEN 

statement 1; 

statement 2; 

ELSIF condtion2 THEN 

statement 3; 
 

ELSE 

 

 
END IF 

 
 
statement 4; 

 
 
 

1. Write a PL/SQL program to find the total and average of 4 subjects and display the grade 

 
declare 

java number(10); 

dbms number(10); 

co number(10); 

mfcs number(10); 

total number(10); 

avgs number(10); 

per number(10); 

begin  

dbms_output.put_line('ENTER THE MARKS'); 

java:=&java; 

dbms:=&dbms; 

co:=&co; 

mfcs:=&mfcsl; 

total:=(java+dbms+co+mfcs); 

per:=(total/600)*100; 

if java<40 or dbms<40 or co<40 or mfcs<40 then 

dbms_output.put_line('FAIL'); 



39  

if per>75 then 

dbms_output.put_line('GRADE A'); 

elsif per>65 and per<75 then 

dbms_output.put_line('GRADE B'); 

elsif per>55 and per<65 then 

dbms_output.put_line('GRADE C'); 

else 

dbms_output.put_line('INVALID INPUT'); 

end if; 

dbms_output.put_line('PERCENTAGE IS '||per); 

end; 

/ 

OUTPUT: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2. Write a PL/SQL program to find the largest of three numbers 

 
declare 

a number; 

b number; 



40  

 

begin 

c number; 

 
 

a:=&a; 

b:=&b; 

c:=&c; 

if a=b and b=c and c=a then 

dbms_output.put_line('ALL ARE EQUAL'); 

elsif a>b and a>c then 

dbms_output.put_line('A IS GREATER'); 

elsif b>c then 

dbms_output.put_line('B IS GREATER'); 

else 

dbms_output.put_line('C IS GREATER'); 

end if; 

end; 

/ 

OUTPUT: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loops in PL/SQL 

 
There are three types of loops in PL/SQL: 

 
1. Simple Loop 



41  

2. While Loop 

3. For Loop 

1. Simple Loop:A Simple Loop is used when a set of statements is to be executed at least once 

before the loop terminates. An EXIT condition must be specified in the loop, otherwise the loop 

will get into an infinite number of iterations. When the EXIT condition is satisfied the process 

exits from the loop. 

Syntax: 
 

LOOP 

 

 
EXIT; 

 
 
statements; 

 

 
{or EXIT WHEN condition ;} 

 

END LOOP; 

2. While Loop:A WHILE LOOP is used when a set of statements has to be executed as long as 

a condition is true. The condition is evaluated at the beginning of each iteration. The iteration 

continues until the condition becomes false. 

Syntax: 

 
WHILE <condition> 

 
LOOP statements; 

END LOOP; 

3. FOR Loop:A FOR LOOP is used to execute a set of statements for a predetermined number 

of times. Iteration occurs between the start and end integer values given. The counter is always 

incremented by 1. The loop exits when the counter reaches the value of the end integer. 

Syntax: 
 

FOR counter IN val1..val2 

LOOP statements; 

END LOOP; 

 

 
3. Write a PL/SQL program to generate Fibonacci series 

 
declare 

a number; 

b number; 



42  

 

 

 

 

begin 

c number; 

n number; 

i number; 

 

n:=&n; 

a:=0; 

b:=1; 

dbms_output.put_line(a); 

dbms_output.put_line(b); 

for i in 1..n-2 

loop 

 

 

 

 

 

 

 

 

end; 

/ 

c:=a+b; 

dbms_output.put_line(c); 

a:=b; 

b:=c; 

end loop; 

OUTPUT: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Write a PL/SQL Program to display the number in Reverse Order 

 

 
declare 



43  

 

 

 

 

 
begin 

a number; 

rev number; 

d number; 

 

a:=&a; 

rev:=0; 

while a>0 

loop 

 

 

 

 

 

 

 

 
end; 

/ 

d:=mod(a,10); 

rev:=(rev*10)+d; 

a:=trunc(a/10); 

end loop; 

dbms_output.put_line('no is'|| rev); 

OUTPUT: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week-5: PROCEDURES AND FUNCTIONS 

 
Exp 13: 



44  

A procedures or function is a group or set of SQL and PL/SQL statements that perform a specific 

task. A function and procedure are a named PL/SQL Block which is similar. The major difference 

between a procedure and a function is, a function must always return a value, but a procedure 

may or may not return a value. 

