
1

SVR ENGINEERING COLLEGE

AYYALURUMETTA (V), NANDYAL, KURNOOL

DT.ANDHRA PRADESH – 518502

2021 – 2022

LABORATORY MANUAL

OF

 Advanced Data Structures and Algorithms Lab

(20A05301P)

(R-20 REGULATION)

Prepared by

Dr. Rajesh Chandra

ProfessorFor

B.Tech II YEAR – I SEM. (CSE)

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

SVR ENGINEERING COLLEGE
(AFFILIATED TO JNTUA ANANTHAPURAM- AICITE-INDIA)

AYYALURUMETTA (V), NANDYAL, KURNOOL

DT.ANDHRA PRADESH – 518502

2

LAB MANUAL CONTENT

 Advanced Data Structures and Algorithms Lab

(20A05301P)

1. Institute Vision & Mission, Department Vision & Mission

2. PO, PEO& PSO Statements.

3. List of Experiments

4. CO-PO Attainment

5. Experiment Code and Outputs

1. Institute Vision & Mission, Department Vision & Mission

Institute Vision:

To produce Competent Engineering Graduates & Managers with a

strongbase of Technical & Managerial Knowledge and the Complementary

Skills needed to be Successful Professional Engineers & Managers.
Institute Mission:

To fulfill the vision by imparting Quality Technical & Management

Education to the Aspiring Students, by creating Effective

Teaching/Learning Environment and providing State – of the – Art

Infrastructure and Resources.

Department Vision:

To produce Industry ready Software Engineers to meet the

challenges of 21st Century.

Department Mission:

 Impart core knowledge and necessary skills in Computer Science and

Engineering through innovative teaching and learning methodology.

 Inculcate critical thinking, ethics, lifelong learning and creativity needed

for industry and society.

 Cultivate the students with all-round competencies, for career, higher

education and self-employability.

3

2. PO, PEO& PSO Statements

PROGRAMME OUTCOMES (POs)

PO-1: Engineering knowledge - Apply the knowledge of mathematics, science,

engineering fundamentals of Computer Science& Engineering to solve complex real-

life engineering problems related to CSE.

PO-2: Problem analysis - Identify, formulate, review research literature, and analyze

complex engineering problems related to CSE and reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering sciences.

PO-3: Design/development of solutions - Design solutions for complex engineering

problems related to CSE and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety,

cultural, societal and environmental considerations.

PO-4: Conduct investigations of complex problems - Use research-based

knowledge and research methods, including design of experiments, analysis and

interpretation of data and synthesis of the information to provide valid conclusions.

PO-5: Modern tool usage - Select/Create and apply appropriate techniques,

resources andmodern engineering and IT tools and technologies for rapidly changing

computing needs, including prediction and modeling to complex engineering

activities, with an understanding of the limitations.

PO-6: The engineer and society - Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the CSE professional engineering practice.

PO-7: Environment and Sustainability - Understand the impact of the CSE

professional engineering solutions in societal and environmental contexts and

demonstrate the knowledge of, and need for sustainable development.

PO-8: Ethics - Apply ethical principles and commit to professional ethics and

responsibilities and norms of the relevant engineering practices.

PO-9: Individual and team work - Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO-10: Communication - Communicate effectively on complex engineering activities

with the engineering community and with the society-at-large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, give and receive clear instructions.

PO-11: Project management and finance - Demonstrate knowledge and

understanding ofthe engineering and management principles and apply these to

one’s own work, as amember and leader in a team, to manage projects and in

multidisciplinary environments. PO-12: Life-long learning - Recognize the need for

and have the preparation and ability toengage in independent and life-long learning

in the broadcast context of technologicalchanges.

4

Program Educational Objectives (PEOs):

PEO 1:Graduates will be prepared for analyzing, designing, developing and testing the

software solutions and products with creativity and sustainability.

PEO 2: Graduates will be skilled in the use of modern tools for critical problem

solvingandanalyzing industrial and societal requirements.

PEO 3:Graduates will be prepared with managerial and leadership skills for career

andstarting up own firms.

Program Specific Outcomes (PSOs):

PSO 1:Develop creative solutions by adapting emerging technologies / tools for real

timeapplications.

