
PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 1

SVR ENGINEERING COLLEGE
AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

2021 – 2022

LAB MANVAL
of

ARTIFICIAL INTELLIGENCE (19A05502T)

(R-19 REGULATION)

Prepared by

Mr. Oruganti.Sampath

Asst. Professor

For

B.Tech. III Year/ I Sem. (CSE & AI)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SVR ENGINEERING COLLEGE
(AFFILIATED TO JNTUA ANANTHAPURAM- AICITE-INDIA)

AYYALURUMETTA (V), NANDYAL, KURNOOL DT.

ANDHRA PRADESH – 518502

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 2

LAB MANVAL CONTENT

ARTIFICIAL INTELLIGENCE (19A05502T)
1. Institute Vision & Mission, Department Vision & Mission

2. PO, PEO& PSO Statements.

3. List of Experiments

4. CO-PO Attainment

5. Experiment Code and Outputs

1. Institute Vision & Mission, Department Vision & Mission

Institute Vision:

To produce Competent Engineering Graduates & Managers with a strong

base of Technical & Managerial Knowledge and the Complementary Skills

needed to be Successful Professional Engineers & Managers.

Institute Mission:

To fulfill the vision by imparting Quality Technical & Management

Education to the Aspiring Students, by creating Effective Teaching/Learning

Environment and providing State – of the – Art Infrastructure and Resources.

Department Vision:

To produce Industry ready Software Engineers to meet the challenges of

21st Century.

Department Mission:

 Impart core knowledge and necessary skills in Computer Science and

Engineering through innovative teaching and learning methodology.

 Inculcate critical thinking, ethics, lifelong learning and creativity needed

for industry and society.

 Cultivate the students with all-round competencies, for career, higher

education and self-employability.

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 3

2. PO, PEO& PSO Statements

PROGRAMME OUTCOMES (POs)

PO-1: Engineering knowledge - Apply the knowledge of mathematics, science,

engineering fundamentals of Computer Science& Engineering to solve complex real-life

engineering problems related to CSE.

PO-2: Problem analysis - Identify, formulate, review research literature, and analyze

complex engineering problems related to CSE and reaching substantiated conclusions using

first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions - Design solutions for complex engineering

problems related to CSE and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety, cultural,

societal and environmental considerations.

PO-4: Conduct investigations of complex problems - Use research-based knowledge

and research methods, including design of experiments, analysis and interpretation of data

and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage - Select/Create and apply appropriate techniques, resources and

modern engineering and IT tools and technologies for rapidly changing computing needs,

including prediction and modeling to complex engineering activities, with an understanding

of the limitations.

PO-6: The engineer and society - Apply reasoning informed by the contextual knowledge

to assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the CSE professional engineering practice.

PO-7: Environment and Sustainability - Understand the impact of the CSE professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of, and need for sustainable development.

PO-8: Ethics - Apply ethical principles and commit to professional ethics and

responsibilities and norms of the relevant engineering practices.

PO-9: Individual and team work - Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication - Communicate effectively on complex engineering activities

with the engineering community and with the society-at-large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, give and receive clear instructions.

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 4

PO-11: Project management and finance - Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

PO-12: Life-long learning - Recognize the need for and have the preparation and ability

to engage in independent and life-long learning in the broadcast context of technological

changes.

Program Educational Objectives (PEOs):

PEO 1:Graduates will be prepared for analyzing, designing, developing and testing the

software solutions and products with creativity and sustainability.

PEO 2: Graduates will be skilled in the use of modern tools for critical problem solvingand

analyzing industrial and societal requirements.

PEO 3:Graduates will be prepared with managerial and leadership skills for career and

starting up own firms.

Program Specific Outcomes (PSOs):
PSO 1:Develop creative solutions by adapting emerging technologies / tools for real time

applications.

PSO 2: Apply the acquired knowledge to develop software solutions and innovative mobile

apps for various automation applications

2.1 Subject Time Table

SVR ENGINEERING COLLEGE::NANDYAL

DEPARTMENT OF CSE

ORUGANTI. SAMPATH III-I

Day/
Time

9:30 AM 10:20 AM 11:30 AM
12:20
PM-

LU
N

C
H

 B
R

EA
K

02:00
PM

02:50
PM

03:40
PM

 10:20 AM 11:10AM 12:20 PM
01:10
PM

02:50
PM

03:40
PM

04:30
PM

MON

 AI

TUE

AI

AI - LAB

WED

AI

THU

FRI

AI

SAT AI

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 5

3.0 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech (CSE) – III-I L T P C

 (19A05502P) ARTIFICIAL INTELLIGENCE LABORATORY

Course Objectives:

This course is designed to:

1. Explore the methods of implementing algorithms using artificial intelligence techniques

2. Illustrate search algorithms

3. Demonstrate building of intelligent agents

List of Experiments:

1. Write a program to implement DFS

2. Write a program to implement BFS

3. Write a Program to find the solution for travelling salesman Problem

4. Write a program to implement Simulated Annealing Algorithm

5. Write a program to find the solution for wampus world problem

6. Write a program to implement 8 puzzle problem

7. Write a program to implement Towers of Hanoi problem

8. Write a program to implement A* Algorithm

9. Write a program to implement Hill Climbing Algorithm

10. Build a bot which provides all the information related to you in college.

11. Build a virtual assistant for Wikipedia using Wolfram Alpha and Python

12. The following is a function that counts the number of times a string occurs in another string:

Count the number of times string s1 is found in string s2

def countsubstring(s1,s2):

count = 0

for i in range(0,len(s2)-len(s1)+1):

if s1 == s2[i:i+len(s1)]:

count += 1

return count

For instance, countsubstring(’ab’,’cabalaba’) returns 2.
69 Page

Write a recursive version of the above function. To get the rest of a string (i.e. everything but the

first character).