Procedures: 

A procedure is a named PL/SQL block which performs one or more specific task. This is similar 

to a procedure in other programming languages. A procedure has a header and a body. The header 

consists of the name of the procedure and the parameters or variables passed to the procedure. 

The body consists or declaration section, execution section and exception section similar to a 

general PL/SQL Block. A procedure is similar to an anonymous PL/SQL Block but it is named 

for repeated usage. 

We can pass parameters to procedures in three ways: 

 
Parameters    Description 

 
IN type These types of parameters are used to send values to stored procedures. 

 
OUT type These types of parameters are used to get values from stored procedures. This 

is similar to a return type in functions. 

IN OUT type These types of parameters are used to send values and get values from stored 

procedures. 

“A procedure may or may not return any value.” 

 
Syntax: 

CREATE [OR REPLACE] PROCEDURE procedure_name (<Argument> {IN, 

OUT, IN OUT} <Datatype>,…) 

IS 

Declaration section<variable, constant> ; 

BEGIN 

Execution section 

EXCEPTION 

Exception section 

END 

or 



45  

CREATE OR REPLACE PROCEDURE <procedure_name> 

( 

<parameterl IN/OUT <datatype> 

.. 

. 

) 

[ IS | AS ] 

<declaration_part> 

BEGIN 

<execution part> 

EXCEPTION 

<exception handling part> 

END; 

 
 

Example: 

 

CREATE OR REPLACE PROCEDURE welcome_msg (p_name IN VARCHAR2) 
IS 

BEGIN 

dbms_output.put_line („Welcome '|| p_name); 

END; 

/ 

 

Output:EXEC welcome_msg („Guru99‟); 

 

1. create table named emp have two column id and salary with number datatype. 

 

CREATE OR REPLACE PROCEDURE p1(id IN NUMBER, sal IN NUMBER) 

AS 

BEGIN 
INSERT INTO emp VALUES(id, sal); 

DBMD_OUTPUT.PUT_LINE('VALUE INSERTED.'); 

END; 

/ 

Output: 

 

 

 

 
Functions: 

A function is a named PL/SQL Block which is similar to a procedure. The major difference 

between a procedure and a function is, a function must always return a value, but a procedure 

may or may not return a value. 

 

Syntax: 



46  

CREATE [OR REPLACE] FUNCTION function_name [parameters] 

RETURN return_datatype; {IS, AS} 

Declaration_section<variable,constant> ; 

BEGIN 

Execution_section 

Return return_variable; 

EXCEPTION 
exception section 

Return return_variable; 

END; 

 

Example: 

 

create or replace function getsal (no IN number) return number 
is 

sal number(5); 

begin 

select salary into sal from emp where id=no; 
return sal; 

end; 

/ 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week-6: TRIGGERS 

 

Exp 13: 
1. Create a row level trigger for the customers table that would fire for INSERT orUPDATE or 

DELETE operations performed on the CUSTOMERS table. This triggerwill display the salary 



47  

difference between the old values and new values: 

 

CUSTOMERS table: 
ID NAME AGE ADDRESS SALARY 

1 Alive 24 Khammam 2000 

2 Bob 27 Kadappa 3000 

3 Catri 25 Guntur 4000 

4 Dena 28 Hyderabad 5000 

5 Eeshwar 27 Kurnool 6000 
6 Farooq 28 Nellur 7000 

 

Output: 

 

 

 

 

 

 

2. Creation of insert trigger, delete trigger, update trigger practice triggers using the 

emp database. 

 

SQL> create table emp (name varchar(10),empno number(3),age number(3)); 

 

 

Table 

created. 
SQL> 

 

create or replace trigger t2 before insert onemp 

for eachrow 

when(new.age>100) 

begin 

RAISE_APPLICATION_ERROR(-20998,'INVALID ERROR'); 6* 

end; 

 
Output: 

 

 

 

 

 

3. The following program creates a row-level trigger for the customers table that would fire 

forINSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This 

trigger will display the salary difference between the old values and new values. 
 