PSO 2: Apply the acquired knowledge to develop software solutions and innovative

mobileapps for various automation applications

2.1 Subject Time Table

SVR ENGINEERING COLLEGE::NANDYAL

DEPARTMENT OF CSE

Dr. Rajesh Chandra II-I

Day/

Time
9:30 AM 10:20 AM

11:30

AM

12:20

PM-

LU
N

C
H

 B
R

EA
K

02:00

PM

02:50

PM

03:40

PM

 10:20

AM
11:10AM

12:20

PM

01:10

PM

02:50

PM

03:40

PM

04:30

PM

MON

TUE

WED ADSA

THU

FRI

SAT

5

LIST OF EXPERIMENTS (SYLLABUS)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B.Tech – II-I Sem

(20A05301P) Advanced Data Structures and Algorithms Lab

Course Objectives:

 Learn data structures for various applications.

 Implement different operations of data structures by optimizing the performance.

 Develop applications using Greedy, Divide and Conquer, dynamic programming.

 Implement applications for backtracking algorithms using relevant data structures.

Course Outcomes(CO):

 Understand and apply data structure operations.

 Understand and apply non-linear data structure operations.

 Apply Greedy, divide and conquer algorithms.

 Develop dynamic programming algorithms for various real-time applications.

 Illustrate and apply backtracking algorithms, further able to understand non-deterministic

algorithms.

List of Experiments:

1. Write a program to implement the following operations on Binary Search Tree:

a) Insert b) Delete c) Search d) Display

2. Write a program to perform a Binary Search for a given set of integer values.

3. Write a program to implement Splay trees.

4. Write a program to implement Merge sort for the given list of integer values.

5. Write a program to implement Quicksort for the given list of integer values.

6. Write a program to find the solution for the knapsack problem using the greedy method.

7. Write a program to find minimum cost spanning tree using Prim’s algorithm

8. Write a program to find minimum cost spanning tree using Kruskal’s algorithm

9. Write a program to find a single source shortest path for a given graph.

10. Write a program to find the solution for job sequencing with deadlines problems.

6

11. Write a program to find the solution for a 0-1 knapsack problem using dynamic programming.

12. Write a program to solve Sum of subsets problem for a given set of distinct numbers using

backtracking.

13. ImplementNQueen'sproblemusingBackTrackin

7

1. Write a program to implement the following operations on Binary Search Tree:

a) Insert b) Delete c) Search d) Display

Binary Search Tree operations in Python

Create a node

class Node:

def init (self, key):

self.key = key

self.left = None

self.right = None

Inorder traversal

def inorder(root):

If root is not None:

Traverse left

inorder(root.left)

Traverse root

print(str(root.key) + "->", end=' ')

Traverse right

inorder(root.right)

Insert a node

def insert(node, key):

Return a new node if the tree is empty

if node is None:

return Node(key)

Traverse to the right place and insert the node

if key < node.key:

node.left = insert(node.left, key)

else:

node.right = insert(node.right, key)

return node

Find the inorder successor

def minValueNode(node):

current = node

Find the leftmost leaf

while(current.left is not None):

current = current.left

return current

Deleting a node

def deleteNode(root, key):

Return if the tree is empty

if root is None:

return

root# Find

the node to be deleted

if key < root.key:

8

root.left = deleteNode(root.left, key)

elif(key > root.key):

root.right = deleteNode(root.right, key)

else:
If the node is with only one child or no child

if root.left is None:

temp = root.right

root = None

return temp

elif root.right is None:

temp = root.left

root = None

return temp

If the node has two children,

place the inorder successor in position of the node to be deleted

temp = minValueNode(root.right)

root.key = temp.key

Delete the inorder successor

root.right = deleteNode(root.right, temp.key)

return root

root = None

root = insert(root, 8)

root = insert(root, 3)

root = insert(root, 1)

root = insert(root, 6)

root = insert(root, 7)

root = insert(root, 10)

root = insert(root, 14)

root = insert(root, 4)

print("Inorder traversal: ", end=' ')

inorder(root)

print("\nDelete 10")

root = deleteNode(root, 10)

print("Inorder traversal: ", end=' ')

inorder(root)