13. Higher order functions. Write a higher-order function count that counts the number of

elements in a list that satisfy a given test. For instance: count(lambda x: x>2, [1,2,3,4,5])

should return 3, as there are three elements in the list larger than 2. Solve this task without

using any existing higher-order function.

14. Brute force solution to the Knapsack problem. Write a function that allows you to generate

random problem instances for the knapsack program. This function should generate a list of

items containing N items that each have a unique name, a random size in the range 1 5

and a random value in the range 1 10.

Next, you should perform performance measurements to see how long the given knapsack

solver take to solve different problem sizes. You should peform atleast 10 runs with different

randomly generated problem instances for the problem sizes 10,12,14,16,18,20 and 22. Use a

backpack size of 2:5 x N for each value problem size N. Please note that the method used to

generate random numbers can also affect performance, since different distributions of values can

make the initial conditions of the problem slightly more or less demanding.

How much longer time does it take to run this program when we increase the number of items?

Does the backpack size affect the answer?

Try running the above tests again with a backpack size of 1 x N and with 4:0 x N.

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 6

15. Assume that you are organising a party for N people and have been given a list L of people

who, for social reasons, should not sit at the same table. Furthermore, assume that you have C

tables (that are infinitly large).

Write a function layout(N,C,L) that can give a table placement (ie. a number from 0 : : :C -1) for

each guest such that there will be no social mishaps.

For simplicity we assume that you have a unique number 0N-1 for each guest and that the

list of restrictions is of the form [(X,Y), ...] denoting guests X, Y that are not allowed to sit

together. Answer with a dictionary mapping each guest into a table assignment, if there are no

possible layouts of the guests you should answer False.

References:
1 Tensorflow:

https://www.tensorflow.org/

2 Pytorch:

https://pytorch.org/

https://github.com/pytorch

3 Keras:

https://keras.io/

https://github.com/keras-team

4 Theano:

http://deeplearning.net/software/theano/

https://github.com/Theano/Theano

Course Outcomes:

Upon completion of the course, the students should be able to:

1. Implement search algorithms (L3)

2. Solve Artificial intelligence problems (L3)

3. Design chatbot and virtual assistant (L6)

https://github.com/Theano/Theano

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 7

4. CO-PO ATTAINMENT:

CO- ATTAINMENT:

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 8

PO- ATTAINMENT:

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 9

5.EXPERIMENT SOURCE CODE AND OUTPUTS
EXPERIMENT NO: 1

AIM: Write a Program to Implement Breadth First Search using Python.

Python3 Program to print BFS traversal
from a given source vertex. BFS(int s)
traverses vertices reachable from s.
from collections import defaultdict

This class represents a directed graph
using adjacency list representation
class Graph:

 # Constructor
 def __init__(self):

 # default dictionary to store graph
 self.graph = defaultdict(list)

 # function to add an edge to graph
 def addEdge(self,u,v):
 self.graph[u].append(v)

 # Function to print a BFS of graph
 def BFS(self, s):

 # Mark all the vertices as not visited
 visited = [False] * (max(self.graph) + 1)

 # Create a queue for BFS
 queue = []

 # Mark the source node as
 # visited and enqueue it
 queue.append(s)
 visited[s] = True

 while queue:

 # Dequeue a vertex from
 # queue and print it
 s = queue.pop(0)
 print (s, end = " ")

 # Get all adjacent vertices of the
 # dequeued vertex s. If a adjacent
 # has not been visited, then mark it
 # visited and enqueue it
 for i in self.graph[s]:
 if visited[i] == False:
 queue.append(i)
 visited[i] = True

Driver code

Create a graph given in
the above diagram

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 10

g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)

print ("Following is Breadth First Traversal"
 " (starting from vertex 2)")
g.BFS(2)

Output:
Following is Breadth First Traversal (starting from vertex 2)

2 0 3 1

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 11

EXPERIMENT NO: 2

AIM: Write a Program to Implement Depth First Search using Python.
Python3 program to print DFS traversal
from a given given graph
from collections import defaultdict

This class represents a directed graph using
adjacency list representation

class Graph:

 # Constructor
 def __init__(self):

 # default dictionary to store graph
 self.graph = defaultdict(list)

 # function to add an edge to graph
 def addEdge(self, u, v):
 self.graph[u].append(v)

 # A function used by DFS
 def DFSUtil(self, v, visited):

 # Mark the current node as visited
 # and print it
 visited.add(v)
 print(v, end=' ')

 # Recur for all the vertices
 # adjacent to this vertex
 for neighbour in self.graph[v]:
 if neighbour not in visited:
 self.DFSUtil(neighbour, visited)

 # The function to do DFS traversal. It uses
 # recursive DFSUtil()
 def DFS(self, v):

 # Create a set to store visited vertices
 visited = set()

 # Call the recursive helper function
 # to print DFS traversal
 self.DFSUtil(v, visited)

Driver code

Create a graph given
in the above diagram
g = Graph()
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 12

g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)

print("Following is DFS from (starting from vertex 2)")
g.DFS(2)

Output:

Following is Depth First Traversal (starting from

vertex 2)

Following is Depth First Traversal (starting from vertex 2)

2 0 1 3

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 13

EXPERIMENT NO: 3

AIM: Write a Program to find the solution for travelling salesman Problem
Python3 program to implement traveling salesman
from sys import maxsize
from itertools import permutations
V = 4
def travellingSalesmanProblem(graph, s):
 vertex = []
 for i in range(V):
 if i != s:
 vertex.append(i)
 min_path = maxsize
 next_permutation=permutations(vertex)
 for i in next_permutation:
 current_pathweight = 0
 k = s
 for j in i:
 current_pathweight += graph[k][j]
 k = j
 current_pathweight += graph[k][s]
 min_path = min(min_path, current_pathweight)
 return min_path
if __name__ == "__main__":
 graph = [[0, 10, 15, 20], [10, 0, 35, 25],
 [15, 35, 0, 30], [20, 25, 30, 0]]
 s = 0
 print(travellingSalesmanProblem(graph, s))