CREATE OR REPLACE TRIGGER display_salary_changes 



48  

BEFORE DELETE OR INSERT OR UPDATE ON customers 
FOR EACH ROW 

WHEN (NEW.ID > 0) 

DECLARE 

sal_diff number; 

BEGIN 

sal_diff := :NEW.salary - :OLD.salary; 

dbms_output.put_line('Old salary: ' || :OLD.salary); 

dbms_output.put_line('New salary: ' || :NEW.salary); 

dbms_output.put_line('Salary difference: ' || sal_diff); 

END; 

/ 
Trigger is created 

Output: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Week-7: PROCEDURES 

Exp 14: 

1. Create the procedure for palindrome of given number. 
 

DECLARE 



49  

n number; 
m number; 

temp number:=0; 

rem number; 

BEGIN 

n :=12321; 
m :=n; 

while n>0 

loop 

rem := mod(n,10); 

temp := (temp*10)+rem; 

n := trunc(n/10); 

end loop; 

if m = temp 

then 

dbms_output.put_line('Palindrome'); 

else 

dbms_output.put_line('Not Palindrome'); 

end if; 

END; 

 
Output: 

 

 

 

 

 

 

 
2. Create the procedure for GCD: Program should load two registers with two Numbers and 

then apply the logic for GCD of two numbers. 

 

DECLARE 

 

-- declare variable num1, num2 and t 

-- and these three variables datatype are integer 

num1 INTEGER; 

num2 INTEGER; 

t INTEGER; 

BEGIN 
num1 := 8; 

 

num2 := 48; 

 

WHILE MOD(num2, num1) != 0 LOOP 

t := MOD(num2, num1); 

num2 := num1; 



50  

num1 := t; 
END LOOP; 

 

dbms_output.Put_line('GCD of ' ||num1 ||' and ' ||num2 ||' is ' ||num1); 

END; 

 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 
3. Write the PL/SQL programs to create the procedure for factorial of givennumber. 

 

Delimiter // 

CREATE PROCEDURE fact(IN x INT) 

BEGIN 

DECLARE result INT; 

DECLARE i INT; 

SET result = 1; 
SET i = 1; 

WHILE i<= x DO 

SET result = result * i; 

SET i = i + 1; 

END WHILE; 

SELECT x AS Number, result as Factorial; 

END// 

Query OK, 0 rows affected (0.17 sec) 

 

Output: 

 

 

 

 

 

 
4. Write the PL/SQL programs to create the procedure to find sum of N naturalnumber. 

SQL> Declare 

i number:=0; 

n number; 



51  

sum1 number:=0; 

Begin 

n:=&n; 

while i 

loop 

sum1:=sum1+i; 

dbms_output.put_line(i); 

i:=i+1; 

end loop; 

dbms_output.put_line('The sum is:'||sum1); 

End; 

/ 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Write the PL/SQL programs to create the procedure to find Fibonacciseries. 

eclare 

first number:=0; 

second number:=1; 

third number; 

n number:=&n; 

i number; 

 
begin 

dbms_output.put_line('Fibonacci series is:'); 

dbms_output.put_line(first); 

dbms_output.put_line(second); 

 
for i in 2..n 

loop 

third:=first+second; 

first:=second; 



52  

second:=third; 

dbms_output.put_line(third); 

end loop; 

end; 

/ 

Output: 

 

 

 

 

 

 

 
6. Write the PL/SQL programs to create the procedure to check the given number is perfect 

ornot 

 
declare 

j number(10); 

n number(10); 

sum number(10):= 0; 

begin 

j:=&num; 

for n in 1..j-1 loop 

if mod(j,n)=0 then 

sum=sum+n; 

end if; 

end loop; 

if sum=j then 

dbms_output.put_line("perfect no."); 

else 

dbma_output.put_line("not perfect"); 

end if; 

end;/ 

 
Output: 

 

 

 
 

Week-8: CURSORS 

Exp 15: 

1. Write a PL/SQL block that will display the name, dept no, salary of fist highest paid 

employees. 



53  

DECLARE 

CURSOR dpt_cur IS 

SELECT d.department_id id, 

department_namedptname, 

city, 

Nvl(first_name, '...') manager 

FROM departments d 

left outer join employees e 

ON ( d.manager_id = e.employee_id ) 

join locations l USING(location_id) 

ORDER BY 2; 

emp_nameemployees.first_name%TYPE; 

emp_max_salaryemployees.salary%TYPE; 

BEGIN 

FOR dept_all IN dpt_cur LOOP 

SELECT Max(salary) 

INTO emp_max_salary 

FROM employees 

WHERE department_id = dept_all.id; 

 
IF emp_max_salary IS NULL THEN 

emp_name := '...'; 