OUTPUT

Inorder traversal: 1-> 3-> 4-> 6-> 7-> 8-> 10-> 14->

Delete 10

Inorder traversal: 1-> 3-> 4-> 6-> 7-> 8-> 14->

** Process exited - Return Code: 0 **

Press Enter to exit terminal

9

2. Write a program to perform a Binary Search for a given set of integer values.

Binary Search in python

def binarySearch(array, x, low, high):

Repeat until the pointers low and high meet each other

while low <= high:

mid = low + (high - low)//2

if array[mid] == x:

return mid

elif array[mid] < x:

low = mid + 1

else:

return -1

high = mid - 1

array = [3, 4, 5, 6, 7, 8, 9]

x = 4

result = binarySearch(array, x, 0, len(array)-1)

if result != -1:

print("Element is present at index " + str(result))

else:

print("Not found")

OUTPUT

Element is present at index 1

** Process exited - Return Code: 0 **

Press Enter to exit terminal

10

3. Write a program to implement Splay trees.

class Node:

def init (self, data):
self.data = data

self.parent = None

self.left = None

self.right = None

class SplayTree:

def init (self):
self.root = None

def maximum(self, x):

while x.right != None:

x = x.right

return x

def left_rotate(self, x):

y = x.right
x.right = y.left

if y.left != None:

y.left.parent = x

y.parent = x.parent

if x.parent == None: #x is root

self.root = y

elif x == x.parent.left: #x is left child

x.parent.left = y

else: #x is right child
x.parent.right = y

y.left = x

x.parent = y

def right_rotate(self, x):

y = x.left
x.left = y.right

if y.right != None:

y.right.parent = x

y.parent = x.parent

if x.parent == None: #x is root

self.root = y

elif x == x.parent.right: #x is right child

x.parent.right = y

else: #x is left child

x.parent.left = y

y.right = x

x.parent = y

def splay(self, n):

while n.parent != None: #node is not root

if n.parent == self.root: #node is child of root, one rotation

11

if n == n.parent.left:

self.right_rotate(n.parent)

else:

else:

self.left_rotate(n.parent)

p = n.parent

g = p.parent #grandparent

if n.parent.left == n and p.parent.left == p: #both are left children

self.right_rotate(g)

self.right_rotate(p)
elif n.parent.right == n and p.parent.right == p: #both are right children

self.left_rotate(g)

self.left_rotate(p)

elif n.parent.right == n and p.parent.left == p:

self.left_rotate(p)

self.right_rotate(g)

elif n.parent.left == n and p.parent.right == p:
self.right_rotate(p)

self.left_rotate(g)

def insert(self, n):

y = None

temp = self.root

while temp != None:

y = temp

if n.data < temp.data:

temp = temp.left

else:

temp = temp.right

n.parent = y

if y == None: #newly added node is root

self.root = n

elif n.data < y.data:

y.left = n

else:

def search(self, n, x):

if x == n.data:

y.right = n

self.splay(n)

self.splay(n)

return n

elif x < n.data:
return self.search(n.left, x)

elif x > n.data:

return self.search(n.right, x)

else:

return None

12

def delete(self, n):

self.splay(n)

left_subtree = SplayTree()

left_subtree.root = self.root.left

if left_subtree.root != None:

left_subtree.root.parent = None

right_subtree = SplayTree()

right_subtree.root = self.root.right

if right_subtree.root != None:

right_subtree.root.parent = None

if left_subtree.root != None:

m = left_subtree.maximum(left_subtree.root)

left_subtree.splay(m)

left_subtree.root.right = right_subtree.root

self.root = left_subtree.root
else:

self.root = right_subtree.root

def inorder(self, n):

if n != None:
self.inorder(n.left)

print(n.data)

self.inorder(n.right)

if name == ' main ':

t = SplayTree()

a = Node(10)

b = Node(20)

c = Node(30)

d = Node(100)

e = Node(90)

f = Node(40)

g = Node(50)

h = Node(60)

i = Node(70)

j = Node(80)

k = Node(150)

l = Node(110)

m = Node(120)

t.insert(a)

t.insert(b)

t.insert(c)

t.insert(d)

t.insert(e)

t.insert(f)

t.insert(g)

t.insert(h)

t.insert(i)

13

t.insert(j)

t.insert(k)

t.insert(l)

t.insert(m)

t.delete(a)

t.delete(m)

t.inorder(t.root)

14

4. Write a program to implement Merge sort for the given list of integer values.

Python program for implementation of MergeSort

Merges two subarrays of arr[].