Output 80

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 14

EXPERIMENT NO: 4

AIM: Write a program to implement Simulated Annealing Algorithm
simulated annealing search of a one-dimensional objective function

from numpy import asarray

from numpy import exp

from numpy.random import randn

from numpy.random import rand

from numpy.random import seed

from matplotlib import pyplot

objective function

def objective(x):

 return x[0]**2.0

simulated annealing algorithm

def simulated_annealing(objective, bounds, n_iterations, step_size, temp):

 # generate an initial point

 best = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 0])

 # evaluate the initial point

 best_eval = objective(best)

 # current working solution

 curr, curr_eval = best, best_eval

 scores = list()

 # run the algorithm

 for i in range(n_iterations):

 # take a step

 candidate = curr + randn(len(bounds)) * step_size

 # evaluate candidate point

 candidate_eval = objective(candidate)

 # check for new best solution

 if candidate_eval < best_eval:

 # store new best point

 best, best_eval = candidate, candidate_eval

 # keep track of scores

 scores.append(best_eval)

 # report progress

 print('>%d f(%s) = %.5f' % (i, best, best_eval))

 # difference between candidate and current point evaluation

 diff = candidate_eval - curr_eval

 # calculate temperature for current epoch

 t = temp / float(i + 1)

 # calculate metropolis acceptance criterion

 metropolis = exp(-diff / t)

 # check if we should keep the new point

 if diff < 0 or rand() < metropolis:

 # store the new current point

 curr, curr_eval = candidate, candidate_eval

 return [best, best_eval, scores]

seed the pseudorandom number generator

seed(1)

define range for input

bounds = asarray([[-5.0, 5.0]])

define the total iterations

n_iterations = 1000

define the maximum step size

step_size = 0.1

initial temperature

temp = 10

perform the simulated annealing search

best, score, scores = simulated_annealing(objective, bounds, n_iterations, step_size, temp)

print('Done!')

print('f(%s) = %f' % (best, score))

line plot of best scores

pyplot.plot(scores, '.-')

pyplot.xlabel('Improvement Number')

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 15

pyplot.ylabel('Evaluation f(x)')

pyplot.show()

output:
>34 f([-0.78753544]) = 0.62021

>35 f([-0.76914239]) = 0.59158

>37 f([-0.68574854]) = 0.47025

>39 f([-0.64797564]) = 0.41987

>40 f([-0.58914623]) = 0.34709

>41 f([-0.55446029]) = 0.30743

>42 f([-0.41775702]) = 0.17452

>43 f([-0.35038542]) = 0.12277

>50 f([-0.15799045]) = 0.02496

>66 f([-0.11089772]) = 0.01230

>67 f([-0.09238208]) = 0.00853

>72 f([-0.09145261]) = 0.00836

>75 f([-0.05129162]) = 0.00263

>93 f([-0.02854417]) = 0.00081

>144 f([0.00864136]) = 0.00007

>149 f([0.00753953]) = 0.00006

>167 f([-0.00640394]) = 0.00004

>225 f([-0.00044965]) = 0.00000

>503 f([-0.00036261]) = 0.00000

>512 f([0.00013605]) = 0.00000

Done!

f([0.00013605]) = 0.000000

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 16

EXPERIMENT NO: 4(B)

AIM: Write a program to implement Simulated Annealing Algorithm

convex unimodal optimization function
from numpy import arange
from matplotlib import pyplot

objective function
def objective(x):
 return x[0]**2.0

define range for input
r_min, r_max = -5.0, 5.0
sample input range uniformly at 0.1 increments
inputs = arange(r_min, r_max, 0.1)
compute targets
results = [objective([x]) for x in inputs]
create a line plot of input vs result
pyplot.plot(inputs, results)
define optimal input value
x_optima = 0.0
draw a vertical line at the optimal input
pyplot.axvline(x=x_optima, ls='--', color='red')
show the plot
pyplot.show()

output:

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 17

EXPERIMENT NO: 5

AIM: Write a program to find the solution for wampus world problem

AGENT.PY

class Agent:

 def __init__(self):

 self.__wumpusWorld = [

 ['','','P',''], # Rooms [1,1] to [4,1]

 ['','','',''], # Rooms [1,2] to [4,2]

 ['W','','',''], # Rooms [1,3] to [4,3]

 ['','','',''], # Rooms [1,4] to [4,4]

] # This is the wumpus world shown in the assignment question.

 # A different instance of the wumpus world will be used for evaluation.

 self.__curLoc = [1,1]

 self.__isAlive = True

 self.__hasExited = False

 def __FindIndicesForLocation(self,loc):

 x,y = loc

 i,j = y-1, x-1

 return i,j

 def __CheckForPitWumpus(self):

 ww = self.__wumpusWorld

 i,j = self.__FindIndicesForLocation(self.__curLoc)

 if 'P' in ww[i][j] or 'W' in ww[i][j]:

 print(ww[i][j])

 self.__isAlive = False

 print('Agent is DEAD.')

 return self.__isAlive

 def TakeAction(self,action): # The function takes an action and returns whether the Agent is

alive

 # after taking the action.

 validActions = ['Up','Down','Left','Right']

 assert action in validActions, 'Invalid Action.'