ELSE 

SELECT first_name 

INTO emp_name 

FROM employees 

WHERE department_id = dept_all.id 

AND salary = emp_max_salary; 

END IF; 

 
dbms_output.Put_line(Rpad(dept_all.dptname, 20) 

|| Rpad(dept_all.manager, 15) 

|| Rpad(dept_all.city, 20) 

|| Rpad(emp_name, 20)); 

END LOOP; 

END; 

/ 

 
Output: 



54  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Write a PL/SQL block that will display the employee details along with salary using 

Cursors 

DECLARE 

z_employeeemployees%ROWTYPE; 

BEGIN 

SELECT * 

INTO z_employee -- INTO clause always notifies only single row can be fetch 

FROM employees 

WHERE employee_id = 149; 

 
dbms_output.Put_line('Employee Details : ID:' 

||z_employee.employee_id 

||' Name: ' 

||z_employee.first_name 

||' ' 

||z_employee.last_name 

||' Salary: ' 

||z_employee.salary); 

END; / 

 
Output: 

 

 

 

 

 

 

 

Lab Exercise: 

 
3. To write a Cursor to display the list of employees who are working as a Managers or 

Analyst. 



55  

4. To write a Cursor to find employee with given job and dept no. 

5. Write a PL/SQL block using implicit cursor that will display message, the salaries of allthe 

employees in the „employee‟ table are updated. If none of the employee‟s salary areupdated we 

geta message 'None of the salaries were updated'. Else we get a message likefor example, 'Salaries 

for 1000 employees are updated' if there are 1000 rows in„employee‟ table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
WEEK-9 

 
CASE STUDY: BOOK PUBLISHING COMPANY 



56  

AIM: A publishing company produces scientific books on various subjects. The 

books are written by authors who specialize in one particular subject. The company 

employs editors who, not necessarily being specialists in a particular area, each take 

sole responsibility for editing one or more publications. 

A publication covers essentially one of the specialist subjects and is 

normally written by a single author. When writing a particular book, each author 

works with on editor, but may submit another work for publication to be supervised 

by other editors. To improve their competitiveness, the company tries to employ a 

variety of authors, more than one author being a specialist in a particular subject. 
 

 

 
 

 
 

LAB ASSIGNMENT: 

1. Analyze the datarequired. 

2. Normalize theattributes. 

3. Create the logical data model using E-Rdiagrams 



57  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WEEK -10 

CASE STUDY: GENERAL HOSPITAL 

AIM: A General Hospital consists of a number of specialized wards (such as Maternity, 

Paediatry, Oncology, etc). Each ward hosts a number of patients, who were admitted on the 



58  

recommendation of their own GP and confirmed by a consultant employed by the Hospital. On 

admission, the personal details of every patient are recorded. 

A separate register is to be held to store the information of the tests undertaken and the 

results of a prescribed treatment. A number of tests may be conducted for each patient. Each 

patient is assigned to one leading consultant but may be examined by another doctor, if required. 

Doctors are specialists in some branch of medicine and may be leading consultants for a number 

of patients, not necessarily from the sameward. 
 

 

 

 

 

 
LAB ASSIGNMENT: 

1. Analyze the datarequired. 

2. Normalize theattributes. 

3. Create the logical data model using E-Rdiagrams 



59  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WEEK -11 

CASE STUDY: CAR RENTAL COMPANY 



60  

AIM: A database is to be designed for a Car Rental Co. (CRC). The information required 

includes a description of cars, subcontractors (i.e. garages), company expenditures, company 

revenues and customers. Cars are to be described by such data as: make, model, year of 

production, engine size, and fuel type, number of passengers, registration number, purchase price, 

purchase date, rent price and insurance details. It is the company policy not to keep any car for a 

period exceeding one year. 

All major repairs and maintenance are done by subcontractors (i.e. franchised garages), with 

whom CRC has long-term agreements. Therefore the data about garages to be kept in the 

database includes garage names, addresses, range of services and the like. Some garages require 

payments immediately after a repair has been made; with others CRC has made arrangements for 

credit facilities. Company expenditures are to be registered for all outgoings connected with 

purchases, repairs, maintenance, insurance etc. 