First subarray is arr[l..m]

Second subarray is arr[m+1..r]

def merge(arr, l, m, r):

n1 = m - l + 1

n2 = r - m

create temp arrays

L = [0] * (n1)

R = [0] * (n2)

Copy data to temp arrays L[] and R[]

for i in range(0, n1):

L[i] = arr[l + i]

for j in range(0, n2):

R[j] = arr[m + 1 + j]

Merge the temp arrays back into arr[l..r]

i = 0 # Initial index of first subarray

j = 0 # Initial index of second subarray

k = l # Initial index of merged subarray

while i < n1 and j < n2:

if L[i] <= R[j]:

arr[k] = L[i]

i += 1

else:

k += 1

arr[k] = R[j]

j += 1

Copy the remaining elements of L[], if there # are any

while i < n1:

arr[k] = L[i]

i += 1

k += 1

Copy the remaining elements of R[], if there are any

while j < n2:

arr[k] = R[j]

j += 1

k += 1

l is for left index and r is right index of the

sub-array of arr to be sorted

def mergeSort(arr, l, r):

15

if l < r:
Same as (l+r)//2, but avoids overflow for large l and h

m = l+(r-l)//2

Sort first and second halves

mergeSort(arr, l, m)

mergeSort(arr, m+1, r)

merge(arr, l, m, r)

Driver code to test above

arr = [12, 11, 13, 5, 6, 7]

n = len(arr)

print("Given array is")

for i in range(n):

print("%d" % arr[i]),

mergeSort(arr, 0, n-1)

print("\n\nSorted array is")

for i in range(n):

print("%d" % arr[i]),

OUTPUT
Given array is

12 11 13 5 6 7

Sorted array is

5 6 7 11 12 13

16

5. Write a program to implement Quick Sort for the given list of integer values.

Python program for implementation of Quicksort Sort

def partition(arr, low, high):

i = (low-1) # index of smaller element

pivot = arr[high] # pivot

for j in range(low, high):

If current element is smaller than or

equal to pivot

if arr[j] <= pivot:

increment index of smaller element

i = i+1

arr[i], arr[j] = arr[j], arr[i]

arr[i+1], arr[high] = arr[high], arr[i+1]

return (i+1)

The main function that implements QuickSort

arr[] --> Array to be sorted,

low --> Starting index,

high --> Ending index

Function to do Quick sort

def quickSort(arr, low, high):

if len(arr) == 1:

return arr

if low < high:

pi is partitioning index, arr[p] is now

at right place

pi = partition(arr, low, high)

Separately sort elements before

partition and after partition

quickSort(arr, low, pi-1)

quickSort(arr, pi+1, high)

Driver code to test above

arr = [10, 7, 8, 9, 1, 5]

n = len(arr)

quickSort(arr, 0, n-1)

print("Sorted array is:")

for i in range(n):

print("%d" % arr[i])

17

OUTPUT

Sorted array is:

1

5

7

8

9

10

** Process exited - Return Code: 0 **

Press Enter to exit terminal

18

6. Write a program to find the solution for the knapsack problem using the greedy method.

Python3 program to solve
fractional# Knapsack Problem
class ItemValue:

"""Item Value DataClass"""
def init (self, wt, val, ind):

self.wt = wt
self.val = val
self.ind = ind
self.cost = val //
wt

def lt (self, other):

return self.cost < other.cost

Greedy Approach
class FractionalKnapSack:

"""Time Complexity O(n log
n)"""@staticmethod
def getMaxValue(wt, val, capacity):