 if self.__isAlive == False:

 print('Action cannot be performed. Agent is DEAD. Location:{0}'.format(self.__curLoc))

 return False

 if self.__hasExited == True:

 print('Action cannot be performed. Agent has exited the Wumpus

world.'.format(self.__curLoc))

 return False

 index = validActions.index(action)

 validMoves = [[0,1],[0,-1],[-1,0],[1,0]]

 move = validMoves[index]

 newLoc = []

 for v, inc in zip(self.__curLoc,move):

 z = v + inc #increment location index

 z = 4 if z>4 else 1 if z<1 else z #Ensure that index is between 1 and 4

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 18

 newLoc.append(z)

 self.__curLoc = newLoc

 print('Action Taken: {0}, Current Location {1}'.format(action,self.__curLoc))

 if self.__curLoc[0]==4 and self.__curLoc[1]==4:

 self.__hasExited=True

 return self.__CheckForPitWumpus()

 def __FindAdjacentRooms(self):

 cLoc = self.__curLoc

 validMoves = [[0,1],[0,-1],[-1,0],[1,0]]

 adjRooms = []

 for vM in validMoves:

 room = []

 valid = True

 for v, inc in zip(cLoc,vM):

 z = v + inc

 if z<1 or z>4:

 valid = False

 break

 else:

 room.append(z)

 if valid==True:

 adjRooms.append(room)

 return adjRooms

 def PerceiveCurrentLocation(self): #This function perceives the current location.

 #It tells whether breeze and stench are present in the current location.

 breeze, stench = False, False

 ww = self.__wumpusWorld

 if self.__isAlive == False:

 print('Agent cannot perceive. Agent is DEAD. Location:{0}'.format(self.__curLoc))

 return [None,None]

 if self.__hasExited == True:

 print('Agent cannot perceive. Agent has exited the Wumpus

World.'.format(self.__curLoc))

 return [None,None]

 adjRooms = self.__FindAdjacentRooms()

 for room in adjRooms:

 i,j = self.__FindIndicesForLocation(room)

 if 'P' in ww[i][j]:

 breeze = True

 if 'W' in ww[i][j]:

 stench = True

 return [breeze,stench]

 def FindCurrentLocation(self):

 return self.__curLoc

def main():

 ag = Agent()

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 19

 print('curLoc',ag.FindCurrentLocation())

 print('Percept [breeze, stench] :',ag.PerceiveCurrentLocation())

 ag.TakeAction('Right')

 print('Percept',ag.PerceiveCurrentLocation())

 ag.TakeAction('Right')

 print('Percept',ag.PerceiveCurrentLocation())

 ag.TakeAction('Right')

 print('Percept',ag.PerceiveCurrentLocation())

 ag.TakeAction('Up')

 print('Percept',ag.PerceiveCurrentLocation())

 ag.TakeAction('Up')

 print('Percept',ag.PerceiveCurrentLocation())

 ag.TakeAction('Up')

 print('Percept',ag.PerceiveCurrentLocation())

if __name__=='__main__':

 main()

WAMPUS.PY

from Agent import * # See the Agent.py file

import copy

numberOfCalls=0

class KnowledgeBase:

 #clause[i]=-1 represents the presence of negative literal represented by i

 #clause[i]=1 represents the presence of positive literal represented by i

 #values 0 to 15 represents W(1,1) to W(4,4)

 #values 16 to 31 represents S(1,1) to S(4,4)

 #values 33 to 47 represents P(1,1) to P(4,4)

 #values 48 to 63 represents B(1,1) to B(4,4)

 def __init__(self):

 self.clauses= []

 #clauses for atleast 1 Wumpus and 1 Pit

 atleast1Wumpus= {}

 atleast1Pit = {}

 for i in range (16):

 atleast1Wumpus[i]=1

 atleast1Pit[i+32]=1

 self.clauses.append(atleast1Wumpus)

 self.clauses.append(atleast1Pit)

 #clauses for atmost 1 Wumpus and 1 Pit

 for i in range(16):

 for j in range(i+1, 16):

 atmost1Wumpus={}

 atmost1Pit={}

 atmost1Wumpus[i]=-1

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 20

 atmost1Wumpus[j]=-1

 atmost1Pit[i+32]=-1

 atmost1Pit[j+32]=-1

 self.clauses.append(atmost1Wumpus)

 self.clauses.append(atmost1Pit)

 #Stench-Wumpus bijection clauses

 for i in range(16):

 stenchWumpusClause={}

 stenchWumpusClause[i+16]=-1

 if (i+4)//4 < 4:

 stenchWumpusClause[i+4]=1

 stenchClause={}

 stenchClause[i+16]=1

 stenchClause[i+4]=-1

 self.clauses.append(stenchClause)

 if(i-4)//4 >= 0:

 stenchWumpusClause[i-4]=1

 stenchClause={}

 stenchClause[i+16]=1

 stenchClause[i-4]=-1

 self.clauses.append(stenchClause)

 if i//4 == (i+1)//4:

 stenchWumpusClause[i+1]=1

 stenchClause={}

 stenchClause[i+16]=1

 stenchClause[i+1]=-1

 self.clauses.append(stenchClause)

 if i//4 == (i-1)//4:

 stenchWumpusClause[i-1]=1

 stenchClause={}

 stenchClause[i+16]=1

 stenchClause[i-1]=-1

 self.clauses.append(stenchClause)

 self.clauses.append(stenchWumpusClause)

 #Breeze-Pit Bijection Clauses

 for i in range(16):

 breezePitClause={}

 breezePitClause[i+48]=-1

 if(i+4)//4 < 4:

 breezePitClause[i+4+32]=1

 pitClause={}

 pitClause[i+48]=1

 pitClause[i+4+32]=-1

 self.clauses.append(pitClause)

 if(i-4)//4 >= 0:

 breezePitClause[i-4+32]=1

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 21

 pitClause={}

 pitClause[i+48]=1

 pitClause[i-4+32]=-1

 self.clauses.append(pitClause)

 if i//4 == (i+1)//4:

 breezePitClause[i+1+32]=1

 pitClause={}

 pitClause[i+48]=1

 pitClause[i+1+32]=-1

 self.clauses.append(pitClause)

 if i//4 == (i-1)//4:

 breezePitClause[i-1+32]=1

 pitClause={}

 pitClause[i+48]=1

 pitClause[i-1+32]=-1

 self.clauses.append(pitClause)

 self.clauses.append(breezePitClause)