Similarly the cash inflow coming from all sources - car hire, car sales, insurance claims - must be 

kept of file.CRCmaintains a reasonably stable client base. For this privileged category of 

customers special credit card facilities are provided. These customers may also book in advance a 

particular car. These reservations can be made for any period of time up to one month. Casual 

customers must pay a deposit for an estimated time of rental, unless they wish to pay by credit 

card. All major credit cards are accepted. Personal details (such as name, address, telephone 

number, driving license, number) about each customer are kept in thedatabase. 
 

 

 
 

 
LAB ASSIGNMENT: 

1. Analyze the datarequired. 

2. Normalize theattributes. 

3. Create the logical data model using E-Rdiagrams 



61  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

WEEK-12 



62  

CASE STUDY: STUDENT PROGRESS MONITORING SYSTEM 

 
AIM: A database is to be designed for a college to monitor students' progress throughout their 

course of study. The students are reading for a degree (such as BA, BA(Hons) MSc, etc) within 

the framework of the modular system. The college provides a number of module, each being 

characterised by its code, title, credit value, module leader, teaching staff and the department they 

come from. A module is co- ordinated by a module leader who shares teaching duties with one or 

more lecturers. 

A lecturer may teach (and be a module leader for) more than one module. Students are free to 

choose any module they wish but the following rules must be observed: some modules require pre- 

requisites modules and some degree programmes have compulsory modules. The database is also 

to contain some information about students including their numbers, names, addresses, degrees 

they read for, and their past performance (i.e. modules taken and examination results). 
 

 

 
 

 

 

 

LAB ASSIGNMENT: 

1. Analyze the datarequired. 

2. Normalize theattributes. 

3. Create the logical data model using E-Rdiagrams 



63  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DBMS LAB Viva Questions 



64  

1) Define Database. 

A prearranged collection of figures known as data is called database. 

2) What is DBMS? 

Database Management Systems (DBMS) are applications designed especially which enable 

userinteraction with other applications. 

3) What are the various kinds of interactions catered by DBMS? 

The various kind of interactions catered by DBMS are: 

 Data definition 

 Update 

 Retrieval 

 Administration 

4) Segregate database technology‟s development. 

The development of database technology is divided into: 

 Structure or data model 

 Navigational model 

 SQL/ relational model 

5) Who proposed the relational model? 

Edgar F. Codd proposed the relational model in 1970. 

6) What are the features of Database language? 

A database language may also incorporate features like: 

DBMS-specific Configuration and management of storage engine 

Computations to modification of query results by computations, like summing, counting, 

averaging, grouping, sorting and cross-referencing Constraint enforcement Application 

Programming Interface 

7) What do database languages do? 

As special-purpose languages, they have: 

 Data definition language 

 Data manipulation language 

 Query language 

8) Define database model. 

A data model determining fundamentally how data can be stored, manipulated and 

organisedandthe structure of the database logically is called database model. 

9) What is SQL? 

Structured Query Language (SQL) being ANSI standard language updates database and 

commandsfor accessing. 

10) Enlist the various relationships of database. 

The various relationships of database are: 

 One-to-one: Single table having drawn relationship with another table having similar kind 

 of columns. 

 One-to-many: Two tables having primary and foreign key relation. 

 Many-to-many: Junction table having many tables related to many tables. 

11) Define Normalization. 



65  

Organized data void of inconsistent dependency and redundancy within a database is called 

normalization. 

12) Enlist the advantages of normalizing database. 

Advantages of normalizing database are: 

 No duplicate entries 

 Saves storage space 

 Boasts the query performances. 

13) Define Denormalization. 

Boosting up database performance, adding of redundant data which in turn helps rid of 

complexdata is called denormalization. 

14) Define DDL and DML. 

Managing properties and attributes of database is called Data Definition Language(DDL). 

Manipulating data in a database such as inserting, updating, deleting is defined as Data 

Manipulation Language. (DML) 

15) Enlist some commands of DDL. 

They are: 

CREATE: 

Create is used in the CREATE TABLE statement. Syntax is: 

CREATE TABLE [column name] ( [column definitions] ) [ table parameters] 

ALTER: 

It helps in modification of an existing object of database. Its syntax is: 

ALTER objecttypeobjectname parameters. 

DROP: 

It destroys an existing database, index, table or view. Its syntax is: 

DROP objecttypeobjectname. 

16) Define Union All operator and Union. 

Full recordings of two tables is Union All operator. 

A distinct recording of two tables is Union. 

17) Define cursor. 

A database object which helps in manipulating data row by row representing a result set is 

calledcursor. 

18) Enlist the cursor types. 

They are: 

 Dynamic: it reflects changes while scrolling. 

 Static: doesn‟t reflect changes while scrolling and works on recording of snapshot. 

 Keyset: data modification without reflection of new data is seen. 

19) Enlist the types of cursor. 

They types of cursor are: 

 Implicit cursor: Declared automatically as soon as the execution of SQL takes place 

withoutthe awareness of the user. 

 Explicit cursor: Defined by PL/ SQL which handles query in more than one row. 

20) Define sub-query. 

A query contained by a query is called Sub-query. 



66  

21) Why is group-clause used? 

Group-clause uses aggregate values to be derived by collecting similar data. 

22) Compare Non-clustered and clustered index 

Both having B-tree structure, non-clustered index has data pointers enabling one table many 

nonclustered indexes while clustered index is distinct for every table. 

23) Define Aggregate functions. 

Functions which operate against a collection of values and returning single value is called 

aggregate functions 

 
24) Define Scalar functions. 

Scalar function is depended on the argument given and returns sole value. 

25) What restrictions can you apply when you are creating views? 

Restrictions that are applied are: 

 Only the current database can have views. 

 You are not liable to change any computed value in any particular view. 

 Integrity constants decide the functionality of INSERT and DELETE. 

 Full-text index definitions cannot be applied. 

 Temporary views cannot be created. 

 Temporary tables cannot contain views. 

 No association with DEFAULT definitions. 

 Triggers such as INSTEAD OF is associated with views. 

26) Define “correlated subqueries”. 

A „correlated subquery‟ is a sort of sub query but correlated subquery is reliant on another 

queryfor a value that is returned. In case of execution, the sub query is executed first and then 

thecorrelated query. 

27) Define Data Warehousing. 

Storage and access of data from the central location in order to take some strategic decision 

iscalled Data Warehousing. Enterprise management is used for managing the information 

whoseframework is known as Data Warehousing. 

28) Define Join and enlist its types. 

Joins help in explaining the relation between different tables. They also enable you to select 

datawith relation to data in another table. 

The various types are: 

 INNER JOINs: Blank rows are left in the middle while more than equal to two tables 

arejoined. 

 OUTER JOINs: Divided into Left Outer Join and Right Outer Join. Blank rows are left at 

thespecified side by joining tables in other side. 

Other joins are CROSS JOINs, NATURAL JOINs, EQUI JOIN and NON-EQUI JOIN. 

29) What do you mean by Index hunting? 

Indexes help in improving the speed as well as the query performance of database. The 

procedureof boosting the collection of indexes is named as Index hunting. 


	2020 – 2021
	Mr. M.N.MALLIKARJUNA REDDY
	1. Institute Vision & Mission, Department Vision & MissionInstitute Vision:
	Institute Mission:
	Department Vision:
	Department Mission:
	2. PO, PEO& PSO
	Program Educational Objectives (PEOs):
	Program Specific Outcomes (PSOs):
	Subject Time Table
	Week-1: CREATION OF TABLES
	Aim: To create a table called Employee with the following Structure and Answer the following queries.
	Exp 2:
	Exp 3:
	f.Create a table called branch table.
	Exp 4:
	Exp 5:
	Week 2: QUERIES USING DDL AND DML
	DATA TYPES:
	Week-3:QUERIES USING AGGREGATE FUNCTIONS
	Aim:To Practice Aggregate functions using oracle.
	Exp 10:
	STRING FUNCTIONS:
	DATE FUNCTIONS:
	Output:
	Output: (1)
	last_day:
	months_between:
	Output: (2)
	Greatest:
	Trunc:
	Round:
	Truncate:
	Round: (1)
	to_char:
	to_date:
	Exp 11:

	PL/SQL Introduction
	Loops in PL/SQL
	Week-5: PROCEDURES AND FUNCTIONS
	Procedures:
	Parameters    Description
	Syntax:
	or
	Example:
	Functions:
	Week-6: TRIGGERS
	Output:
	Output: (1)
	Exp 14:
	Output: (2)
	Output: (3)
	Output: (4)
	Output: (5)
	Output: (6)
	Exp 15:
	Output: (7)
	Lab Exercise:
	WEEK-9
	WEEK -10
	WEEK -11
	WEEK-12
	DBMS LAB Viva Questions