"""function to get maximum value
"""iVal = []
for i in range(len(wt)):

iVal.append(ItemValue(wt[i], val[i],
i))

sorting items by value
iVal.sort(reverse =
True)totalValue = 0
for i in iVal:

curWt = int(i.wt)
curVal =
int(i.val)
if capacity - curWt >=

0:capacity -= curWt
totalValue += curVal

else:
fraction = capacity / curWt
totalValue += curVal *
fraction
capacity = int(capacity - (curWt *
fraction))break

19

return totalValue

Driver Code
If name == " main ":

wt = [10, 40, 20, 30]
val = [60, 40, 100, 120]
capacity = 50

OUTPUT:

Maximum value in Knapsack = 240.0

maxValue = FractionalKnapSack.getMaxValue(wt, val,
capacity)print("Maximum value in Knapsack =", maxValue)

20

7. Write a program to find minimum cost spanning tree using

Prim's Algorithm

Prim's Algorithm in Python

INF = 9999999
number of vertices in graphN = 5
#creating graph by adjacency matrix method

G = [[0, 19, 5, 0, 0],

[19, 0, 5, 9, 2],

[5, 5, 0, 1, 6],

[0, 9, 1, 0, 1],

[0, 2, 6, 1, 0]]

selected_node = [0, 0, 0, 0, 0]

no_edge = 0
selected_node[0] = True

printing for edge and weight
print("Edge : Weight\n")
while (no_edge < N - 1):
minimum = INF

a = 0
b = 0
for m in range(N):

if selected_node[m]:
for n in range(N):

if ((not selected_node[n]) and G[m][n]):
not in selected and there is an edge
if

mini

mu

m >

G[m

][n]:

mini
mu

m =

G[m

][n]

a =
m

b = n

print(str(a) + "-" + str(b) + ":" + str(G[a][b]))
selected_node[b] = True
no_edge += 1

21

8. Write a program to find minimum cost spanning tree using Kruskal’s algorithm.

Python program for Kruskal's algorithm to

find # Minimum Spanning Tree of a given

connected,# undirected and weighted graph

from collections import

defaultdict# Class to represent a

graph

class Graph:

def init (self, vertices):

self.V = vertices # No. of vertices self.graph = [] #

default dictionary# to store graph

function to add an edge to

graphdef addEdge(self, u, v, w):

self.graph.append([u, v, w])

A utility function to find set of an

element i# (uses path compression

technique)

def find(self, parent, i):

if parent[i] == i:

return i

return self.find(parent, parent[i])

A function that does union of two sets of x

and y# (uses union by rank)

def union(self, parent, rank, x, y): xroot =

self.find(parent, x)yroot =

self.find(parent, y)

Attach smaller rank tree under root of# high rank

tree (Union by Rank)

if rank[xroot] < rank[yroot]:

parent[xroot] = yroot

elif rank[xroot] >

rank[yroot]:

parent[yroot] =

xroot

If ranks are same, then make one as root# and

increment its rank by one

else:

parent[yroot] =

xrootrank[xroot] +=

22

1

The main function to construct MST using Kruskal's# algorithm

def KruskalMST(self):

result = [] # This will store the resultant MST

23

An index variable, used for sorted edgesi = 0

An index variable, used for result[]e = 0

Step 1: Sort all the edges in

non-decreasing order of their

weight. If we are not allowed to change the# given graph,

we can create a copy of graph

self.graph = sorted(self.graph, key=lambda item: item[2])parent = []

rank = []

Create V subsets with single elementsfor node in

range(self.V):

parent.append(node

)rank.append(0)

Number of edges to be taken is equal to V-1while e < self.V

- 1:

Driver

codeg =

Graph(4)

Step 2: Pick the smallest edge and

increment# the index for next iteration

u, v, w =

self.graph[i]i = i + 1

x = self.find(parent,

u)y =

self.find(parent, v)

If including this edge does't

cause cycle, include it in result

and increment the indexof

result# for next edge

if x != y:

e = e + 1

result.append([u, v,

w])

self.union(parent, rank, x,

y)# Else discard the edge

minimumCost = 0

print ("Edges in the constructed

MST")for u, v, weight in result:

minimumCost += weight

print("%d -- %d == %d" % (u, v,

weight)) print("Minimum Spanning Tree" ,

minimumCost)

g.addEdge(0, 1, 10)

g.addEdge(0, 2, 6)