 #No wumpus and pit at [1, 1]

 noWumpusStart={0:-1}

 noPitStart={32:-1}

 self.clauses.append(noWumpusStart)

 self.clauses.append(noPitStart)

 def AddClause(self, clause): #adding a clause to knowledge base

 self.clauses.append(clause)

 def getclauses(self): #return Wumpus clauses

 return copy.deepcopy(self.clauses)

def FindPureSymbol(clauses, symbols):

 for symbol in symbols:

 positive=0

 negative=0

 for clause in clauses:

 if symbol in clause:

 if clause[symbol]==1:

 positive= positive+1

 else:

 negative= negative+1

 if negative==0:

 return symbol, 1

 elif positive==0:

 return symbol, -1

 return -1, 0

def FindUnitClause(clauses):

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 22

 for clause in clauses:

 if len(clause)==1:

 for symbol in clause:

 return symbol, clause[symbol]

 return -1, 0

def selectSymbol(clauses, symbols):

 count={}

 positive={}

 negative={}

 for clause in clauses:

 for literal in clause:

 if literal not in count:

 count[literal]=0

 positive[literal]=0

 negative[literal]=0

 count[literal]= count[literal]+1

 if clause[literal]==1:

 positive[literal]=positive[literal]+1

 else:

 negative[literal]=negative[literal]+1

 maxLiteral= list(symbols.keys())[0]

 maxCount=0

 for literal in count:

 if count[literal]>maxCount:

 maxLiteral= literal

 maxCount= count[literal]

 if positive[maxLiteral]>negative[maxLiteral]:

 return maxLiteral, 1

 return maxLiteral, -1

def DPLL(clauses, symbols, model):

 global numberOfCalls

 numberOfCalls= numberOfCalls+1

 removeClauses=[]

 for clause in clauses:

 valueUnknown=True

 deleteLiterals=[]

 for literal in clause.keys():

 if literal in model.keys():

 if model[literal]==clause[literal]: #clause is true

 removeClauses.append(clause)

 valueUnknown=False

 break

 else:

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 23

 deleteLiterals.append(literal)

 for literal in deleteLiterals:

 del clause[literal]

 if valueUnknown==True and not bool(clause): #clause is false

 return False

 clauses= [x for x in clauses if x not in removeClauses]

 if len(clauses)==0: #all clauses are true

 return True

 pureSymbol, value = FindPureSymbol(clauses, symbols)

 if value!=0:

 del symbols[pureSymbol]

 model[pureSymbol]=value

 return DPLL(clauses, symbols, model)

 unitSymbol, value = FindUnitClause(clauses)

 if value!=0:

 del symbols[unitSymbol]

 model[unitSymbol]=value

 return DPLL(clauses, symbols, model)

 symbol, value= selectSymbol(clauses, symbols)

 del symbols[symbol]

 model[symbol]= value

 if DPLL(copy.deepcopy(clauses), copy.deepcopy(symbols),

copy.deepcopy(model)):

 return True

 model[symbol]= -value

 return DPLL(clauses, symbols, model)

def DPLLSatisfiable(clauses):

 symbols={}

 for clause in clauses:

 for literal in clause:

 symbols[literal]=True

 model={}

 return DPLL(clauses, symbols, model)

def MoveToUnvisited(ag, visited, goalLoc, dfsVisited): #dfs to new safe room

 curPos=ag.FindCurrentLocation()

 curLoc= 4*(curPos[0]-1)+curPos[1]-1

 if(curLoc==goalLoc):

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 24

 return True

 dfsVisited[curLoc]=True

 if curPos[1]+1 <=4 and (visited[curLoc+1]==True or (curLoc+1)==goalLoc)

and dfsVisited[curLoc+1]==False:

 ag.TakeAction('Up')

 roomReachable= MoveToUnvisited(ag, visited, goalLoc, dfsVisited)

 if roomReachable:

 return True

 ag.TakeAction('Down')

 if curPos[0]+1 <=4 and (visited[curLoc+4]==True or (curLoc+4)==goalLoc)

and dfsVisited[curLoc+4]==False:

 ag.TakeAction('Right')

 roomReachable= MoveToUnvisited(ag, visited, goalLoc, dfsVisited)

 if roomReachable:

 return True

 ag.TakeAction('Left')

 if curPos[0]-1 >0 and (visited[curLoc-4]==True or (curLoc-4)==goalLoc) and

dfsVisited[curLoc-4]==False:

 ag.TakeAction('Left')

 roomReachable= MoveToUnvisited(ag, visited, goalLoc, dfsVisited)

 if roomReachable:

 return True

 ag.TakeAction('Right')

 if curPos[1]-1 >0 and (visited[curLoc-1]==True or (curLoc-1)==goalLoc) and

dfsVisited[curLoc-1]==False:

 ag.TakeAction('Down')

 roomReachable= MoveToUnvisited(ag, visited, goalLoc, dfsVisited)

 if roomReachable:

 return True

 ag.TakeAction('Up')

 return False

def ExitWumpusWorld(ag, kb):

 visited = [False for i in range(16)] #Rooms Visited till now

 while(ag.FindCurrentLocation()!=[4, 4]):

 percept= ag.PerceiveCurrentLocation()

 curPos = ag.FindCurrentLocation()

 curLocIndex= 4*(curPos[0]-1)+ curPos[1]-1

 visited[curLocIndex]=True

 breezeClause={}

 stenchClause={}

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 25

 if percept[0]==True: #breeze

 breezeClause[curLocIndex+48]=1

 else:

 breezeClause[curLocIndex+48]=-1

 kb.AddClause(breezeClause) #presence/absence of breeze

 if percept[1]==True: #stench

 stenchClause[curLocIndex+16]=1

 else:

 stenchClause[curLocIndex+16]=-1

 kb.AddClause(stenchClause) #presence/absence of stench

 for newLoc in range(16):

 if visited[newLoc]==False:

 tempclauses= kb.getclauses()

 checkClause={newLoc:1, newLoc+32:1}

 tempclauses.append(checkClause)

 if DPLLSatisfiable(tempclauses)==False:

 #Room is safe

 noWumpus={newLoc:-1}

 noPit={newLoc+32:-1}

 kb.AddClause(noWumpus)

 kb.AddClause(noPit)

 dfsVisited = [False for i in range(16)]

 roomReachable=MoveToUnvisited(ag, visited, newLoc,

dfsVisited) #dfs to new safe Room

 if roomReachable:

 break

def main():

 ag = Agent()

 kb= KnowledgeBase()

 print('Start Location: {0}'.format(ag.FindCurrentLocation()))

 ExitWumpusWorld(ag, kb)

 print('{0} reached. Exiting the Wumpus

World.'.format(ag.FindCurrentLocation()))

 print('Total number of times DPLL function is called:

{0}'.format(numberOfCalls))

if __name__=='__main__':

 main()

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 26

EXPERIMENT NO: 6

AIM: Write a program to implement 8 puzzle problem

class Solution:

 def solve(self, board):

 dict = {}

 flatten = []

 for i in range(len(board)):

 flatten += board[i]

 flatten = tuple(flatten)

 dict[flatten] = 0

 if flatten == (0, 1, 2, 3, 4, 5, 6, 7, 8):

 return 0

 return self.get_paths(dict)

 def get_paths(self, dict):

 cnt = 0

 while True:

 current_nodes = [x for x in dict if dict[x] == cnt]

 if len(current_nodes) == 0:

 return -1

 for node in current_nodes:

 next_moves = self.find_next(node)

 for move in next_moves:

 if move not in dict:

 dict[move] = cnt + 1

 if move == (0, 1, 2, 3, 4, 5, 6, 7, 8):

 return cnt + 1

 cnt += 1

 def find_next(self, node):

 moves = {

 0: [1, 3],

 1: [0, 2, 4],

 2: [1, 5],

 3: [0, 4, 6],

 4: [1, 3, 5, 7],

 5: [2, 4, 8],

 6: [3, 7],

 7: [4, 6, 8],

 8: [5, 7],

 }

 results = []

 pos_0 = node.index(0)

 for move in moves[pos_0]:

 new_node = list(node)

 new_node[move], new_node[pos_0] = new_node[pos_0],

new_node[move]

 results.append(tuple(new_node))

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 27

 return results

ob = Solution()

matrix = [

 [3, 1, 2],

 [4, 7, 5],

 [6, 8, 0]

]

print(ob.solve(matrix))

Input

matrix = [

[3, 1, 2],

[4, 7, 5],

[6, 8, 0]]

Output

then the output will be 4

.

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 28

EXPERIMENT NO: 7

AIM: Write a program to implement Towers of Hanoi problem
Creating a recursive function

def tower_of_hanoi(disks, source, auxiliary, target):

 if(disks == 1):

 print('Move disk 1 from rod {} to rod {}.'.format(source, target))

 return

 # function call itself

 tower_of_hanoi(disks - 1, source, target, auxiliary)

 print('Move disk {} from rod {} to rod {}.'.format(disks, source, target))

 tower_of_hanoi(disks - 1, auxiliary, source, target)

 disks = int(input('Enter the number of disks: '))

We are referring source as A, auxiliary as B, and target as C

tower_of_hanoi(disks, 'A', 'B', 'C') # Calling the function

Output

Enter the number of disks: 3

Move disk 1 from rod A to rod C.

Move disk 2 from rod A to rod B.

Move disk 1 from rod C to rod B.

Move disk 3 from rod A to rod C.

Move disk 1 from rod B to rod A.

Move disk 2 from rod B to rod C.

Move disk 1 from rod A to rod C.

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 29

EXPERIMENT NO: 8

AIM: Write a program to implement A* Algorithm

from queue import PriorityQueue

#Creating Base Class
class State(object):
 def __init__(self, value, parent, start = 0, goal = 0):
 self.children = []
 self.parent = parent
 self.value = value
 self.dist = 0
 if parent:
 self.start = parent.start
 self.goal = parent.goal
 self.path = parent.path[:]
 self.path.append(value)

 else:
 self.path = [value]
 self.start = start
 self.goal = goal

 def GetDistance(self):
 pass
 def CreateChildren(self):
 pass

Creating subclass
class State_String(State):
 def __init__(self, value, parent, start = 0, goal = 0):
 super(State_String, self).__init__(value, parent, start, goal)
 self.dist = self.GetDistance()

 def GetDistance(self):
 if self.value == self.goal:
 return 0
 dist = 0
 for i in range(len(self.goal)):
 letter = self.goal[i]
 dist += abs(i - self.value.index(letter))
 return dist

 def CreateChildren(self):
 if not self.children:
 for i in range(len(self.goal)-1):
 val = self.value
 val = val[:i] + val[i+1] + val[i] + val[i+2:]
 child = State_String(val, self)
 self.children.append(child)

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 30

Creating a class that hold the final magic
class A_Star_Solver:
 def __init__(self, start, goal):
 self.path = []
 self.vistedQueue =[]
 self.priorityQueue = PriorityQueue()
 self.start = start
 self.goal = goal

 def Solve(self):
 startState = State_String(self.start,0,self.start,self.goal)

 count = 0
 self.priorityQueue.put((0,count, startState))
 while(not self.path and self.priorityQueue.qsize()):
 closesetChild = self.priorityQueue.get()[2]
 closesetChild.CreateChildren()
 self.vistedQueue.append(closesetChild.value)
 for child in closesetChild.children:
 if child.value not in self.vistedQueue:
 count += 1
 if not child.dist:
 self.path = child.path
 break
 self.priorityQueue.put((child.dist,count,child))
 if not self.path:
 print("Goal Of is not possible !" + self.goal)
 return self.path

Calling all the existing stuffs
if __name__ == "__main__":
 start1 = "path"
 goal1 = "hpta"
 print("Starting....")
 a = A_Star_Solver(start1,goal1)
 a.Solve()
 for i in range(len(a.path)):
 print("{0}){1}".format(i,a.path[i]))

output:
Starting....

0)path

1)ptah

2)ptha

3)phta

4)hpta

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 31

EXPERIMENT NO: 9

AIM:. Write a program to implement Hill Climbing Algorithm
import random

def randomSolution(tsp):

 cities = list(range(len(tsp)))

 solution = []

 for i in range(len(tsp)):

 randomCity = cities[random.randint(0, len(cities) - 1)]

 solution.append(randomCity)

 cities.remove(randomCity)

 return solution

def routeLength(tsp, solution):

 routeLength = 0

 for i in range(len(solution)):

 routeLength += tsp[solution[i - 1]][solution[i]]

 return routeLength

def getNeighbours(solution):

 neighbours = []

 for i in range(len(solution)):

 for j in range(i + 1, len(solution)):

 neighbour = solution.copy()

 neighbour[i] = solution[j]

 neighbour[j] = solution[i]

 neighbours.append(neighbour)

 return neighbours

def getBestNeighbour(tsp, neighbours):

 bestRouteLength = routeLength(tsp, neighbours[0])

 bestNeighbour = neighbours[0]

 for neighbour in neighbours:

 currentRouteLength = routeLength(tsp, neighbour)

 if currentRouteLength < bestRouteLength:

 bestRouteLength = currentRouteLength

 bestNeighbour = neighbour

 return bestNeighbour, bestRouteLength

def hillClimbing(tsp):

 currentSolution = randomSolution(tsp)

 currentRouteLength = routeLength(tsp, currentSolution)

 neighbours = getNeighbours(currentSolution)

 bestNeighbour, bestNeighbourRouteLength = getBestNeighbour(tsp, neighbours)

 while bestNeighbourRouteLength < currentRouteLength:

 currentSolution = bestNeighbour

 currentRouteLength = bestNeighbourRouteLength

 neighbours = getNeighbours(currentSolution)

 bestNeighbour, bestNeighbourRouteLength = getBestNeighbour(tsp, neighbours)

 return currentSolution, currentRouteLength

def main():

 tsp = [

 [0, 400, 500, 300],

 [400, 0, 300, 500],

 [500, 300, 0, 400],

 [300, 500, 400, 0]

]

 print(hillClimbing(tsp))

if __name__ == "__main__":

 main()

output:
([0, 1, 2, 3], 1400)

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 32

EXPERIMENT NO: 10

AIM: Build a bot which provides all the information related to you in the college.

def greet(bot_name, birth_year):

 print("Hello! My name is {0}.".format(bot_name))

 print("I was created in {0}.".format(birth_year))

def remind_name():

 print('Please, remind me your name.')

 name = input()

 print("What a great name you have, {0}!".format(name))

def guess_age():

 print('Let me guess your age.')

 print('Enter remainders of dividing your age by 3, 5 and 7.')

 rem3 = int(input())

 rem5 = int(input())

 rem7 = int(input())

 age = (rem3 * 70 + rem5 * 21 + rem7 * 15) % 105

 print("Your age is {0}; that's a good time to start programming!".format(age))

def count():

 print('Now I will prove to you that I can count to any number you want.')

 num = int(input())

 counter = 0

 while counter <= num:

 print("{0} !".format(counter))

 counter += 1

def test():

 print("Let's test your programming knowledge.")

 print("Why do we use methods?")

 print("1. To repeat a statement multiple times.")

 print("2. To decompose a program into several small subroutines.")

 print("3. To determine the execution time of a program.")

 print("4. To interrupt the execution of a program.")

 answer = 2

 guess = int(input())

 while guess != answer:

 print("Please, try again.")

 guess = int(input())

 print('Completed, have a nice day!')

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 33

 print('.................................')

 print('.................................')

 print('.................................')

def end():

 print('Congratulations, have a nice day!')

 print('.................................')

 print('.................................')

 print('.................................')

 input()

greet('Sbot', '2021') # change it as you need

remind_name()

guess_age()

count()

test()

end()

OUTPUT:
Hello! My name is Sbot.

I was created in 2021.

Please, remind me your name.

sampath

What a great name you have, sampath!

Let me guess your age.

Enter remainders of dividing your age by 3, 5 and 7.

5

3

Your age is 28; that's a good time to start programming!

Now I will prove to you that I can count to any number you want.

6

0 !

1 !

2 !

3 !

4 !

5 !

6 !

Let's test your programming knowledge.

Why do we use methods?

1. To repeat a statement multiple times.

2. To decompose a program into several small subroutines.

3. To determine the execution time of a program.

4. To interrupt the execution of a program.

2

Completed, have a nice day!

.................................

.................................

.................................

Congratulations, have a nice day!

.................................

.................................

.................................

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 34

EXPERIMENT NO: 11

AIM: Build a virtual assistant for Wikipedia using Wolfram Alpha and Python

Python program to
demonstrate creation of an
assistant using wolf ram API

import wolframalpha

Taking input from user
question = input('Question: ')

App id obtained by the above steps
app_id = ‘Your app_id’

Instance of wolf ram alpha
client class
client = wolframalpha.Client(app_id)

Stores the response from
wolf ram alpha
res = client.query(question)

Includes only text from the response
answer = next(res.results).text

print(answer)

output:

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 35

EXPERIMENT NO: 12

AIM:. WRITE A PROGRAM USING function that counts the number of times a string

occurs in another string:

A Naive recursive Python program
to find the number of times the
second string occurs in the first
string, whether continuous or
discontinuous

Recursive function to find the
number of times the second string
occurs in the first string,
whether continuous or discontinuous
def count(a, b, m, n):

 # If both first and second string
 # is empty, or if second string
 # is empty, return 1
 if ((m == 0 and n == 0) or n == 0):
 return 1

 # If only first string is empty
 # and second string is not empty,
 # return 0
 if (m == 0):
 return 0

 # If last characters are same
 # Recur for remaining strings by
 # 1. considering last characters
 # of both strings
 # 2. ignoring last character
 # of first string
 if (a[m - 1] == b[n - 1]):
 return (count(a, b, m - 1, n - 1) +
 count(a, b, m - 1, n))
 else:

 # If last characters are different,
 # ignore last char of first string
 # and recur for remaining string
 return count(a, b, m - 1, n)

Driver code
a = "GeeksforGeeks"
b = "Gks"

print(count(a, b, len(a),len(b)))

Output:
4

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 36

EXPERIMENT NO: 13

AIM: Write a higher-order function count that counts the number of elements in a list that

satisfy a given test IN PYTHON
from functools import reduce

def getCount(listOfElems, cond = None):

 'Returns the count of elements in list that satisfies the given condition'

 if cond:

 count = sum(cond(elem) for elem in listOfElems)

 else:

 count = len(listOfElems)

 return count

def main():

 # List of numbers

 listOfElems = [11, 22, 33, 45, 66, 77, 88, 99, 101]

 print('**** Use map() & sum() to count elements in a list that satisfy certain conditions

****')

 print('** Example 1 **')

 # Count odd numbers in the list

 count = sum(map(lambda x : x%2 == 1, listOfElems))

 print('Count of odd numbers in a list : ', count)

 print('** Example 1 : Explanation **')

 # Get a map object by applying given lambda to each element in list

 mapObj = map(lambda x : x%2 == 1, listOfElems)

 print('Contents of map object : ', list(mapObj))

 print('** Example 2**')

 # Count even numbers in the list

 count = sum(map(lambda x : x%2 == 0, listOfElems))

 print('Count of even numbers in a list : ', count)

 print('** Example 3**')

 # count numbers in the list which are greater than 5

 count = sum(map(lambda x : x>5, listOfElems))

 print('Count of numbers in a list which are greater than 5: ', count)

 print('**** Using sum() & Generator expression to count elements in list based on

conditions ****')

 # count numbers in the list which are greater than 5

 count = getCount(listOfElems, lambda x : x>5)

 print('Count of numbers in a list which are greater than 5: ', count)

 # count numbers in the list which are greater than 5 but less than 20

 count = getCount(listOfElems, lambda x : x>5 and x < 20)

 print('Count of numbers in a list which are greater than 5 but less than 20 : ', count)

 # Get total number of elements in the list

 count = getCount(listOfElems)

 print('Total Number of elements in List: ', count)

 print('**** Use List comprehension to count elements in list based on conditions ****')

 # count numbers in the list which are greater than 5

 count = len([elem for elem in listOfElems if elem > 5])

 print('Count of numbers in a list which are greater than 5: ', count)

 print('**** Use reduce() function to count elements in list based on conditions ****')

 # count numbers in the list which are greater than 5

 count = reduce(lambda default, elem: default + (elem > 5), listOfElems, 0)

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 37

 print('Count of numbers in a list which are greater than 5: ', count)

if __name__ == '__main__':

 main()

output:
**** Use map() & sum() to count elements in a list that satisfy certain

conditions ****

** Example 1 **

Count of odd numbers in a list : 6

** Example 1 : Explanation **

Contents of map object : [True, False, True, True, False, True, False,

True, True]

** Example 2**

Count of even numbers in a list : 3

** Example 3**

Count of numbers in a list which are greater than 5: 9

**** Using sum() & Generator expression to count elements in list based

on conditions ****

Count of numbers in a list which are greater than 5: 9

Count of numbers in a list which are greater than 5 but less than 20 :

1

Total Number of elements in List: 9

**** Use List comprehension to count elements in list based on

conditions ****

Count of numbers in a list which are greater than 5: 9

**** Use reduce() function to count elements in list based on

conditions ****

Count of numbers in a list which are greater than 5: 9

PREPARED BY: O. SAMPATH., ASSISTANT PROFESSOR – SVREC:: NANDYAL Page 38

14.Write a function that allows you to generate random problem instances for the knapsack

program USING PYTHON
def knapSack(W, wt, val, n):

 K = [[0 for x in range(W + 1)] for x in range(n + 1)]

 # Build table K[][] in bottom up manner

 for i in range(n + 1):

 for w in range(W + 1):

 if i == 0 or w == 0:

 K[i][w] = 0

 elif wt[i-1] <= w:

 K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w])

 else:

 K[i][w] = K[i-1][w]

 return K[n][W]

Driver program to test above function

val = [10,12,14,16,18,20,22]
wt = [10, 20, 30]

W = 50

n = len(val)

print(knapSack(W, wt, val, n))

output:

220

	To produce Industry ready Software Engineers to meet the challenges of 21st Century.
	 Impart core knowledge and necessary skills in Computer Science and Engineering through innovative teaching and learning methodology.
	 Inculcate critical thinking, ethics, lifelong learning and creativity needed for industry and society.
	 Cultivate the students with all-round competencies, for career, higher education and self-employability.
	2. PO, PEO& PSO Statements
	Program Educational Objectives (PEOs):
	Program Specific Outcomes (PSOs):
	Input
	Output