24

g.addEdge(0, 3, 5)

g.addEdge(1, 3, 15)

g.addEdge(2, 3,

4)# Function call

g.KruskalMST()

OUOTPUT:

Edges in the constructed

MST2 - - 3 = = 4

0 - - 3 = = 5

0 - - 1 = = 10

Minimum Spanning Tree 19

25

9. Write a program to find a single source shortest path for a given graph.
import sys

class Graph():

def init (self, vertices):
self.V = vertices
self.graph = [[0 for column in range(vertices)]

for row in range(vertices)]

def printSolution(self, dist):
print "Vertex \tDistance from Source"

for node in range(self.V):
print node, "\t", dist[node]

def minDistance(self, dist, sptSet):

min = sys.maxint

for u in range(self.V):
if dist[u] < min and sptSet[u] == False:

min = dist[u]

min_index = u
return min_index

def dijkstra(self, src):

dist = [sys.maxint] * self.V
dist[src] = 0

sptSet = [False] * self.V
for cout in range(self.V):

x = self.minDistance(dist, sptSet)

sptSet[x] = True

for y in range(self.V):
if self.graph[x][y] > 0 and sptSet[y] == False and \
dist[y] > dist[x] + self.graph[x][y]:

dist[y] = dist[x] + self.graph[x][y]

self.printSolution(dist)

g = Graph(9)

g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],
[4, 0, 8, 0, 0, 0, 0, 11, 0],

[0, 8, 0, 7, 0, 4, 0, 0, 2],
[0, 0, 7, 0, 9, 14, 0, 0, 0],
[0, 0, 0, 9, 0, 10, 0, 0, 0],

[0, 0, 4, 14, 10, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 1, 6],
[8, 11, 0, 0, 0, 0, 1, 0, 7],

[0, 0, 2, 0, 0, 0, 6, 7, 0]

];
g.dijkstra(0);

26

Output:

Vertex

Distance from Source

0 0

1 4

2 12

3 19

4 21

5 11

6 9

7 8

8 14

27

Program 10:

Title:

Write a program to find the solution for job sequencing with deadlines problems.

Program:

def printJobScheduling(arr, t):n =

len(arr)

for i in range(n):

for j in range(n - 1 - i):

if arr[j][2] < arr[j + 1][2]:

arr[j], arr[j + 1] = arr[j + 1], arr[j]

result = [False] * tjob = ['-

1'] * t

for i in range(len(arr)):

for j in range(min(t - 1, arr[i][1] - 1), -1, -

1):if result[j] is False:

result[j] = True

job[j] =

arr[i][0]break

print(job)

arr = [['a', 2, 100],

['b', 1, 19],

['c', 2, 27],

['d', 1, 25],

['e', 3, 15]]

print("Following is maximum profit sequence of jobs")

printJobScheduling(arr, 3)

OUTPUT:

Following is maximum profit sequence of

jobs['c', 'a', 'e']

	LABORATORY MANUAL
	(20A05301P)
	(R-20 REGULATION)
	SVR ENGINEERING COLLEGE

	(20A05301P) (1)
	Institute Mission:
	Department Vision:
	Department Mission:
	2. PO, PEO& PSO Statements PROGRAMME OUTCOMES (POs)
	Program Educational Objectives (PEOs):
	Program Specific Outcomes (PSOs):
	2.1 Subject Time Table

	(20A05301P) Advanced Data Structures and Algorithms Lab
	Course Objectives:
	Course Outcomes(CO):
	List of Experiments:
	1. Write a program to implement the following operations on Binary Search Tree:
	OUTPUT

	2. Write a program to perform a Binary Search for a given set of integer values.
	OUTPUT

	3. Write a program to implement Splay trees.
	4. Write a program to implement Merge sort for the given list of integer values.
	OUTPUT

	5. Write a program to implement Quick Sort for the given list of integer values.
	OUTPUT
	8. Write a program to find minimum cost spanning tree using Kruskal’s algorithm.

	9. Write a program to find a single source shortest path for a given graph.
	Program 10:
	Title:
	Program:

	OUTPUT:

